

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

A Neutral relation between metallic structure and almost quadratic ϕ -structure

Sinem GÖNÜL¹, **irem KÜPELİ ERKEN²**, Aziz YAZLA³, Cengizhan MURATHAN⁴ ¹Science Institute, Uludag University, Gorukle, Bursa, Turkey ²Department of Mathematics, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey ³Department of Mathematics, Faculty of Sciences, Selcuk University, Konya, Turkey ⁴Department of Mathematics, Faculty of Art and Science, Uludag University, Bursa, Turkey

Received: 09.07.2018	,	Accepted/Published Online: 29.11.2018	•	Final Version: 18.01.2019
----------------------	---	---------------------------------------	---	----------------------------------

Abstract: In this paper, we give a neutral relation between metallic structure and almost quadratic metric ϕ -structure. Considering N as a metallic Riemannian manifold, we show that the warped product manifold $\mathbb{R} \times_f N$ has an almost quadratic metric ϕ -structure. We define Kenmotsu quadratic metric manifolds, which include cosymplectic quadratic manifolds when $\beta = 0$. Then we give nice almost quadratic metric ϕ -structure examples. In the last section, we construct a quadratic ϕ -structure on the hypersurface M^n of a locally metallic Riemannian manifold \tilde{M}^{n+1} .

Key words: Polynomial structure, golden structure, metallic structure, almost quadratic ϕ -structure

1. Introduction

In [10] and [9], Goldberg and Yano and Goldberg and Petridis respectively defined a new type of structure called a polynomial structure on an *n*-dimensional differentiable manifold M. The polynomial structure of degree 2 can be given by

$$J^2 = pJ + qI, (1.1)$$

where J is a (1,1) tensor field on M, I is the identity operator on the Lie algebra $\Gamma(TM)$ of vector fields on M, and p,q are real numbers. This structure can be also viewed as a generalization of the following well known structures:

· If p = 0, q = 1, then J is called an almost product or almost para complex structure and denoted by F [12, 16],;

- If p = 0, q = -1, then J is called an almost complex structure [18];
- If p = 1, q = 1, then J is called a golden structure [6, 7];

· If $p \in \mathbb{R} - (-2, 2)$ and q = -1, then J is called a poly-Norden structure [17];

· If p = -1, $q = \frac{3}{2}$, then J is called an almost complex golden structure [1];

· If p and q are positive integers, then J is called a metallic structure [11].

If a differentiable manifold is endowed with a metallic structure J then the pair (M, J) is called a metallic

^{*}Correspondence: irem.erken@btu.edu.tr

²⁰¹⁰ AMS Mathematics Subject Classification: Primary 53B25, 53B35, 53C15, 53C55; Secondary 53D15

manifold. Any metallic structure J on M induces two almost product structures on M:

$$F_{\pm} = \pm \left(\frac{2}{2\sigma_{p,q} - p}J - \frac{p}{2\sigma_{p,q} - p}I\right),$$

where $\sigma_{p,q} = \frac{p + \sqrt{p^2 + 4q}}{2}$ is the metallic number, which is the positive solution of the equation $x^2 - px - q = 0$ for p and q nonzero natural numbers. Conversely, any almost product structure F on M induces two metallic structures on M:

$$J_{\pm} = \pm \frac{2\sigma_{p,q} - p}{2}F + \frac{p}{2}I.$$

If M is Riemannian, the metric g is said to be compatible with the polynomial structure J if

$$g(JX,Y) = g(X,JY) \tag{1.2}$$

for $X, Y \in \Gamma(TM)$. In this case, (g, J) is called a metallic Riemannian structure and (M, g, J) a metallic Riemannian manifold [8]. By (1.1) and (1.2), one can get

$$g(JX, JY) = pg(JX, Y) + qg(X, Y),$$

for $X, Y \in \Gamma(TM)$. The Nijenhuis torsion N_K for arbitrary tensor field K of type (1,1) on M is a tensor field of type (1,2) defined by

$$N_K(X,Y) = K^2[X,Y] + [KX,KY] - K[KX,Y] - K[X,KY],$$
(1.3)

where [X, Y] is the commutator for arbitrary differentiable vector fields $X, Y \in \Gamma(TM)$. The polynomial structure J is said to be integrable if $N_J \equiv 0$. A metallic Riemannian structure J is said to be locally metallic if $\nabla J = 0$, where ∇ is the Levi-Civita connection with respect to g. Thus, one can deduce that a locally metallic Riemannian manifold is always integrable.

On the other hand, Debnath and Konar [8] recently introduced a new type of structure named the almost quadratic ϕ -structure (ϕ, η, ξ) on an *n*-dimensional differentiable manifold M, determined by a (1,1)-tensor field ϕ , a unit vector field ξ , and a 1-form η , which satisfy the following relations:

 $\phi \xi = 0,$

$$\phi^2 = a\phi + b(I - \eta \otimes \xi); \quad a^2 + 4b \neq 0, \tag{1.4}$$

where a is an arbitrary constant and b is a nonzero constant. If M is a Riemannian manifold the Riemannian metric g is said to be compatible with the polynomial structure ϕ if

$$g(\phi X, Y) = g(X, \phi Y)$$

which is equivalent to

$$g(\phi X, \phi Y) = ag(\phi X, Y) + b(g(X, Y) - \eta(X)\eta(Y)).$$

$$(1.5)$$

In this case, (g, ϕ, η, ξ) is called an almost quadratic metric ϕ -structure. The manifold M is said to be an almost quadratic metric ϕ -manifold if it is endowed with an almost quadratic metric ϕ -structure [8]. They

proved the necessary and sufficient conditions for an almost quadratic ϕ -manifold to induce an almost contact or almost paracontact manifold.

Recently, Blaga and Hretcanu [3] characterized the metallic structure on the product of two metallic manifolds in terms of metallic maps and provided a necessary and sufficient condition for the warped product of two locally metallic Riemannian manifolds to be locally metallic. Moreover, Özkan and F. Yılmaz [15] investigated integrability and parallelism conditions for the metallic structure on a differentiable manifold.

This paper is organized in the following way.

Section 2 is the preliminaries section, where we recall some properties of an almost quadratic metric ϕ -structure and warped product manifolds. In Section 3, we define the (β, ϕ) -Kenmotsu quadratic metric manifold and cosymplectic quadratic metric manifold. We mainly prove that if (N, g, ∇, J) is a locally metallic Riemannian manifold, then $\mathbb{R} \times_f N$ is a $(-\frac{f'}{f}, \phi)$ -Kenmotsu quadratic metric manifold, and we show that every differentiable manifold M endowed with an almost quadratic ϕ -structure (ϕ, η, ξ) admits an associated Riemannian metric. We prove that on a (β, ϕ) -Kenmotsu quadratic metric manifolds. Section 4 is devoted to quadratic ϕ -hypersurfaces of metallic Riemannian manifolds. We show that there are almost quadratic ϕ -structures on hypersurfaces of metallic Riemannian manifolds. Then we give the necessary and sufficient condition for the characteristic vector field ξ to be Killing in a quadratic metric ϕ -hypersurface. Furthermore, we obtain the Riemannian curvature tensor of a quadratic metric ϕ -hypersurface.

2. Preliminaries

Let M^n be an almost quadratic ϕ -manifold. As in almost contact manifolds, Debmath and Konar [8] proved that $\eta \circ \phi = 0, \eta(\xi) = 1$, and $rank \ \phi = n - 1$. They also showed that the eigenvalues of the structure tensor ϕ are $\frac{a+\sqrt{a^2+4b}}{2}$, $\frac{a-\sqrt{a^2+4b}}{2}$, and 0. If λ_i , σ_j , and ξ are eigenvectors corresponding to the eigenvalues $\frac{a+\sqrt{a^2+4b}}{2}$, $\frac{a-\sqrt{a^2+4b}}{2}$, and 0 of ϕ , respectively, then λ_i , σ_j , and ξ are linearly independent. Denote the following distributions:

$$\begin{aligned} \cdot \Pi_r &= \{ X \in \Gamma(TM) : \alpha LX = -\phi^2 X - (\frac{\sqrt{a^2 + 4b} - a}{2})\phi, \alpha = -2b - \frac{a^2 + a\sqrt{a^2 + 4b}}{2} \}; \dim \Pi_r = r, \\ \cdot \Pi_s &= \{ X \in \Gamma(TM) : \beta QX = -\phi^2 X + (\frac{\sqrt{a^2 + 4b} + a}{2})\phi X, \beta = -2b - \frac{a^2 - a\sqrt{a^2 + 4b}}{2} \}; \dim \Pi_s = s, \\ \cdot \Pi_1 &= \{ X \in \Gamma(TM) : bRX = \phi^2 X - a\phi X - bX = -b\eta(X)\xi \}; \dim \Pi_1 = 1. \end{aligned}$$

By the above notations, Debmath and Konar proved following theorem.

Theorem 2.1 ([8]) The necessary and sufficient condition that a manifold M^n will be an almost quadratic ϕ -manifold is that at each point of the manifold M^n it contains distributions Π_r, Π_s , and Π_1 such that $\Pi_r \cap \Pi_s = \{\emptyset\}, \Pi_r \cap \Pi_1 = \{\emptyset\}, \Pi_s \cap \Pi_1 = \{\emptyset\}, and \Pi_r \cup \Pi_s \cup \Pi_1 = TM$.

Let (M^m, g_M) and (N^n, g_N) be two Riemannian manifolds and $\tilde{M} = M \times N$. The warped product metric \langle , \rangle on \tilde{M} is given by

$$\langle \tilde{X}, \tilde{Y} \rangle = g_M(\pi_*\tilde{X}, \pi_*\tilde{Y}) + (f \circ \pi)^2 g_N(\sigma_*\tilde{X}, \sigma_*\tilde{Y})$$

for every \tilde{X} and $\tilde{Y} \in \Gamma(T\tilde{M})$ where $f: M \xrightarrow{C^{\infty}} \mathbb{R}^+$ and $\pi: M \times N \to M$, $\sigma: M \times N \to N$ the canonical projections (see [2]). The warped product manifolds are denoted by $\tilde{M} = (M \times_f N, <, >)$. The function f is

called the warping function of the warped product. If the warping function f is 1, then $\tilde{M} = (M \times_f N, <, >)$ reduces the Riemannian product manifold. The manifolds M and N are called the base and the fiber of \tilde{M} , respectively. For a point $(p,q) \in M \times N$, the tangent space $T_{(p,q)}(M \times N)$ is isomorphic to the direct sum $T_{(p,q)}(M \times q) \oplus T_{(p,q)}(p \times N) \equiv T_p M \oplus T_q N$. Let $\mathcal{L}_{\mathcal{H}}(M)$ (resp. $\mathcal{L}_{\mathcal{V}}(N)$) be the set of all vector fields on $M \times N$, which is the horizontal lift (resp. the vertical lift) of a vector field on M (a vector field on N). Thus, a vector field on $M \times N$ can be written as $\bar{E} = \bar{X} + \bar{U}$, with $\bar{X} \in \mathcal{L}_{\mathcal{H}}(M)$ and $\bar{U} \in \mathcal{L}_{\mathcal{V}}(N)$. One can see that

$$\pi_*(\mathcal{L}_{\mathcal{H}}(M)) = \Gamma(TM) , \ \sigma_*(\mathcal{L}_{\mathcal{V}}(N)) = \Gamma(TN)$$

and so $\pi_*(\bar{X}) = X \in \Gamma(TM)$ and $\sigma_*(\bar{U}) = U \in \Gamma(TN)$. If $\bar{X}, \bar{Y} \in \mathcal{L}_{\mathcal{H}}(M)$, then $[\bar{X}, \bar{Y}] = [X, Y] \in \mathcal{L}_{\mathcal{H}}(M)$ and similarly for $\mathcal{L}_{\mathcal{V}}(N)$, and also if $\bar{X} \in \mathcal{L}_{\mathcal{H}}(M), \bar{U} \in \mathcal{L}_{\mathcal{V}}(N)$ then $[\bar{X}, \bar{U}] = 0$ [13].

The Levi-Civita connection $\overline{\nabla}$ of $M \times_f N$ is related to the Levi-Civita connections of M and N as follows:

Proposition 2.2 ([13]) For $\bar{X}, \bar{Y} \in \mathcal{L}_{\mathcal{H}}(M)$ and $\bar{U}, \bar{V} \in \mathcal{L}_{\mathcal{V}}(N)$,

- (a) $\bar{\nabla}_{\bar{X}}\bar{Y} \in \mathcal{L}_{\mathcal{H}}(M)$ is the lift of ${}^{M}\nabla_{X}Y$, that is, $\pi_{*}(\bar{\nabla}_{\bar{X}}\bar{Y}) = {}^{M}\nabla_{X}Y$;
- (b) $\bar{\nabla}_{\bar{X}}\bar{U} = \bar{\nabla}_{\bar{U}}\bar{X} = \frac{X(f)}{f}U;$
- (c) $\bar{\nabla}_{\bar{U}}\bar{V} = {}^{N}\nabla_{U}V \frac{\langle U,V \rangle}{f}gradf$, where $\sigma_{*}(\bar{\nabla}_{\bar{U}}\bar{V}) = {}^{N}\nabla_{U}V$.

Here the notation is simplified by writing f for $f \circ \pi$ and gradf for $grad(f \circ \pi)$. Now we consider the special warped product manifold

$$\tilde{M} = I \times_f N, \quad <, > = dt^2 + f^2(t)g_N.$$

In practice, (-) is omitted from lifts. In this case,

$$\tilde{\nabla}_{\partial_t}\partial_t = 0, \quad \tilde{\nabla}_{\partial_t}X = \tilde{\nabla}_X\partial_t = \frac{f'(t)}{f(t)}X \text{ and } \quad \tilde{\nabla}_XY = {}^N\nabla_XY - \frac{\langle X, Y \rangle}{f(t)}f'(t)\partial_t.$$
(2.1)

3. Almost quadratic metric ϕ -structure

Let (N, g, J) be a metallic Riemannian manifold with metallic structure J. By (1.1) and (1.2) we have

$$g(JX, JY) = pg(X, JY) + qg(X, Y).$$

Let us consider the warped product $\tilde{M} = \mathbb{R} \times_f N$, with warping function f > 0, endowed with the Riemannian metric

$$<,>= dt^2 + f^2g.$$

Now we will define an almost quadratic metric ϕ -structure on (\tilde{M}, \tilde{g}) by using a method similar to that in [5]. Denote arbitrarily any vector field on \tilde{M} by $\tilde{X} = \eta(\tilde{X})\xi + X$, where X is any vector field on N and $dt = \eta$. By the help of tensor field J, a new tensor field ϕ of type (1,1) on \tilde{M} can be given by

$$\phi \tilde{X} = JX, \quad X \in \Gamma(TN), \tag{3.1}$$

for $\tilde{X} \in \Gamma(T\tilde{M})$. Thus, we get $\phi \xi = \phi(\xi + 0) = J0 = 0$ and $\eta(\phi \tilde{X}) = 0$, for any vector field \tilde{X} on \tilde{M} . Hence, we obtain

$$\phi^2 \tilde{X} = p \phi \tilde{X} + q (\tilde{X} - \eta (\tilde{X}) \xi)$$
(3.2)

and arrive at

$$< \phi \tilde{X} , \tilde{Y} >= f^2 g(JX, Y)$$
$$= f^2 g(X, JY)$$
$$= < \tilde{X} , \phi \tilde{Y} >,$$

for $\tilde{X}, \tilde{Y} \in \Gamma(T\tilde{M})$. Moreover, we get

$$\begin{array}{ll} < & \phi \tilde{X}, \phi \tilde{Y} >= f^2 g(JX, JY) \\ = & f^2 (pg(X, JY) + qg(X, Y)) \\ = & p < \tilde{X} - \eta(\tilde{X})\xi, \phi \tilde{Y} > +q(<\tilde{X}, \tilde{Y} > -\eta(\tilde{X})\eta(\tilde{Y})) \\ = & p < \tilde{X}, \phi \tilde{Y} > +q(<\tilde{X}, \tilde{Y} > -\eta(\tilde{X})\eta(\tilde{Y})). \end{array}$$

Thus, we have proved the following proposition.

Proposition 3.1 If (N, g, J) is a metallic Riemannian manifold, then there is an almost quadratic metric ϕ -structure on warped product manifold ($\tilde{M} = \mathbb{R} \times_f N, <, >= dt^2 + f^2 g$).

An almost quadratic metric ϕ -manifold $(M, g, \nabla, \phi, \xi, \eta)$ is called a (β, ϕ) -Kenmotsu quadratic metric manifold if

$$(\nabla_X \phi)Y = \beta \{ g(X, \phi Y)\xi + \eta(Y)\phi X \}, \beta \in C^{\infty}(M).$$
(3.3)

Taking $Y = \xi$ in (3.3) and using (1.4), we obtain

$$\nabla_X \xi = -\beta (X - \eta(X)\xi). \tag{3.4}$$

Moreover, by (3.4) we get $d\eta = 0$. If $\beta = 0$, then this kind of manifold is called a cosymplectic quadratic manifold.

Theorem 3.2 If (N, g, ∇, J) is a locally metallic Riemannian manifold, then $\mathbb{R} \times_f N$ is a $\left(-\frac{f'}{f}, \phi\right)$ -Kenmotsu quadratic metric manifold.

Proof We consider $\tilde{X} = \eta(\tilde{X})\xi + X$ and $\tilde{Y} = \eta(\tilde{Y})\xi + Y$ vector fields on $\mathbb{R} \times_f N$, where $X, Y \in \Gamma(TN)$ and $\xi = \frac{\partial}{\partial t} \in \Gamma(\mathbb{R})$. By help of (3.1), we have

$$\begin{split} (\tilde{\nabla}_{\tilde{X}}\phi)\tilde{Y} &= \tilde{\nabla}_{\tilde{X}}\phi\tilde{Y} - \phi\tilde{\nabla}_{\tilde{X}}\tilde{Y} \\ &= \tilde{\nabla}_{X}JY + \eta(\tilde{X})\tilde{\nabla}_{\xi}JY - \phi(\tilde{\nabla}_{X}\tilde{Y} + \eta(\tilde{X})\tilde{\nabla}_{\xi}\tilde{Y}) \\ &= \tilde{\nabla}_{X}JY + \eta(\tilde{X})\tilde{\nabla}_{\xi}JY - \phi(\tilde{\nabla}_{X}Y + X(\eta(\tilde{Y}))\xi + \eta(\tilde{Y})\tilde{\nabla}_{X}\xi \\ &+ \eta(\tilde{X})\tilde{\nabla}_{\xi}Y + \xi(\eta(\tilde{Y}))\eta(\tilde{X})\xi). \end{split}$$
(3.5)

Using (2.1) in (3.5), we get

$$\begin{split} (\tilde{\nabla}_{\tilde{X}}\phi)\tilde{Y} &= (\nabla_X J)Y - \frac{f'}{f} < X, JY > \xi + \eta(\tilde{X})\frac{f'}{f}JY - \phi(\eta(\tilde{Y})\frac{f'}{f}X + \eta(\tilde{X})\frac{f'}{f}Y) \\ &= (\nabla_X J)Y - \frac{f'}{f}(<\tilde{X}, \phi\tilde{Y} > \xi + \eta(\tilde{Y})\phi\tilde{X}). \end{split}$$

Since $\nabla J = 0$, the last equation is reduced to

$$(\tilde{\nabla}_{\tilde{X}}\phi)\tilde{Y} = -\frac{f'}{f} (\langle \tilde{X}, \phi\tilde{Y} \rangle \xi + \eta(\tilde{Y})\phi\tilde{X}).$$
(3.6)

Using $\tilde{\nabla}_X \xi = \frac{f'}{f} X$, we have

$$\tilde{\nabla}_{\tilde{X}}\xi = \frac{f'}{f}(\tilde{X} - \eta(\tilde{X})\xi)$$

Thus, $\mathbb{R} \times_f N$ is a $\left(-\frac{f'}{f}, \phi\right)$ -Kenmotsu quadratic metric manifold.

Corollary 3.3 Let (N, g, ∇, J) be a locally metallic Riemannian manifold. Then product manifold $\mathbb{R} \times N$ is a cosymplectic quadratic metric manifold.

Example 3.4 Blaga and Hretcanu [3] constructed a metallic structure on \mathbb{R}^{n+m} in the following manner:

$$J(x_1, ..., x_n, y_1, ..., y_m) = (\sigma x_1, ..., \sigma x_n, \bar{\sigma} y_1, ..., \bar{\sigma} y_m),$$

where $\sigma = \sigma_{p,q} = \frac{p + \sqrt{p^2 + 4pq}}{2}$ and $\bar{\sigma} = \bar{\sigma}_{p,q} = \frac{p - \sqrt{p^2 + 4pq}}{2}$ for p,q positive integers. By Theorem 3.2 $H^{n+m+1} = \mathbb{R} \times_{e^t} \mathbb{R}^{n+m}$ is a $(-1, \phi)$ -Kenmotsu quadratic metric manifold.

M is said to be metallic shaped hypersurface in a space form $N^{n+1}(c)$ if the shape operator A of M is a metallic structure (see [14]).

Example 3.5 In [14], Özgür and Yılmaz Özgür proved that an $S^n(\frac{2}{p+\sqrt{p^2+4pq}})$ sphere is a locally metallic shaped hypersurfaces in \mathbb{R}^{n+1} . Using Theorem 3.2, we have

$$H^{n+1} = \mathbb{R} \times_{\cosh(t)} S^n(\frac{2}{p + \sqrt{p^2 + 4q}}),$$

 $a \ (-\tanh t, \phi)$ -Kenmotsu quadratic metric manifold.

Example 3.6 Debnath and Konar [8] gave an example of an almost quadratic ϕ -structure on \mathbb{R}^4 as follows: If the (1,1) tensor field ϕ , 1-form η , and vector field ξ are defined as

$$\phi = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 9 & 2 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \eta = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}, \xi = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix},$$

then

$$\phi^2 = 4\phi + 5(I_4 - \eta \otimes \xi).$$

Thus, \mathbb{R}^4 has an almost quadratic ϕ -structure.

Theorem 3.7 Every differentiable manifold M endowed with an almost quadratic ϕ -structure (ϕ, η, ξ) admits an associated Riemannian metric.

Proof Let \tilde{h} be any Riemannian metric. Putting

$$h(X,Y) = \tilde{h}(\phi^2 X, \phi^2 Y) + \eta(X)\eta(Y),$$

we have $\eta(X) = h(X, \xi)$. We now define g by

$$g(X,Y) = \frac{1}{\alpha + \delta} [\alpha h(X,Y) + \beta h(\phi X,\phi Y) + \frac{\gamma}{2} (h(\phi X,Y) + h(X,\phi Y)) + \delta \eta(X)\eta(Y)],$$

where $\alpha, \beta, \gamma, \delta, q$ are nonzero constants satisfying $\beta q = p\frac{\gamma}{2} + \alpha$, $\alpha + \delta \neq 0$. It is clearly seen that

$$g(\phi X, \phi Y) = pg(\phi X, Y) + q(g(X, Y) - \eta(X)\eta(Y))$$

for any $X, Y \in \Gamma(TM)$.

Remark 3.8 If we choose $\alpha = \delta = q, \beta = \gamma = 1$, then we have p = 0. In this case, we obtain Theorem 4.1 of [8].

Proposition 3.9 Let $(M, g, \nabla, \phi, \xi, \eta)$ be a (β, ϕ) -Kenmotsu quadratic metric manifold. Then quadratic structure ϕ is integrable; that is, the Nijenhuis tensor $N_{\phi} \equiv 0$.

Proof Using (3.2) in (1.3), we have

$$N_{\phi}(X,Y) = \phi^{2}[X,Y] + [\phi X,\phi Y] - \phi[\phi X,Y] - \phi[X,\phi Y]$$

$$= p\phi[X,Y] + q([X,Y] - \eta([X,Y])\xi) + \tilde{\nabla}_{\phi X}\phi Y$$

$$-\nabla_{\phi Y}\phi X - \phi(\nabla_{\phi X}Y - \nabla_{Y}\phi X) - \phi(\nabla_{X}\phi Y - \nabla_{\phi Y}X)$$

$$= p\phi\nabla_{X}Y - p\phi\nabla_{Y}X + q\nabla_{X}Y - q\nabla_{Y}X - q\eta([X,Y])\xi)$$

$$+ (\nabla_{\phi X}\phi)Y - (\nabla_{\phi Y}\phi)X + \phi\nabla_{Y}\phi X - \phi\nabla_{X}\phi Y$$
(3.7)

for $X, Y \in \Gamma(TM)$. By using (3.2), we have

$$p\phi\nabla_X Y - \phi\nabla_X \phi Y = p\phi\nabla_X Y + (\nabla_X \phi)\phi Y - \nabla_X \phi^2 Y$$
$$= -p(\nabla_X \phi)Y + (\nabla_X \phi)\phi Y - q\nabla_X Y;$$
$$+qX(\eta(Y))\xi + q(\eta(Y))\nabla_X \xi.$$

If we write the last equation in (3.7), we get

$$N_{\phi}(X,Y) = -p(\nabla_X \phi)Y + p(\nabla_Y \phi)X + (\nabla_X \phi)\phi Y - (\nabla_Y \phi)\phi X$$

+(\nabla_{\phi X} \phi)Y - (\nabla_{\phi Y} \phi)X + q(X\eta(Y)\xi) - Y\eta(X)\xi) - \eta([X,Y])\xi)
+q(\eta(Y)\nabla_X\xi) - \eta(X)\nabla_Y\xi). (3.8)

r	-	-	-
L			1
L			1
•	-	-	-

Employing (3.6) and (3.2) in (3.8), we deduce that

$$N_{\phi}(X,Y) = q(X\eta(Y)\xi - Y\eta(X)\xi - \eta([X,Y])\xi)$$

= 0.

This completes the proof of the theorem.

4. Quadratic metric ϕ -hypersurfaces of metallic Riemannian manifolds

Theorem 4.1 Let \tilde{M}^{n+1} be a differentiable manifold with metallic structure J and M^n be a hypersurface of \tilde{M}^{n+1} . Then there is an almost quadratic ϕ -structure (ϕ, η, ξ) on M^n .

Proof Denote by ν a unit normal vector field of M^n . For any vector field X tangent to M^n , we put

$$JX = \phi X + \eta(X)\nu, \tag{4.1}$$

$$J\nu = q\xi + p\nu, \tag{4.2}$$

$$J\xi = \nu, \tag{4.3}$$

where ϕ is a (1,1) tensor field on M^n , $\xi \in \Gamma(TM)$ and η is a 1-form such that $\eta(\xi) = 1$ and $\eta \circ \phi = 0$. On applying operator J to the above equality (4.1) and using (4.2), we have

$$J^{2}X = J(\phi X) + \eta(X)J\nu$$

= $\phi^{2}X + \eta(X)(q\xi + p\nu).$ (4.4)

Using (1.1) in (4.4),

$$p\phi X + p\eta(X)\nu + qX = \phi^2 X + \eta(X)(q\xi + p\nu).$$

Hence, we are led to the conclusion:

$$\phi^2 X = p\phi X + q(X - \eta(X)\xi).$$
(4.5)

Let M^n be a hypersurface of an n+1-dimensional metallic Riemannian manifold \tilde{M}^{n+1} and let ν be a globally unit normal vector field on M^n . Denote $\tilde{\nabla}$ the Levi-Civita connection with respect to the Riemannian metric \tilde{g} of \tilde{M}^{n+1} . Then the Gauss and Weingarten formulas are given respectively by

$$\tilde{\nabla}_X Y = \nabla_X Y + g(AX, Y)\nu,$$
$$\tilde{\nabla}_X \nu = -AX$$

for any $X, Y \in \Gamma(TM)$, where g denotes the Riemannian metric of M^n induced from \tilde{g} and A is the shape operator of M^n .

Proposition 4.2 Let $(\tilde{M}^{n+1}, <, >, \tilde{\nabla}, J)$ be a locally metallic Riemannian manifold. If (M^n, g, ∇, ϕ) is a quadratic metric ϕ -hypersurface of \tilde{M}^{n+1} , then

$$(\nabla_X \phi)Y = \eta(Y)AX + g(AX, Y)\xi, \tag{4.6}$$

275

$$\nabla_X \xi = pAX - \phi AX, \ A\xi = 0, \tag{4.7}$$

and

$$(\nabla_X \eta)Y = pg(AX, Y) - g(AX, \phi Y).$$
(4.8)

Proof If we take the covariant derivatives of the metallic structure tensor J according to X by (4.1)–(4.3), the Gauss and Weingarten formulas, we get

$$0 = (\nabla_X \phi) Y - \eta(Y) A X - qg(AX, Y) \xi$$

+(g(AX, \phiY) + X(\eta(Y))) - \eta(\nabla_X Y) - pg(AX, Y))\nu. (4.9)

If we identify the tangential components and the normal components of the equation (4.9), respectively, we have

$$(\nabla_X \phi) Y - \eta(Y) A X - qg(AX, Y) \xi = 0.$$

$$g(AX, \phi Y) + X(\eta(Y)) - \eta(\nabla_X Y) - pg(AX, Y) = 0.$$

$$(4.10)$$

Using the compatible condition of J and (4.1), we get

$$g(JX, JY) = pg(X, JY) + qg(X, Y)$$

= $pg(X, \phi Y) + qg(X, Y).$ (4.11)

Expressed in another way, by help of (1.5) and (4.1), we obtain

$$g(JX, JY) = g(\phi X, \phi Y) + \eta(X)\eta(Y) = pg(X, \phi Y) + q(g(X, Y) - \eta(X)\eta(Y)) + \eta(X)\eta(Y) = pg(X, \phi Y) + qg(X, Y) + (1 - q)\eta(X)\eta(Y)).$$
(4.12)

Considering (4.11) and (4.12), we get q = 1. By (4.10) we arrive at (4.6). If we put $Y = \xi$ in (4.10) we get

$$\phi \nabla_X \xi = -AX - g(AX, \xi)\xi. \tag{4.13}$$

If we apply ξ on both sides of (4.13), we have $A\xi = 0$.

Applying ϕ on both sides of the equation (4.13) and using $A\xi = 0$,

$$-\phi AX = p\phi \nabla_X \xi + (\nabla_X \xi - \eta (\nabla_X \xi)\xi)$$
$$= -pAX + \nabla_X \xi.$$

Hence, we arrive at the first equation of (4.7). By help of (4.7), we readily obtain (4.8). This completes the proof. \Box

Proposition 4.3 ([4]) Let (M,g) be a Riemannian manifold and let ∇ be the Levi-Civita connection on M induced by g. For every vector field X on M, the following conditions are equivalent:

- (1) X is a Killing vector field; that is, $L_X g = 0$.
- (2) $g(\nabla_Y X, Z) + g(\nabla_Z X, Y) = 0$ for all $Y, Z \in \chi(M)$.

Proposition 4.4 Let $(M^n, g, \nabla, \phi, \eta, \xi)$ be a quadratic metric ϕ -hypersurface of a locally metallic Riemannian manifold $(\tilde{M}^{n+1}, \tilde{g}, \tilde{\nabla}, J)$. The characteristic vector field ξ is a Killing vector field if and only if $\phi A + A\phi = 2pA$.

Proof From Proposition 4.3, we have

$$g(\nabla_X \xi, Y) + g(\nabla_Y \xi, X) = 0$$

Making use of (4.7) in the last equation, we get

$$pg(AX,Y) - g(\phi AX,Y) + pg(AY,X) - g(\phi AY,X) = 0.$$

Using the symmetric property of A and ϕ , we obtain

$$2pg(AX,Y) = g(\phi AX,Y) + g(A\phi X,Y).$$

$$(4.14)$$

We arrive at the desired equation from (4.14).

Proposition 4.5 If $(M^n, g, \nabla, \phi, \xi)$ is a (β, ϕ) -Kenmotsu quadratic hypersurface of a locally metallic Riemannian manifold on $(\tilde{M}^{n+1}, \tilde{g}, \tilde{\nabla}, J)$, then $\phi A = A\phi$ and $A^2 = \beta pA + \beta^2 (I - \eta \otimes \xi)$.

Proof Since $d\eta = 0$, using (4.7), we have

$$0 = g(Y, \nabla_X \xi) - g(X, \nabla_Y \xi)$$

= $pg(Y, AX) - g(Y, \phi AX) - pg(X, AY) + g(X, \phi AY)$
= $g(A\phi X - \phi AX, Y).$

Thus, we get $\phi A = A\phi$. By (3.3) and (4.6), we get

$$\beta(g(X,\phi Y)\xi + \eta(Y)\phi X) = \eta(Y)AX + g(AX,Y)\xi$$

If we apply ξ on both sides of the last equation, we obtain

$$\beta g(X, \phi Y) = g(AX, Y).$$

Namely,

$$\beta \phi X = AX. \tag{4.15}$$

Putting AX instead of X and using (4.5) in (4.15), we get $A^2X = \beta pAX + \beta^2(X - \eta(X)\xi)$. This completes the proof.

By help of (4.15) we obtain the following:

Corollary 4.6 Let $(M^n, g, \nabla, \phi, \xi)$ be a cosymplectic quadratic metric ϕ -hypersurface of a locally metallic Riemannian manifold. Then M is totally geodesic.

Remark 4.7 Hretcanu and Crasmareanu [11] investigated some properties of the induced structure on a hypersurface in a metallic Riemannian manifold, but the argument in Proposition 4.2 is to get the quadratic ϕ -hypersurface of a metallic Riemannian manifold. In the same paper, they proved that the induced structure on M is parallel to the induced Levi-Civita connection if and only if M is totally geodesic.

By Proposition 4.2, we have the following.

Proposition 4.8 Let $(M^n, g, \nabla, \phi, \xi)$ be a quadratic metric ϕ -hypersurface of a locally metallic Riemannian manifold. Then

$$R(X,Y)\xi = p((\nabla_X A)Y - (\nabla_Y A)X) - \phi((\nabla_X A)Y - (\nabla_Y A)X),$$

for any $X, Y \in \Gamma(TM)$.

Corollary 4.9 Let $(M^n, g, \nabla, \phi, \xi)$ be a quadratic metric ϕ -hypersurface of a locally metallic Riemannian manifold. If the second fundamental form is parallel, then $R(X, Y)\xi = 0$.

References

- Bilen L, Turanlı S, Gezer A. On Kaehler–Norden–Codazzi golden structures on pseudo-Riemannian manifolds. Int J Geom Methods Mod Phys 2018; 15: 1850080.
- [2] Bishop RL, O'Neill B. Manifolds of negative curvature. T Am Math Soc 1969; 145: 1-49.
- Blaga AM, Hretcanu CE. Invariant, anti-invariant and slant submanifolds of a metallic Riemannian manifold. arXiv: 1803.01415.
- Blair DE. Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics, 203. Boston, MA, USA: Birkhäuser, 2002.
- [5] Carriazo A, Pérez-García MJ. Slant submanifolds in neutral almost contact pseudo-metric manifolds. Differential Geom Appl 2017; 54: 71-80.
- [6] Crasmareanu M, Hretcanu CE. Golden differential geometry. Chaos Solitons Fractals 2008; 38: 1229-1238.
- [7] Crasmareanu M. Hretcanu CE, Munteanu MI. Golden- and product-shaped hypersurfaces in real space forms. Int J Geom Methods Mod Phys 2013; 10: 1320006.
- [8] Debmath P, Konar A. A new type of structure on differentiable manifold. Int Electron J Geom 2011; 4: 102-114.
- [9] Goldberg SI, Petridis NC. Differentiable solutions of algebraic equations on manifolds. Kodai Math Sem Rep 1973; 25: 111-128.
- [10] Goldberg SI, Yano K. Polynomial structures on manifolds. Kodai Math Sem Rep 1970; 22: 199-218.
- [11] Hretcanu CE, Crasmareanu M. Metallic structures on Riemannian manifolds. Revista de Launi on Matematica Argentina 2013; 54: 15-27.
- [12] Naveira A. A classification of Riemannian almost-product manifolds. Rend Di Mat Di Roma 1983; 3: 577-592.
- [13] O'Neill B. Semi-Riemannian Geometry. New York, NY, USA: Academic Press, 1983.
- [14] Özgür C, Yılmaz Özgür N. Classification of metallic shaped hypersurfaces in real space forms. Turk J Math 2015; 39: 784-794.
- [15] Özkan M, Yılmaz F. Metallic structures on differentiable manifolds. Journal of Science and Arts 2018; 44: 645-660.
- [16] Pitis G. On some submanifolds of a locally product manifold. Kodai Math J 1986; 9: 327-333.
- [17] Şahin B. Almost poly-Norden manifolds. International Journal of Maps in Mathematics 2018; 1: 68-79.
- [18] Yano K, Kon M. Structures on Manifolds. Series in Pure Mathematics. Singapore: World Scientific, 1984.