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Abstract: The main purpose of this paper is to establish a relationship between univalent harmonic mappings and
Hardy spaces. The main result obtained in this paper improves previously published results. Moreover, we generalize
some nice results in the analytic case to the harmonic case.
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1. Introduction
Let Ω be a domain in the complex plane C and f be a complex-valued function of class C1 in Ω . The Jacobian
of f is given by

Jf =

∣∣∣∣∂f∂z
∣∣∣∣2 − ∣∣∣∣∂f∂z

∣∣∣∣2 .
It is well known that f is locally univalent if Jf (z) ̸= 0 in Ω and the converse is also true if f is

analytic. A theorem of Lewy [9] asserts that the converse remains true for harmonic mappings in the plane.
Thus, a locally univalent harmonic mapping is either sense-preserving (if Jf (z) > 0 in Ω) or sense-reversing (if
Jf (z) < 0). A harmonic mapping of the open unit disk U = {z ∈ C : |z| < 1} has the unique representation
f = h+g , where h and g are analytic in U and g(0) = 0 . This is called the canonical representation of f . Note
that f is sense-preserving if and only if its dilatation wf (z) = g′(z)/h′(z) satisfies the inequality |wf (z)| < 1

for all z ∈ U . This implies that h′(z) ̸= 0 in U , so that h is locally univalent.
Let H be the class of harmonic mappings f = h + g in the open unit disk U such that h(0) = g(0) =

h′(0)− 1 = 0 . Therefore, a function f = h+ g in the class H has the form

f(z) = z +

∞∑
n=2

anz
n +

∞∑
n=1

bnz
n. (1)

We also denote the class of analytic functions f in U with f(0) = f ′(0)−1 = 0 by A so that H reduces
to A when the co-analytic part g of f = h+ g ∈ H vanishes identically in U .

The class of functions f ∈ H that are sense-preserving and univalent in U is denoted by SH . Two
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interesting subsets of SH are

S0
H = {f ∈ SH : b1 = fz(0) = 0}, S = {f ∈ SH : g(z) ≡ 0}.

In recent years, properties of the class SH together with its interesting geometric subclasses have been
the subject of investigations. We refer to the pioneering works of Clunie and Sheil-Small [4], the book of Duren
[5], and the recent survey article of Bshouty and Hengartner [3].

We denote by K0
H and S∗0

H the subclasses of S0
H whose functions map U onto convex and starlike

domains.
Set

A = sup
SH

|a2|. (2)

An analytic function k in U is called Bloch if

sup
z∈U

(1− |z|2)|k′(z)| < ∞.

Using the Koebe transform of f and the compactness of SH in the topology of almost uniform convergence,
Abu Muhanna and Lyzzaik [2] proved the following result:

Theorem 1.1 Let f = h+ g ∈ SH . Then logh′ is a Bloch function; that is,∣∣∣∣h′′(z)

h′(z)

∣∣∣∣ ≤ 2A+ 2

1− r
, (z = reiθ),

where A is as defined in (2). Moreover, if α > 0 , then

lim
r→1−

(1− r)αh′(reiθ) = 0,

for almost all θ .

As a consequence of this result, Abu Muhanna and Lyzzaik [2] concluded the boundary functions of h, g ,
and f exist almost everywhere.

Theorem 1.2 Let f = h+ g ∈ SH . Then the integrals

∫ 1

0

|h′(reiθ)|dr,
∫ 1

0

|g′(reiθ)|dr, and
∫ 1

0

|f ′
r(re

iθ)|dr

converge for almost all θ , and the boundary function

f̂(eiθ) = lim
r→1−

f(reiθ)

exists almost everywhere.

More generally, Abu Muhanna and Lyzzaik [2] established that h, g , and f belong to Hardy spaces.
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Theorem 1.3 Let f = h+ g ∈ SH . Then h, g ∈ Hp and f ∈ hp for every p, 0 < p < (2A+ 2)−2 , where A is
as defined in (2).

This result was subsequently improved by Nowak [10] by showing that h, g ∈ Hp and f ∈ hp for every
p, 0 < p < A−2 .

In this paper, by using a different method, we improve the result obtained by Nowak.
Here, we recall the notions of linear and affine invariance. Linear invariance was first studied by Pommerenke
[11] for families of locally univalent analytic functions. Sheil-Small [14] then generalized the notion to families
of harmonic mappings. A family F ⊆ SH of harmonic mappings is said to be linearly invariant if f = h+g ∈ F
implies that

f((z + z0)/(1 + z0z))− f(z0)

(1− |z0|2)h′(z0)
∈ F , z0 ∈ U.

The family F is affine invariant if f ∈ F implies that

f(z) + εf(z)

1 + εg′(0)
∈ F , ε ∈ U.

The full family SH is both linearly and affine invariant.
The order of a family F ⊆ SH is defined by

α = α(F) = sup
{
|h′′(0)|

2
: f = h+ g ∈ F

}
.

In view of the maximum principle and the fact that h is locally univalent, we see that α(F) ≥ 1 (cf. [11]). Thus,
A = α(SH) ≥ 1 . Bieberbach’s theorem says that α(S) = 2 . It has long been conjectured that α(SH) = 3 , but
this is still an open question.

2. Main results
In order to state main result, we need the following definitions:

Definition 2.1 For 0 < p < ∞ , the Hardy space Hp is the set of all functions f analytic in U for which

Mp(r, f) =

{
1

2π

∫ 2π

0

|f(reiθ)|pdθ
}1/p

is bounded on 0 < r < 1 .

The space hp consists of all harmonic mappings f in U for which Mp(r, f)(0 < r < 1) are bounded (cf.
[5]).
Let BMOA (resp. BMOH) denote the class of analytic functions (resp. harmonic mappings) that have
bounded mean oscillation on the unit disk U (cf.[1]).

Definition 2.2 (see [12]) Let
BH(λ) = {f = h+ g ∈ H : ||Tf || ≤ 2λ},
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with

||Tf || := sup
z∈U,θ∈[0,2π]

(1− |z|2)
∣∣∣∣h′′(z) + eiθg′′(z)

h′(z) + eiθg′(z)

∣∣∣∣ ,
where λ is a positive real number.

In [8], the authors discussed the set B(λ) := A ∩ BH(λ) and obtained distortion estimates for analytic
functions in B(λ) in terms of λ , and characterization for functions in B(λ) . In [7], Kim proved the following
result for analytic functions.
Theorem D.

(1) If λ < 1, B(λ) ∩ S ⊂ H∞ ,

(2) If λ = 1, B(λ) ∩ S ⊂ BMOA ,

(3) If λ > 1, B(λ) ∩ S ⊂ Hp for every 0 < p < 1/(λ− 1) .

Recently, Ponnusamy et al. [12] generalized this result to harmonic mappings as follows.
Theorem E.

(1) If λ < 1, BH(λ) ∩ SH ⊂ h∞ ,

(2) If λ = 1, BH(λ) ∩ SH ⊂ BMOH ,

(3) If λ > 1, BH(λ) ∩ SHk
⊂ Hp for every 0 < p < 1/(λ− 1) .

Note that in the above result,

SHk
= {f = h+ g ∈ SH : f is k-quasiconformal}

for 0 ≤ k < 1 . We recall that a sense-preserving harmonic mapping f = h+g in domain Ω is a k-quasiconformal
mapping if |wf (z)| ≤ k holds in Ω .

In [6], Hernandez and Martin studied stable harmonic and analytic univalent functions. The sense-
preserving harmonic mapping f = h+ g is stable harmonic univalent or SHU in the open unit disk if all the
mappings fµ = h+µg with |µ| = 1 are univalent. Also, the analytic function h+g is stable analytic univalent,
or SAU , if all the mappings Fµ = h + µg with |µ| = 1 are univalent. They proved that for all |µ| = 1 , the
functions fµ = h + µg are univalent (resp. close to convex, starlike, or convex) if and only if the analytic
functions Fµ = h+µg are univalent (resp. close to convex, starlike, or convex). We use this statement to prove
the following theorems.

The following result is a generalization of statement (3) in Theorem D for harmonic mappings without
quasiconformality condition, which is remarkable.

Theorem 2.3 If λ > 1, BH(λ) ∩ S0
H ⊂ hp for every 0 < p < 1/(λ− 1) .

Proof Let f ∈ BH(λ)∩S0
H . Since f = h+ g ∈ S0

H and f = h+µµg for all |µ| = 1 , in view of [6, Proposition
2.1], h+µ2g is univalent and normalized for all |λ| = 1 . That is, h+µ2g ∈ S for all such µ . In particular, for
µ = eiφ/2 and µ = ei(φ+π)/2 , where φ ∈ [0, 2π) , we observe that there exists at least one φ ∈ [0, 2π) such that
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h+ eiφg, h− eiφg ∈ S . On the other hand, from f ∈ BH(λ) , clearly, it follows that h+ eiθg

1 + eiθb1
∈ B(λ) for each

θ ∈ [0, 2π] . Since b1 = 0 , so h+ eiθg ∈ B(λ) for each θ ∈ [0, 2π] . In particular, for θ = φ and

θ =

{
φ+ π, 0 ≤ φ ≤ π,

φ− π, π < φ < 2π,

we have h + eiφg, h − eiφg ∈ B(λ) . Now, from Theorem D, it follows that h + eiφg ∈ Hp and h − eiφg ∈ Hp

with 0 < p < 1/(λ− 1) , which implies that f ∈ hp . 2

Theorem 2.4 Let f = h + g ∈ S0
H . Then h, g ∈ Hp and f ∈ hp for every p, 0 < p < A−1 , where A is as

defined in (2).

Proof We assume that F = H +G is univalent and sense-preserving in U . Let

F0(ζ) =
H(ζ)−H(0)

H ′(0)
+

G(ζ)−G(0)

H ′(0)
= H0(ζ) +G0(ζ).

Clearly, F0 ∈ SH . For ζ ∈ U , set

F1(z) =
F0

(
z+ζ

1+ζz

)
− F0(ζ)

(1− |ζ|2)H ′
0(ζ)

= H1(z) +G1(z),

which again belongs to SH . The analytic function H1(z) has the form

H1(z) = z +A2(ζ)z
2 +A3(ζ)z

3 + . . . ,

and a direct computation shows that

A2(ζ) =
1

2

{
(1− |ζ|2)H

′′
0 (ζ)

H ′
0(ζ)

− 2ζ

}
=

1

2

{
(1− |ζ|2)H

′′(ζ)

H ′(ζ)
− 2ζ

}
.

Let

A = sup
{
|a2| : f(z) =

∞∑
k=1

akz
k +

∞∑
k=1

bkz
k ∈ SH

}
.

Since F1 ∈ SH , we must have |A2(ζ)| ≤ A , and therefore,

(1− |ζ|2)
∣∣∣∣H ′′(ζ)

H ′(ζ)

∣∣∣∣ < 2(A+ 1), ζ ∈ U.

For each c ∈ U , the composition of sense-preserving affine mapping ϕ(ω) = ω+cω with F , namely the function
F + cF , is univalent and sense-preserving in U . Then by what we have just proved, we obtain

(1− |ζ|2)
∣∣∣∣H ′′(ζ) + cG′′(ζ)

H ′(ζ) + cG′(ζ)

∣∣∣∣ < 2(A+ 1), ζ ∈ U,
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which in particular implies that, for each θ ∈ [0, 2π] ,

(1− |ζ|2)
∣∣∣∣H ′′(ζ) + eiθG′′(ζ)

H ′(ζ) + eiθG′(ζ)

∣∣∣∣ < 2(A+ 1), ζ ∈ U.

Then for f = h+ g ∈ S0
H , we have

A(θ) = sup
z∈U

(1− |z|2)
∣∣∣∣h′′(z) + eiθg′′(z)

h′(z) + eiθg′(z)

∣∣∣∣ ≤ 2(A+ 1).

Since A(θ) is a continuous function of θ in [0, 2π] , it follows that

sup
z∈U, θ∈[0,2π]

(1− |z|2)
∣∣∣∣h′′(z) + eiθg′′(z)

h′(z) + eiθg′(z)

∣∣∣∣ ≤ 2(A+ 1).

Then, by the definition, f ∈ BH(λ0) with λ0 = A+1 . Now Theorem 2.3 implies that f ∈ hp with 0 < p < A−1 .
Also, from f ∈ BH(λ0) , we have h + eiθg ∈ B(λ0) for each θ ∈ [0, 2π] . Now, in view of Theorem D, from the
proof of Theorem 2.3 it follows that h+ eiφg ∈ Hp and h− eiφg ∈ Hp with 0 < p < A−1 , for some φ ∈ [0, 2π) ,
which implies that h, g ∈ Hp and f ∈ hp . 2

Theorem 2.5 Let f = h + g ∈ SH . Then h, g ∈ Hp and f ∈ hp for every p, 0 < p < A−1 , where A is as
defined in (2).

Proof Since f = h+ g ∈ SH , thus

f(z)− b1f(z)

1− |b1|2
=

1

1− |b1|2
[h− b1g + g − b1h] ∈ S0

H .

Using Theorem 2.4, we have h − b1g ∈ Hp and g − b1h ∈ Hp with 0 < p < A−1 . From this, we can easily
obtain h− g ∈ Hp and g ∈ Hp , which implies the desired result. 2

Since A ≥ 1 , the above result improves the result obtained by Nowak [10].
By using the distortion theorem for univalent convex and starlike functions, Sheil-Small obtained the

following result:

Proposition 2.6 (see [13]) Let f(z) =
∑∞

n=1 anz
n be a regular, starlike univalent function for |z| < 1 . Let

C(r, θ) = {f(ρeiθ), 0 ≤ ρ ≤ r} and let l(r, θ) be the length of C(r, θ) . Then

l(r, θ) =

∫ r

0

|f ′(ρeiθ)|dρ < A|f ′(ρeiθ)|.

If f(z) is univalent convex then we have

l(r, θ) < B|f ′(ρeiθ)|,

where 2 ≤ A ≤ 1 + log 4 and π/2 ≤ B ≤ 1 + log 2 .

289



EBADIAN et al./Turk J Math

Here we generalize the above result to univalent harmonic mappings in two different methods. Suppose
that f = h+ g ∈ SH . Let C(r, θ) be the image of the ray joining 0 and z = reiθ under f , and let

Lη(r, θ) =

∫ r

0

|h′(ρeiθ) + ηg′(ρeiθ)|dρ,

where, |η| = 1 .

Theorem 2.7 Let f ∈ SH and Reh(g − ηg) ≥ 0 . Then

Lη(r, θ) ≤ B|f(reiθ)|, |z| = r < A−
√
A2 − 1,

where B is given by Proposition 2.6.

Proof If f = h+ g ∈ SH , from the proof of Theorem 2.4 we have

(1− |z|2)
∣∣∣∣h′′(z)

h′(z)

∣∣∣∣ < 2(A+ 1), z ∈ U.

Thus,

Re

(
1 +

zh′′(z)

h′(z)

)
>

1− 2A|z|+ |z|2

1− |z|2
.

Therefore, h is univalent convex in the disk |z| < A −
√
A2 − 1 . From the affine invariance of the class SH ,

h + εg is univalent convex in the disk |z| < A −
√
A2 − 1 for |ε| < 1 . Thus, this remains true for |ε| = 1 .

Applying Proposition 2.6 with η = ε we deduce that in the disk |z| < A−
√
A2 − 1 ,

L(r, θ) =

∫ r

0

|h′(ρeiθ) + ηg′(ρeiθ)|dρ

≤ B|h(ρeiθ) + ηg(ρeiθ)|

≤ B|h(ρeiθ) + g(ρeiθ)|

= B|f(reiθ)|.

2

Theorem 2.8 Let f = h+ g ∈ S∗0
H and Reh(g − ηg) ≥ 0 . Then

Lη(r, θ) ≤ A|f(reiθ)|,

where A is given by Proposition 2.6.

Proof Let f = h + g = h + µµg ∈ S∗0
H , where |µ| = 1 . In view of [6, Theorem 4.2], h + µ2g is a univalent

convex function. Applying Proposition 2.6 with η = µ2 , we obtain

Lη(r, θ) =

∫ r

0

|h′(ρeiθ) + ηg′(ρeiθ)|dρ

≤ A|h(ρeiθ) + ηg(ρeiθ)|

≤ A|h(ρeiθ) + g(ρeiθ)|

= A|f(reiθ)|.
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2

Similarly, by using [6, Theorem 3.1] we have the following result.

Theorem 2.9 Let f = h+ g ∈ K0
H and Reh(g − ηg) ≥ 0 . Then

Lη(r, θ) ≤ B|f(reiθ)|,

where B is given by Proposition 2.6.

In the sequel, we suppose that

L(r, θ) =

∫ r

0

√
Jf (ρeiθ)dρ.

Recall that Jf (z) = |h′(z)|2 − |g′(z)|2 . Then we have the following results.

Theorem 2.10 Let f ∈ SH and Re(hg) ≥ 0 . Then

L(r, θ) ≤ B|f(reiθ)|, |z| = r < A−
√
A2 − 1,

where B is given by Proposition 2.6.

Proof Let f = h+ g ∈ SH . From the proof of Theorem 2.7, it follows that h is univalent convex in the disk
|z| = r < A−

√
A2 − 1 . Therefore, by using Proposition 2.6 in this disk, we have

L(r, θ) =

∫ r

0

√
Jf (ρeiθ)dρ

≤
∫ r

0

|h′(ρeiθ)|dρ

≤ |h(ρeiθ)|

≤ |h+ g| = |f |.

2

A domain Ω ⊂ C is said to be convex in the horizontal direction (CHD ) if its intersection with each
horizontal line is connected or empty.

Lemma 2.11 (see [5]) Let f = h + g be harmonic and locally univalent in the open unit disk. Then f

is univalent and its range is convex if and only if for each choice of α(0 ≤ α < 2π) the analytic function
eiαh− e−iαg is univalent and its range is CHD .

Corollary 2.12 ([5]) If f = h+ g is a convex harmonic mapping, then the function h+ eiβg is univalent for
each β, 0 ≤ β < 2π .

Theorem 2.13 Let f = h + g ∈ K0
H , Re(hg) ≥ 0 , and h + eiφg(U) ⊂ Ω, h − eiφg(U) ⊂ Ω for φ ∈ [0, 2π) ,

where Ω is a simply connected domain. Then

L(r, θ) ≤ B|f(reiθ)|,

where B is given by Proposition 2.6.
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Proof Let f = h + g = h + µµg ∈ K0
H , where |µ| = 1 . In view of [6, Theorem 3.1], h + µ2g is a univalent

convex function. For µ = eiφ/2 and µ = ei(φ+π)/2 , where φ ∈ [0, 2π) , we observe that there exists at least
one φ ∈ [0, 2π) such that the functions h + eiφg and h − eiφg are univalent convex. Now, fix z ∈ U and

let h + eiφg(z) = t1 ∈ Ω , h − eiφg(z) = t2 ∈ Ω . Then we have h(z) =
t1 + t2

2
∈ Ω . Since Ω is a convex

domain, h is a convex function. On the other hand, Corollary 2.12 implies that h+ eiβg is univalent for each
β, 0 ≤ β < 2π or equivalently h+ µg is univalent for each |µ| = 1 . That is, f is a SHU mapping in the open
unit disk. Therefore, by using [6, Theorem 7.1], it follows that h is univalent. Thus, from Proposition 2.6 we
get

L(r, θ) =

∫ r

0

√
Jf (ρeiθ)dρ

≤
∫ r

0

|h′(ρeiθ)|dρ

≤ |h(ρeiθ)|

≤ |h+ g| = |f |.

2
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