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Abstract: In this paper, we give a neutral relation between metallic structure and almost quadratic metric ¢-structure.
Considering N as a metallic Riemannian manifold, we show that the warped product manifold R x s N has an almost
quadratic metric ¢-structure. We define Kenmotsu quadratic metric manifolds, which include cosymplectic quadratic

manifolds when S = 0. Then we give nice almost quadratic metric ¢-structure examples. In the last section, we

construct a quadratic ¢-structure on the hypersurface M™ of a locally metallic Riemannian manifold M™*+!,

Key words: Polynomial structure, golden structure, metallic structure, almost quadratic ¢-structure

1. Introduction

In [10] and [9], Goldberg and Yano and Goldberg and Petridis respectively defined a new type of structure called
a polynomial structure on an n-dimensional differentiable manifold M . The polynomial structure of degree 2

can be given by

J? = pJ+ql, (1.1)

where J is a (1,1) tensor field on M, I is the identity operator on the Lie algebra T'(T'M) of vector fields
on M, and p,q are real numbers. This structure can be also viewed as a generalization of the following well

known structures:
-If p=0, ¢g=1, then J is called an almost product or almost para complex structure and denoted by

F (12, 16);;
-If p=0, ¢g=—1, then J is called an almost complex structure [18];
-Ifp=1, g=1, then J is called a golden structure [6, 7];
-Ifp e R—(-2,2) and ¢ = —1, then J is called a poly-Norden structure [17];
SIfp=-1,q9= %, then J is called an almost complex golden structure [1];
- If p and ¢ are positive integers, then J is called a metallic structure [11].

If a differentiable manifold is endowed with a metallic structure J then the pair (M, J) is called a metallic
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manifold. Any metallic structure J on M induces two almost product structures on M :

2
Fy =+ ( — 1) ,
20pq—p 20pqg—p

is the metallic number, which is the positive solution of the equation 2% —pz — ¢ =0

p++/p*+4q
2

for p and q nonzero natural numbers. Conversely, any almost product structure F' on M induces two metallic

where o, 4 =

structures on M :

20~ Ppy P

Jr =+
+ 2 2

If M is Riemannian, the metric g is said to be compatible with the polynomial structure J if
9(JX,Y) = g(X,JY) (1.2)

for X, Y € T'(TM). In this case, (g,J) is called a metallic Riemannian structure and (M, g,J) a metallic
Riemannian manifold [8]. By (1.1) and (1.2), one can get

g(JX,JY) =pg(JX,Y) + q9(X,Y),

for X, Y € I'(T'M). The Nijenhuis torsion Ny for arbitrary tensor field K of type (1,1) on M is a tensor
field of type (1,2) defined by

Nk(X,Y) = K?[X,Y] + [KX,KY] - K[KX,Y] - K[X,KY], (1.3)

where [X,Y] is the commutator for arbitrary differentiable vector fields X,Y € T'(TM). The polynomial
structure J is said to be integrable if N; = 0. A metallic Riemannian structure J is said to be locally metallic
if VJ = 0, where V is the Levi-Civita connection with respect to ¢g. Thus, one can deduce that a locally

metallic Riemannian manifold is always integrable.
On the other hand, Debnath and Konar [8] recently introduced a new type of structure named the almost
quadratic ¢-structure (¢,n,£) on an n-dimensional differentiable manifold M, determined by a (1,1)-tensor

field ¢, a unit vector field ¢, and a 1-form 7, which satisfy the following relations:

P =0,

& =ad+b(I —n©E); o’ +4b#0, (1.4)

where a is an arbitrary constant and b is a nonzero constant. If M is a Riemannian manifold the Riemannian

metric ¢ is said to be compatible with the polynomial structure ¢ if

9(¢X,Y) = g(X, ¢Y),

which is equivalent to
9(¢X, Y ) = ag(¢X,Y) + b(g(X,Y) — n(X)n(Y)). (1.5)

In this case, (g,¢,n,&) is called an almost quadratic metric ¢-structure. The manifold M is said to be an

almost quadratic metric ¢-manifold if it is endowed with an almost quadratic metric ¢-structure [8]. They
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proved the necessary and sufficient conditions for an almost quadratic ¢-manifold to induce an almost contact
or almost paracontact manifold.

Recently, Blaga and Hretcanu [3] characterized the metallic structure on the product of two metallic
manifolds in terms of metallic maps and provided a necessary and sufficient condition for the warped product
of two locally metallic Riemannian manifolds to be locally metallic. Moreover, Ozkan and F. Yilmaz [15]
investigated integrability and parallelism conditions for the metallic structure on a differentiable manifold.

This paper is organized in the following way.

Section 2 is the preliminaries section, where we recall some properties of an almost quadratic metric
¢-structure and warped product manifolds. In Section 3, we define the (f,¢)-Kenmotsu quadratic metric

manifold and cosymplectic quadratic metric manifold. We mainly prove that if (N, g, V,J) is a locally metallic
Riemannian manifold, then R x; N is a (—fT/, ¢)-Kenmotsu quadratic metric manifold, and we show that

every differentiable manifold M endowed with an almost quadratic ¢-structure (¢,7,£) admits an associated
Riemannian metric. We prove that on a (3, ¢)-Kenmotsu quadratic metric manifold the Nijenhuis tensor
Ny, = 0. We also give examples of (53, ¢)-Kenmotsu quadratic metric manifolds. Section 4 is devoted to
quadratic ¢-hypersurfaces of metallic Riemannian manifolds. We show that there are almost quadratic ¢-
structures on hypersurfaces of metallic Riemannian manifolds. Then we give the necessary and sufficient
condition for the characteristic vector field £ to be Killing in a quadratic metric ¢-hypersurface. Furthermore,

we obtain the Riemannian curvature tensor of a quadratic metric ¢-hypersurface.

2. Preliminaries
Let M™ be an almost quadratic ¢-manifold. As in almost contact manifolds, Debmath and Konar [8] proved
that no ¢ = 0,n(§) = 1, and rank ¢ = n — 1. They also showed that the eigenvalues of the structure

tensor ¢ are etveitdb = a—ya®idd
2 J 2

,and 0. If A\;, o;, and £ are eigenvectors corresponding to the eigenvalues

“+‘/‘§2+4b, “_\/‘52“““’, and 0 of ¢, respectively, then )\;, o;, and ¢ are linearly independent. Denote the
following distributions:

I, = {X € I(TM) : aLX = —¢2X — (Ya2Ela)y o — _op — a’+ava®idby. gim 1, 7,

T, = {X € [(TM) : QX = —¢?X + (YeZilbtayyx g _op — a2=ava®tdby, gim ], = s,

I = {X € I(TM) : bRX = ¢*’X — a¢pX — bX = —bn(X)¢}; dim Il = 1.

By the above notations, Debmath and Konar proved following theorem.

Theorem 2.1 ([8]) The necessary and sufficient condition that a manifold M™ will be an almost quadratic
¢-manifold is that at each point of the manifold M™ it contains distributions 11,11, and 11y such that
II, NIl = {o},II, N1II; ={@},II,NIl; ={&}, and II, UII; UIl; =TM.

Let (M™, ga) and (N, gn) be two Riemannian manifolds and M =M x N. The warped product metric
<,> on M is given by

< X,Y >=gu(m.X,mY) + (f om)2gn(0.X,0.,Y)

for every X and Y € F(TM) where f: M TRt and 7: M x N — M, 0: M x N — N the canonical
projections (see [2]). The warped product manifolds are denoted by M = (M X N,<,>). The function f is
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called the warping function of the warped product. If the warping function f is 1, then M = (M x5 N,<,>)

reduces the Riemannian product manifold. The manifolds M and N are called the base and the fiber of M,
respectively. For a point (p,q) € M x N, the tangent space T{;, 4 (M x N) is isomorphic to the direct sum
Tip,) (M xq)®T(pq)(px N) =T, MSTyN. Let L3 (M) (resp. Ly(N)) be the set of all vector fields on M x N,
which is the horizontal lift (resp. the vertical lift) of a vector field on M (a vector field on N'). Thus, a vector
field on M x N can be written as £ = X + U, with X € L (M) and U € Ly(N). One can see that

Te(Ly(M)) = T(TM) , 0.(Ly(N)) = T(T'N)
and so m.(X) =X € I'(TM) and 0.(U) =U € I'(TN). If X,Y € Ly(M), then [X,Y] = [X,_Y] € Ly(M)
and similarly for £y (N), and also if X € L3,(M),U € L£y(N) then [X,U] =0 [13].

The Levi-Civita connection V of M x ¢ N is related to the Levi-Civita connections of M and N as

follows:

Proposition 2.2 ([13]) For X,Y € L#(M) and U,V € Ly(N),

(a) VY € Lyy(M) is the lift of MV xY, that is, m.(VgY) = MVyxY;
(b) VU =VpX = Xu;

(c) VgV = NVpyV — Lfv>gradf, where 0,.(VgV) = NVyV.

Here the notation is simplified by writing f for fom and gradf for grad(fom).

Now we consider the special warped product manifold
M =1x;N, <,>=dt*+ f*(t)gn.

In practice, (—) is omitted from lifts. In this case,

_ . . "t _ XY
$00 = 0,95 X = V0 = LD X and ¥y = Nyyy - S0V >

0 Tt)f’(t)an (2.1)

3. Almost quadratic metric ¢-structure

Let (N,g,J) be a metallic Riemannian manifold with metallic structure J. By (1.1) and (1.2) we have
9(JX,JY) =pg(X,JY) + q9(X,Y).

Let us consider the warped product M = R x ¢ N, with warping function f > 0, endowed with the

Riemannian metric
<, >=dt* + fy.

Now we will define an almost quadratic metric ¢-structure on (M, §) by using a method similar to that in [5].
Denote arbitrarily any vector field on M by X = 77(5( )¢ + X, where X is any vector field on N and dt = 7.
By the help of tensor field J, a new tensor field ¢ of type (1,1) on M can be given by

$X =JX, X €I(TN), (3.1)
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for X € T(TM). Thus, we get ¢¢ = ¢(€ +0) = J0 =0 and n(¢X) = 0, for any vector field X on M. Hence,

we obtain

*X = ppX + q(X — n(X)¢) (3.2)
and arrive at
< ¢X .Y >= f2g(JX,Y)
= fP9(X,JY)

<X ,pY >,
for X,Y € F(TM). Moreover, we get

< ¢X,0Y >= f2g(JX,JY)
= fz(pg(X, JY) + qg(X’ Y))
= p< X (X)€Y > +q(< X,V > —n(X)n(Y))

= p<X,0Y > +4(< XY > —(X)n(Y)).
Thus, we have proved the following proposition.

Proposition 3.1 If (N,g,J) is a metallic Riemannian manifold, then there is an almost quadratic metric

¢ -structure on warped product manifold (M = R x ¢ N,<,>=dt* + f?g).

An almost quadratic metric ¢-manifold (M, g,V,®,&,n) is called a (8, ¢)-Kenmotsu quadratic metric

manifold if

(Vx9)Y = B{g(X, oY )§ +n(Y)pX}, B € CF(M). (3.3)
Taking ¥ = ¢ in (3.3) and using (1.4), we obtain

Vx§ = —B(X —n(X)S). (34)

Moreover, by (3.4) we get dn = 0. If 8 = 0, then this kind of manifold is called a cosymplectic quadratic

manifold.

Theorem 3.2 If (N,g,V,J) is a locally metallic Riemannian manifold, then Rx s N is a (—fTI, @) -Kenmotsu

quadratic metric manifold.

Proof We consider X = 7(X)é+X and Y = n(Y)E+Y vector fields on Rx s N, where X,Y € T(TN) and
¢=2 € T'(R). By help of (3.1), we have
(Vgo)Y = VgoV —¢ViY
= VxJY +n(X)VeJY — ¢(VxY +7(X)VeY)
= VxJY +(X)VeJY — ¢(VxY + X(n(Y))é +n(Y)Vxé (3.5)

+n(X)VeY + En(Y))n(X)e).
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Using (2.1) in (3.5), we get

(Vio)V = (VXJ)Y—§ <X,JY>§+n(X)J;JY—¢(n(}7)f/X+n(j()J;/y)
= (VxJ)Y — fl(< X, 9V > €+ n(Y)pX).

Since VJ = 0, the last equation is reduced to

/

(V)Y = = (< X,6¥ > £+ (V)6 X). (3.6)
Using ﬁxg = fTIX , we have
f >
€= 7(X —n(X)§)
Thus, R x¢ N is a (—fT/, ¢)-Kenmotsu quadratic metric manifold. a

Corollary 3.3 Let (N,g,V,J) be a locally metallic Riemannian manifold. Then product manifold R x N s

a cosymplectic quadratic metric manifold.
Example 3.4 Blaga and Hretcanu [3] constructed a metallic structure on R™™™ in the following manner:

J(X1y oy Ty Y1y ooy Ym) = (01, oty 0Ty, TY1y vey OYim )

_ p+/p?+4pg p—+/p%+4pq
2 2

where 0 = 0pq =

HmHl = R x .« R™™ s a (—1,¢)-Kenmotsu quadratic metric manifold.

and 0 = Opq = for p,q positive integers. By Theorem 3.2

M is said to be metallic shaped hypersurface in a space form N™*!(c) if the shape operator A of M is

a metallic structure (see [14]).

Example 3.5 In [14], Ozgiir and Yimaz Ozgiir proved that an S™( sphere is a locally metallic

2
p++/p%+4pq )

shaped hypersurfaces in R"1 . Using Theorem 3.2, we have

2

p+ P2+ 4Q))’

H"' =R X cosh(t) Sn(

a (—tanht, ¢)-Kenmotsu quadratic metric manifold.

Example 3.6 Debnath and Konar [8] gave an example of an almost quadratic ¢-structure on R* as follows:

If the (1,1) tensor field ¢, 1-form n, and vector field & are defined as

21 0 0 0
9 2 0 0 0
0 00O 1
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then
¢ =4¢+5(I —n®&).

Thus, R* has an almost quadratic ¢ -structure.

Theorem 3.7 Every differentiable manifold M endowed with an almost quadratic ¢-structure (¢,n,&) admits

an associated Riemannian metric.
Proof Let h be any Riemannian metric. Putting
h(X,Y) = h(¢*X,¢*Y) + n(X)n(Y),

we have n(X) = h(X, ). We now define g by

90X, Y) = ——[ah(X,Y) + Bh(OX, 6Y) + 2 (H6X, Y) + h(X, 67) + on(X)n(¥),

where «, 3,7,0,q are nonzero constants satisfying fq = p3 +«, a4+ # 0. It is clearly seen that
9(¢X,9Y) = pg(¢X,Y) + q(9(X,Y) — n(X)n(Y))

for any X,Y € I'(TM). O

Remark 3.8 If we choose « = = q,8 =~ =1, then we have p = 0. In this case, we obtain Theorem 4.1 of

/s].

Proposition 3.9 Let (M,g,V,$,&,m) be a (B,d)-Kenmotsu quadratic metric manifold. Then quadratic

structure ¢ is integrable; that is, the Nijenhuis tensor Ng = 0.
Proof Using (3.2) in (1.3), we have
Ny(X,Y) = ¢°[X,Y]+[pX,0Y] - ¢[¢X,Y] — ¢[X, ¢Y]
= pe[X, Y]+ q([X,Y] = n([X,Y])§) + Vox oY
—Voy ¢X — ¢(VexY — VydX) — d(Vx oY — Vyy X)
= ppVxY —ppVy X +qVxY — qVy X — gn([X,Y])§)
+(Vox @)Y — (Voy )X + oVy oX — ¢Vx oY (3.7)
for X, Y e T'(TM). By using (3.2), we have
pOVxY + (Vx§)pY — Vx¢*Y
—p(Vx )Y + (Vx )oY —qVxY;
+qX(n(Y))E+an(Y))Vx&.

POV xY — ¢V x oY

If we write the last equation in (3.7), we get

Ny(X,Y) = —p(Vxo)Y +p(Vyd)X + (Vx¢)oY — (Vyo)pX
H(Vex @)Y — (Voy ¢) X + q(Xn(Y)E = Yn(X)E —n([X,Y])E)
+q(n(Y)VxE —n(X)Vyé). (3.8)
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Employing (3.6) and (3.2) in (3.8), we deduce that

Ng(X,Y)

q(Xn(Y)€ = Yn(X)€ = n([X,Y])E)
= 0.

This completes the proof of the theorem. O

4. Quadratic metric ¢-hypersurfaces of metallic Riemannian manifolds

Theorem 4.1 Let M™*! be a differentiable manifold with metallic structure J and M™ be a hypersurface of
M™Y. Then there is an almost quadratic ¢ -structure (¢p,m, &) on M™.

Proof Denote by v a unit normal vector field of M™. For any vector field X tangent to M™, we put

JX = ¢X+n(X)v, (4.1)
Jv = q¢€+pv, (4.2)
JE = v, (4.3)

where ¢ is a (1,1) tensor field on M™, ¢ € I'(TM) and 7 is a 1-form such that n(§) =1 and no¢ = 0. On
applying operator J to the above equality (4.1) and using (4.2), we have

I’X = J(¢X)+n(X)Jv
= ¢X +n(X)(g€ +pv). (4.4)
Using (1.1) in (4.4),
poX +p(X)v +¢X = ¢*X +n(X)(¢€ + pv).

Hence, we are led to the conclusion:
¢*X = poX + (X —n(X)¢). (4.5)
O
Let M™ be a hypersurface of an n + 1-dimensional metallic Riemannian manifold M™*! and let v be a

globally unit normal vector field on M™. Denote V the Levi-Civita connection with respect to the Riemannian

metric § of M™!. Then the Gauss and Weingarten formulas are given respectively by
VxY =VxY + g(AX,Y)r,

@XV =-AX

for any X,Y € I'(TM), where g denotes the Riemannian metric of M™ induced from § and A is the shape
operator of M™.

Proposition 4.2 Let (M"+1,<7>,@,J) be a locally metallic Riemannian manifold. If (M™,g,V,¢) is a

quadratic metric ¢-hypersurface of M"+L | then

(Vx@)Y =n(Y)AX + g(AX,Y)E, (4.6)
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V& =pAX — 6AX, AE =0, (4.7)

and
(Vxn)Y =pg(AX,Y) — g(AX,¢Y). (4.8)

Proof If we take the covariant derivatives of the metallic structure tensor J according to X by (4.1)—(4.3),

the Gauss and Weingarten formulas, we get

0 = (Vx6)Y —n(Y)AX — qg(AX,Y) (4.9)
+(g(AX,6Y) + X (n(Y)) = n(VxY) — pg(AX,Y))v.

If we identify the tangential components and the normal components of the equation (4.9), respectively, we have
(Vx@)Y —n(Y)AX — qg(AX,Y)§ = 0. (4.10)

g(AX, YY) + X(n(Y)) —n(VxY) —pg(AX,Y) = 0.

Using the compatible condition of J and (4.1), we get

g(JX,JY) = pg(X,JY)+qg(X,Y)
= pg(X,9Y)+q9(X,Y). (4.11)

Expressed in another way, by help of (1.5) and (4.1), we obtain

g(JIX,JY) = g(¢X,0Y)+n(X)n(Y)
= pg(X,0Y) +q(g(X,Y) —n(X)n(Y)) +n(X)nY)
= pg(X,0Y) 4+ q9(X,Y) + (1 — ¢)n(X)n(Y)). (4.12)

Considering (4.11) and (4.12), we get ¢ = 1. By (4.10) we arrive at (4.6). If we put Y = & in (4.10) we get
PVxE = —AX —g(AX, £)¢. (4.13)

If we apply & on both sides of (4.13), we have A =0.
Applying ¢ on both sides of the equation (4.13) and using A& =0,

—QAX = ppVx&+ (VxE—n(VxE)E)
= —pAX + V€.

Hence, we arrive at the first equation of (4.7). By help of (4.7), we readily obtain (4.8). This completes the
proof. O

Proposition 4.3 ([4]) Let (M,g) be a Riemannian manifold and let ¥V be the Levi-Civita connection on M
induced by g. For every vector field X on M, the following conditions are equivalent:

(1) X is a Killing vector field; that is, Lxg = 0.

(2) g(Vy X, Z)+g(VzX,Y)=0 forall Y,Z € x(M).
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Proposition 4.4 Let (M™,g9,V,¢,n,£) be a quadratic metric ¢-hypersurface of a locally metallic Riemannian
manifold (M”‘H,g, Vv, J). The characteristic vector field & is a Killing vector field if and only if pA+A¢p = 2pA.

Proof From Proposition 4.3, we have
9(Vx&Y) +g(Vy&, X) =0.

Making use of (4.7) in the last equation, we get

Pg(AX,Y) = g(pAX,Y) + pg(AY, X) — g(¢AY, X) = 0.
Using the symmetric property of A and ¢, we obtain

2g(AX,Y) = g(pAX,Y) + g(AdX,Y). (4.14)

We arrive at the desired equation from (4.14). O
Proposition 4.5 If (M™,9,V,$,£) is a (8, d)-Kenmotsu quadratic hypersurface of a locally metallic Rieman-
nian manifold on (M™1,§,V,.J), then ¢A = A¢p and A?> = BpA+ B2(I —nRE).
Proof Since dn =0, using (4.7), we have

0 = g(Y,Vx§) —g(X,Vy§)
= pg(Y,AX) — g(Y,0AX) — pg(X, AY) + g(X, pAY)
= g(AdX — AX,Y).

Thus, we get ¢A = A¢. By (3.3) and (4.6), we get
Bl(X, 6Y)E + (Y)$X) = n(Y)AX + g(AX, V)e.
If we apply & on both sides of the last equation, we obtain
By9(X,9Y) = g(AX,Y).

Namely,
BoX = AX. (4.15)
Putting AX instead of X and using (4.5) in (4.15), we get A2X = BpAX + $2(X — n(X)E). This completes
the proof. O
By help of (4.15) we obtain the following:

Corollary 4.6 Let (M™,g,V,0,£) be a cosymplectic quadratic metric ¢-hypersurface of a locally metallic

Riemannian manifold. Then M 1is totally geodesic.

Remark 4.7 Hretcanu and Crasmareanu [11] investigated some properties of the induced structure on a
hypersurface in a metallic Riemannian manifold, but the argument in Proposition 4.2 is to get the quadratic
¢ -hypersurface of a metallic Riemannian manifold. In the same paper, they proved that the induced structure

on M is parallel to the induced Levi-Civita connection if and only if M is totally geodesic.
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By Proposition 4.2, we have the following.

Proposition 4.8 Let (M™,g,V,0,£) be a quadratic metric ¢-hypersurface of a locally metallic Riemannian
manifold. Then

R(X,Y){ =p((VxA)Y — (VyA)X) — o((VxA)Y — (VyA)X),

for any X, Y € T(TM).

Corollary 4.9 Let (M™,g,V,$,&) be a quadratic metric ¢-hypersurface of a locally metallic Riemannian
manifold. If the second fundamental form is parallel, then R(X,Y )¢ = 0.

Ut

- = = =
X X9

©
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