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Abstract: In this paper, we give a neutral relation between metallic structure and almost quadratic metric ϕ -structure.
Considering N as a metallic Riemannian manifold, we show that the warped product manifold R×f N has an almost
quadratic metric ϕ -structure. We define Kenmotsu quadratic metric manifolds, which include cosymplectic quadratic
manifolds when β = 0 . Then we give nice almost quadratic metric ϕ -structure examples. In the last section, we
construct a quadratic ϕ -structure on the hypersurface Mn of a locally metallic Riemannian manifold M̃n+1.

Key words: Polynomial structure, golden structure, metallic structure, almost quadratic ϕ -structure

1. Introduction
In [10] and [9], Goldberg and Yano and Goldberg and Petridis respectively defined a new type of structure called
a polynomial structure on an n -dimensional differentiable manifold M . The polynomial structure of degree 2
can be given by

J2 = pJ + qI, (1.1)

where J is a (1, 1) tensor field on M, I is the identity operator on the Lie algebra Γ(TM) of vector fields
on M , and p, q are real numbers. This structure can be also viewed as a generalization of the following well
known structures:

· If p = 0 , q = 1 , then J is called an almost product or almost para complex structure and denoted by
F [12, 16],;

· If p = 0 , q = −1 , then J is called an almost complex structure [18];
· If p = 1 , q = 1 , then J is called a golden structure [6, 7];
· If p ∈ R− (−2, 2) and q = −1 , then J is called a poly-Norden structure [17];
· If p = −1 , q = 3

2 , then J is called an almost complex golden structure [1];
· If p and q are positive integers, then J is called a metallic structure [11].
If a differentiable manifold is endowed with a metallic structure J then the pair (M,J) is called a metallic
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manifold. Any metallic structure J on M induces two almost product structures on M :

F± = ±
(

2

2σp,q − p
J − p

2σp,q − p
I

)
,

where σp,q =
p+

√
p2+4q

2 is the metallic number, which is the positive solution of the equation x2 − px− q = 0

for p and q nonzero natural numbers. Conversely, any almost product structure F on M induces two metallic
structures on M :

J± = ±2σp,q − p

2
F +

p

2
I.

If M is Riemannian, the metric g is said to be compatible with the polynomial structure J if

g(JX, Y ) = g(X, JY ) (1.2)

for X,Y ∈ Γ(TM) . In this case, (g, J) is called a metallic Riemannian structure and (M, g, J) a metallic
Riemannian manifold [8]. By (1.1) and (1.2), one can get

g(JX, JY ) = pg(JX, Y ) + qg(X,Y ),

for X,Y ∈ Γ(TM) . The Nijenhuis torsion NK for arbitrary tensor field K of type (1, 1) on M is a tensor
field of type (1, 2) defined by

NK(X,Y ) = K2[X,Y ] + [KX,KY ]−K[KX,Y ]−K[X,KY ], (1.3)

where [X,Y ] is the commutator for arbitrary differentiable vector fields X,Y ∈ Γ(TM). The polynomial
structure J is said to be integrable if NJ ≡ 0. A metallic Riemannian structure J is said to be locally metallic
if ∇J = 0 , where ∇ is the Levi-Civita connection with respect to g . Thus, one can deduce that a locally
metallic Riemannian manifold is always integrable.

On the other hand, Debnath and Konar [8] recently introduced a new type of structure named the almost
quadratic ϕ -structure (ϕ, η, ξ) on an n -dimensional differentiable manifold M , determined by a (1, 1) -tensor
field ϕ , a unit vector field ξ , and a 1 -form η , which satisfy the following relations:

ϕξ = 0,

ϕ2 = aϕ+ b(I − η ⊗ ξ); a2 + 4b ̸= 0, (1.4)

where a is an arbitrary constant and b is a nonzero constant. If M is a Riemannian manifold the Riemannian
metric g is said to be compatible with the polynomial structure ϕ if

g(ϕX, Y ) = g(X,ϕY ),

which is equivalent to
g(ϕX, ϕY ) = ag(ϕX, Y ) + b(g(X,Y )− η(X)η(Y )). (1.5)

In this case, (g, ϕ, η, ξ) is called an almost quadratic metric ϕ -structure. The manifold M is said to be an
almost quadratic metric ϕ -manifold if it is endowed with an almost quadratic metric ϕ -structure [8]. They
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proved the necessary and sufficient conditions for an almost quadratic ϕ -manifold to induce an almost contact
or almost paracontact manifold.

Recently, Blaga and Hretcanu [3] characterized the metallic structure on the product of two metallic
manifolds in terms of metallic maps and provided a necessary and sufficient condition for the warped product
of two locally metallic Riemannian manifolds to be locally metallic. Moreover, Özkan and F. Yılmaz [15]
investigated integrability and parallelism conditions for the metallic structure on a differentiable manifold.

This paper is organized in the following way.
Section 2 is the preliminaries section, where we recall some properties of an almost quadratic metric

ϕ -structure and warped product manifolds. In Section 3 , we define the (β, ϕ) -Kenmotsu quadratic metric
manifold and cosymplectic quadratic metric manifold. We mainly prove that if (N, g,∇, J) is a locally metallic

Riemannian manifold, then R ×f N is a (− f ′

f , ϕ) -Kenmotsu quadratic metric manifold, and we show that

every differentiable manifold M endowed with an almost quadratic ϕ -structure (ϕ, η, ξ) admits an associated
Riemannian metric. We prove that on a (β, ϕ) -Kenmotsu quadratic metric manifold the Nijenhuis tensor
Nϕ ≡ 0 . We also give examples of (β, ϕ) -Kenmotsu quadratic metric manifolds. Section 4 is devoted to
quadratic ϕ -hypersurfaces of metallic Riemannian manifolds. We show that there are almost quadratic ϕ -
structures on hypersurfaces of metallic Riemannian manifolds. Then we give the necessary and sufficient
condition for the characteristic vector field ξ to be Killing in a quadratic metric ϕ -hypersurface. Furthermore,
we obtain the Riemannian curvature tensor of a quadratic metric ϕ -hypersurface.

2. Preliminaries
Let Mn be an almost quadratic ϕ -manifold. As in almost contact manifolds, Debmath and Konar [8] proved
that η ◦ ϕ = 0, η(ξ) = 1 , and rank ϕ = n − 1 . They also showed that the eigenvalues of the structure

tensor ϕ are a+
√
a2+4b
2 , a−

√
a2+4b
2 , and 0. If λi , σj , and ξ are eigenvectors corresponding to the eigenvalues

a+
√
a2+4b
2 , a−

√
a2+4b
2 , and 0 of ϕ , respectively, then λi , σj , and ξ are linearly independent. Denote the

following distributions:

·Πr = {X ∈ Γ(TM) : αLX = −ϕ2X − (
√
a2+4b−a

2 )ϕ, α = −2b− a2+a
√
a2+4b

2 };dimΠr = r,

·Πs = {X ∈ Γ(TM) : βQX = −ϕ2X + (
√
a2+4b+a

2 )ϕX, β = −2b− a2−a
√
a2+4b

2 };dimΠs = s,

·Π1 = {X ∈ Γ(TM) : bRX = ϕ2X − aϕX − bX = −bη(X)ξ};dimΠ1 = 1.

By the above notations, Debmath and Konar proved following theorem.

Theorem 2.1 ([8]) The necessary and sufficient condition that a manifold Mn will be an almost quadratic
ϕ-manifold is that at each point of the manifold Mn it contains distributions Πr,Πs , and Π1 such that
Πr ∩Πs = {∅},Πr ∩Π1 = {∅},Πs ∩Π1 = {∅} , and Πr ∪Πs ∪Π1 = TM .

Let (Mm, gM ) and (Nn, gN ) be two Riemannian manifolds and M̃ =M×N. The warped product metric
<,> on M̃ is given by

< X̃, Ỹ >= gM (π∗X̃, π∗Ỹ ) + (f ◦ π)2gN (σ∗X̃, σ∗Ỹ )

for every X̃ and Ỹ ∈ Γ(TM̃) where f : M
C∞

→ R+ and π : M × N → M, σ : M × N → N the canonical
projections (see [2]). The warped product manifolds are denoted by M̃ = (M ×f N,<,>). The function f is
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called the warping function of the warped product. If the warping function f is 1 , then M̃ = (M ×f N,<,>)

reduces the Riemannian product manifold. The manifolds M and N are called the base and the fiber of M̃ ,
respectively. For a point (p, q) ∈ M × N, the tangent space T(p,q)(M × N) is isomorphic to the direct sum
T(p,q)(M×q)⊕T(p,q)(p×N) ≡ TpM⊕TqN. Let LH(M) (resp. LV(N)) be the set of all vector fields on M×N ,
which is the horizontal lift (resp. the vertical lift) of a vector field on M (a vector field on N ). Thus, a vector
field on M ×N can be written as Ē = X̄ + Ū , with X̄ ∈ LH(M) and Ū ∈ LV(N) . One can see that

π∗(LH(M)) = Γ(TM) , σ∗(LV(N)) = Γ(TN)

and so π∗(X̄) = X ∈ Γ(TM) and σ∗(Ū) = U ∈ Γ(TN) . If X̄, Ȳ ∈ LH(M) , then [X̄, Ȳ ] =
−

[X,Y ] ∈ LH(M)

and similarly for LV(N) , and also if X̄ ∈ LH(M), Ū ∈ LV(N) then [X̄, Ū ] = 0 [13].
The Levi-Civita connection ∇̄ of M ×f N is related to the Levi-Civita connections of M and N as

follows:

Proposition 2.2 ([13]) For X̄, Ȳ ∈ LH(M) and Ū , V̄ ∈ LV(N) ,

(a) ∇̄X̄ Ȳ ∈ LH(M) is the lift of M∇XY , that is, π∗(∇̄X̄ Ȳ ) = M∇XY ;

(b) ∇̄X̄ Ū = ∇̄Ū X̄ = X(f)
f U ;

(c) ∇̄Ū V̄ = N∇UV − <U,V >
f gradf , where σ∗(∇̄Ū V̄ ) = N∇UV.

Here the notation is simplified by writing f for f ◦ π and gradf for grad(f ◦ π) .
Now we consider the special warped product manifold

M̃ = I ×f N, <,>= dt2 + f2(t)gN .

In practice, (−) is omitted from lifts. In this case,

∇̃∂t∂t = 0, ∇̃∂tX = ∇̃X∂t =
f ′(t)

f(t)
X and ∇̃XY = N∇XY − < X,Y >

f(t)
f ′(t)∂t. (2.1)

3. Almost quadratic metric ϕ-structure

Let (N, g, J) be a metallic Riemannian manifold with metallic structure J . By (1.1) and (1.2) we have

g(JX, JY ) = pg(X, JY ) + qg(X,Y ).

Let us consider the warped product M̃ = R ×f N , with warping function f > 0 , endowed with the
Riemannian metric

<,>= dt2 + f2g.

Now we will define an almost quadratic metric ϕ -structure on (M̃, g̃) by using a method similar to that in [5].
Denote arbitrarily any vector field on M̃ by X̃ = η(X̃)ξ +X, where X is any vector field on N and dt = η .
By the help of tensor field J , a new tensor field ϕ of type (1, 1) on M̃ can be given by

ϕX̃ = JX, X ∈ Γ(TN), (3.1)
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for X̃ ∈ Γ(TM̃) . Thus, we get ϕξ = ϕ(ξ + 0) = J0 = 0 and η(ϕX̃) = 0, for any vector field X̃ on M̃ . Hence,
we obtain

ϕ2X̃ = pϕX̃ + q(X̃ − η(X̃)ξ) (3.2)

and arrive at

< ϕX̃ , Ỹ >= f2g(JX, Y )

= f2g(X, JY )

= < X̃ , ϕỸ >,

for X̃, Ỹ ∈ Γ(TM̃) . Moreover, we get

< ϕX̃, ϕỸ >= f2g(JX, JY )

= f2(pg(X, JY ) + qg(X,Y ))

= p < X̃ − η(X̃)ξ, ϕỸ > +q(< X̃, Ỹ > −η(X̃)η(Ỹ ))

= p < X̃, ϕỸ > +q(< X̃, Ỹ > −η(X̃)η(Ỹ )).

Thus, we have proved the following proposition.

Proposition 3.1 If (N, g, J) is a metallic Riemannian manifold, then there is an almost quadratic metric
ϕ-structure on warped product manifold (M̃ = R×f N,<,>= dt2 + f2g) .

An almost quadratic metric ϕ -manifold (M, g,∇, ϕ, ξ, η) is called a (β, ϕ) -Kenmotsu quadratic metric
manifold if

(∇Xϕ)Y = β{g(X,ϕY )ξ + η(Y )ϕX}, β ∈ C∞(M). (3.3)

Taking Y = ξ in (3.3) and using (1.4), we obtain

∇Xξ = −β(X − η(X)ξ). (3.4)

Moreover, by (3.4) we get dη = 0. If β = 0 , then this kind of manifold is called a cosymplectic quadratic
manifold.

Theorem 3.2 If (N, g,∇, J) is a locally metallic Riemannian manifold, then R×f N is a (− f ′

f , ϕ)-Kenmotsu
quadratic metric manifold.

Proof We consider X̃ = η(X̃)ξ+X and Ỹ = η(Ỹ )ξ+Y vector fields on R×f N , where X,Y ∈ Γ(TN) and
ξ = ∂

∂t ∈ Γ(R) . By help of (3.1), we have

(∇̃X̃ϕ)Ỹ = ∇̃X̃ϕỸ − ϕ∇̃X̃ Ỹ

= ∇̃XJY + η(X̃)∇̃ξJY − ϕ(∇̃X Ỹ + η(X̃)∇̃ξỸ )

= ∇̃XJY + η(X̃)∇̃ξJY − ϕ(∇̃XY +X(η(Ỹ ))ξ + η(Ỹ )∇̃Xξ (3.5)

+η(X̃)∇̃ξY + ξ(η(Ỹ ))η(X̃)ξ).
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Using (2.1) in (3.5), we get

(∇̃X̃ϕ)Ỹ = (∇XJ)Y − f

f

′
< X, JY > ξ + η(X̃)

f ′

f
JY − ϕ(η(Ỹ )

f ′

f
X + η(X̃)

f ′

f
Y )

= (∇XJ)Y − f ′

f
(< X̃, ϕỸ > ξ + η(Ỹ )ϕX̃).

Since ∇J = 0, the last equation is reduced to

(∇̃X̃ϕ)Ỹ = −f ′

f
(< X̃, ϕỸ > ξ + η(Ỹ )ϕX̃). (3.6)

Using ∇̃Xξ = f ′

f X , we have

∇̃X̃ξ =
f ′

f
(X̃ − η(X̃)ξ).

Thus, R×f N is a (− f ′

f , ϕ) -Kenmotsu quadratic metric manifold. 2

Corollary 3.3 Let (N, g,∇, J) be a locally metallic Riemannian manifold. Then product manifold R ×N is
a cosymplectic quadratic metric manifold.

Example 3.4 Blaga and Hretcanu [3] constructed a metallic structure on Rn+m in the following manner:

J(x1, ..., xn, y1, ..., ym) = (σx1, ..., σxn, σ̄y1, ..., σ̄ym),

where σ = σp,q =
p+

√
p2+4pq

2 and σ̄ = σ̄p,q =
p−

√
p2+4pq

2 for p, q positive integers. By Theorem 3.2
Hn+m+1 = R×et Rn+m is a (−1, ϕ)-Kenmotsu quadratic metric manifold.

M is said to be metallic shaped hypersurface in a space form Nn+1(c) if the shape operator A of M is
a metallic structure (see [14]).

Example 3.5 In [14], Özgür and Yılmaz Özgür proved that an Sn( 2

p+
√

p2+4pq
) sphere is a locally metallic

shaped hypersurfaces in Rn+1 . Using Theorem 3.2, we have

Hn+1 = R×cosh(t) S
n(

2

p+
√

p2 + 4q)
),

a (− tanh t, ϕ)-Kenmotsu quadratic metric manifold.

Example 3.6 Debnath and Konar [8] gave an example of an almost quadratic ϕ-structure on R4 as follows:
If the (1, 1) tensor field ϕ, 1-form η , and vector field ξ are defined as

ϕ =


2 1 0 0
9 2 0 0
0 0 5 0
0 0 0 0

 , η =
[
0 0 0 1

]
, ξ =


0
0
0
1

 ,
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then
ϕ2 = 4ϕ+ 5(I4 − η ⊗ ξ).

Thus, R4 has an almost quadratic ϕ-structure.

Theorem 3.7 Every differentiable manifold M endowed with an almost quadratic ϕ-structure (ϕ, η, ξ) admits
an associated Riemannian metric.

Proof Let h̃ be any Riemannian metric. Putting

h(X,Y ) = h̃(ϕ2X,ϕ2Y ) + η(X)η(Y ),

we have η(X) = h(X, ξ). We now define g by

g(X,Y ) =
1

α+ δ
[αh(X,Y ) + βh(ϕX, ϕY ) +

γ

2
(h(ϕX, Y ) + h(X,ϕY )) + δη(X)η(Y )],

where α, β, γ, δ, q are nonzero constants satisfying βq = pγ
2 + α, α+ δ ̸= 0. It is clearly seen that

g(ϕX, ϕY ) = pg(ϕX, Y ) + q(g(X,Y )− η(X)η(Y ))

for any X,Y ∈ Γ(TM). 2

Remark 3.8 If we choose α = δ = q, β = γ = 1 , then we have p = 0. In this case, we obtain Theorem 4.1 of
[8].

Proposition 3.9 Let (M, g,∇, ϕ, ξ, η) be a (β, ϕ)-Kenmotsu quadratic metric manifold. Then quadratic
structure ϕ is integrable; that is, the Nijenhuis tensor Nϕ ≡ 0.

Proof Using (3.2) in (1.3), we have

Nϕ(X,Y ) = ϕ2[X,Y ] + [ϕX, ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ]

= pϕ[X,Y ] + q([X,Y ]− η([X,Y ])ξ) + ∇̃ϕXϕY

−∇ϕY ϕX − ϕ(∇ϕXY −∇Y ϕX)− ϕ(∇XϕY −∇ϕY X)

= pϕ∇XY − pϕ∇Y X + q∇XY − q∇Y X − qη([X,Y ])ξ)

+(∇ϕXϕ)Y − (∇ϕY ϕ)X + ϕ∇Y ϕX − ϕ∇XϕY (3.7)

for X,Y ∈ Γ(TM) . By using (3.2) , we have

pϕ∇XY − ϕ∇XϕY = pϕ∇XY + (∇Xϕ)ϕY −∇Xϕ2Y

= −p(∇Xϕ)Y + (∇Xϕ)ϕY − q∇XY ;

+qX(η(Y ))ξ + q(η(Y ))∇Xξ.

If we write the last equation in (3.7), we get

Nϕ(X,Y ) = −p(∇Xϕ)Y + p(∇Y ϕ)X + (∇Xϕ)ϕY − (∇Y ϕ)ϕX

+(∇ϕXϕ)Y − (∇ϕY ϕ)X + q(Xη(Y )ξ − Y η(X)ξ − η([X,Y ])ξ)

+q(η(Y )∇Xξ − η(X)∇Y ξ). (3.8)
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Employing (3.6) and (3.2) in (3.8), we deduce that

Nϕ(X,Y ) = q(Xη(Y )ξ − Y η(X)ξ − η([X,Y ])ξ)

= 0.

This completes the proof of the theorem. 2

4. Quadratic metric ϕ-hypersurfaces of metallic Riemannian manifolds

Theorem 4.1 Let M̃n+1 be a differentiable manifold with metallic structure J and Mn be a hypersurface of
M̃n+1. Then there is an almost quadratic ϕ-structure (ϕ, η, ξ) on Mn.

Proof Denote by ν a unit normal vector field of Mn. For any vector field X tangent to Mn , we put

JX = ϕX + η(X)ν, (4.1)

Jν = qξ + pν, (4.2)

Jξ = ν, (4.3)

where ϕ is a (1, 1) tensor field on Mn , ξ ∈ Γ(TM) and η is a 1-form such that η(ξ) = 1 and η ◦ ϕ = 0. On
applying operator J to the above equality (4.1) and using (4.2), we have

J2X = J(ϕX) + η(X)Jν

= ϕ2X + η(X)(qξ + pν). (4.4)

Using (1.1) in (4.4),
pϕX + pη(X)ν + qX = ϕ2X + η(X)(qξ + pν).

Hence, we are led to the conclusion:

ϕ2X = pϕX + q(X − η(X)ξ). (4.5)

2

Let Mn be a hypersurface of an n+1 -dimensional metallic Riemannian manifold M̃n+1 and let ν be a
globally unit normal vector field on Mn . Denote ∇̃ the Levi-Civita connection with respect to the Riemannian
metric g̃ of M̃n+1 . Then the Gauss and Weingarten formulas are given respectively by

∇̃XY = ∇XY + g(AX,Y )ν,

∇̃Xν = −AX

for any X,Y ∈ Γ(TM) , where g denotes the Riemannian metric of Mn induced from g̃ and A is the shape
operator of Mn .

Proposition 4.2 Let (M̃n+1, <,>, ∇̃, J) be a locally metallic Riemannian manifold. If (Mn, g,∇, ϕ) is a
quadratic metric ϕ-hypersurface of M̃n+1 , then

(∇Xϕ)Y = η(Y )AX + g(AX,Y )ξ, (4.6)
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∇Xξ = pAX − ϕAX, Aξ = 0, (4.7)

and
(∇Xη)Y = pg(AX,Y )− g(AX,ϕY ). (4.8)

Proof If we take the covariant derivatives of the metallic structure tensor J according to X by (4.1)–(4.3),
the Gauss and Weingarten formulas, we get

0 = (∇Xϕ)Y − η(Y )AX − qg(AX,Y )ξ (4.9)

+(g(AX,ϕY ) +X(η(Y ))− η(∇XY )− pg(AX,Y ))ν.

If we identify the tangential components and the normal components of the equation (4.9), respectively, we have

(∇Xϕ)Y − η(Y )AX − qg(AX,Y )ξ = 0. (4.10)

g(AX,ϕY ) +X(η(Y ))− η(∇XY )− pg(AX,Y ) = 0.

Using the compatible condition of J and (4.1) , we get

g(JX, JY ) = pg(X, JY ) + qg(X,Y )

= pg(X,ϕY ) + qg(X,Y ). (4.11)

Expressed in another way, by help of (1.5) and (4.1) , we obtain

g(JX, JY ) = g(ϕX, ϕY ) + η(X)η(Y )

= pg(X,ϕY ) + q(g(X,Y )− η(X)η(Y )) + η(X)η(Y )

= pg(X,ϕY ) + qg(X,Y ) + (1− q)η(X)η(Y )). (4.12)

Considering (4.11) and (4.12), we get q = 1 . By (4.10) we arrive at (4.6). If we put Y = ξ in (4.10) we get

ϕ∇Xξ = −AX − g(AX, ξ)ξ. (4.13)

If we apply ξ on both sides of (4.13), we have Aξ = 0 .
Applying ϕ on both sides of the equation (4.13) and using Aξ = 0 ,

−ϕAX = pϕ∇Xξ + (∇Xξ − η(∇Xξ)ξ)

= −pAX +∇Xξ.

Hence, we arrive at the first equation of (4.7). By help of (4.7), we readily obtain (4.8). This completes the
proof. 2

Proposition 4.3 ([4]) Let (M, g) be a Riemannian manifold and let ∇ be the Levi-Civita connection on M

induced by g . For every vector field X on M , the following conditions are equivalent:
(1) X is a Killing vector field; that is, LXg = 0 .
(2) g(∇Y X,Z) + g(∇ZX,Y ) = 0 for all Y, Z ∈ χ(M) .
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Proposition 4.4 Let (Mn, g,∇, ϕ, η, ξ) be a quadratic metric ϕ-hypersurface of a locally metallic Riemannian
manifold (M̃n+1, g̃, ∇̃, J) . The characteristic vector field ξ is a Killing vector field if and only if ϕA+Aϕ = 2pA .

Proof From Proposition 4.3, we have

g(∇Xξ, Y ) + g(∇Y ξ,X) = 0.

Making use of (4.7) in the last equation, we get

pg(AX,Y )− g(ϕAX, Y ) + pg(AY,X)− g(ϕAY,X) = 0.

Using the symmetric property of A and ϕ , we obtain

2pg(AX,Y ) = g(ϕAX, Y ) + g(AϕX, Y ). (4.14)

We arrive at the desired equation from (4.14). 2

Proposition 4.5 If (Mn, g,∇, ϕ, ξ) is a (β, ϕ)-Kenmotsu quadratic hypersurface of a locally metallic Rieman-
nian manifold on (M̃n+1, g̃, ∇̃, J) , then ϕA = Aϕ and A2 = βpA+ β2(I − η ⊗ ξ) .

Proof Since dη = 0, using (4.7), we have

0 = g(Y,∇Xξ)− g(X,∇Y ξ)

= pg(Y,AX)− g(Y, ϕAX)− pg(X,AY ) + g(X,ϕAY )

= g(AϕX − ϕAX, Y ).

Thus, we get ϕA = Aϕ . By (3.3) and (4.6), we get

β(g(X,ϕY )ξ + η(Y )ϕX) = η(Y )AX + g(AX,Y )ξ.

If we apply ξ on both sides of the last equation, we obtain

βg(X,ϕY ) = g(AX,Y ).

Namely,
βϕX = AX. (4.15)

Putting AX instead of X and using (4.5) in (4.15), we get A2X = βpAX + β2(X − η(X)ξ). This completes
the proof. 2

By help of (4.15) we obtain the following:

Corollary 4.6 Let (Mn, g,∇, ϕ, ξ) be a cosymplectic quadratic metric ϕ-hypersurface of a locally metallic
Riemannian manifold. Then M is totally geodesic.

Remark 4.7 Hretcanu and Crasmareanu [11] investigated some properties of the induced structure on a
hypersurface in a metallic Riemannian manifold, but the argument in Proposition 4.2 is to get the quadratic
ϕ-hypersurface of a metallic Riemannian manifold. In the same paper, they proved that the induced structure
on M is parallel to the induced Levi-Civita connection if and only if M is totally geodesic.
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By Proposition 4.2, we have the following.

Proposition 4.8 Let (Mn, g,∇, ϕ, ξ) be a quadratic metric ϕ-hypersurface of a locally metallic Riemannian
manifold. Then

R(X,Y )ξ = p((∇XA)Y − (∇Y A)X)− ϕ((∇XA)Y − (∇Y A)X),

for any X,Y ∈ Γ(TM).

Corollary 4.9 Let (Mn, g,∇, ϕ, ξ) be a quadratic metric ϕ-hypersurface of a locally metallic Riemannian
manifold. If the second fundamental form is parallel, then R(X,Y )ξ = 0.
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