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Abstract: In this paper, for a wide class of integral operators, we consider the problem of their boundedness from a
weighted Sobolev space to a weighted Lebesgue space. The crucial step in the proof of the main result is to use the
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1. Introduction
Let I = (a, b) and −∞ ≤ a < b ≤ ∞ . Let 1 < p, r, q < ∞ and 1

p + 1
p′ = 1 . Suppose that υ , ρ , u and ω are

functions nonnegative on I such that υp , ρp , ωp , ur , ρ−p′ , and ω−q′ are locally summable on I .
Denote by W 1

p,r(u, υ) ≡ W 1
p,r(u, υ, I) the space of all functions locally absolutely continuous on I having

the finite norm
∥f∥W 1

p,r
= ∥uf ′∥r + ∥υf∥p,

where ∥ · ∥p is the usual norm of the Lebesgue space Lp(I) . In the case p = r and u ≡ ρ , we suppose that
W 1

p,p(ρ, υ) ≡ W 1
p (ρ, υ) and ∥f∥W 1

p,p
≡ ∥f∥W 1

p
.

Let Lp,υ ≡ Lp(υ, I) be the set of all functions measurable on I such that ∥f∥p,υ ≡ ∥υf∥p < ∞ .

Let ÅC (I) be the set of all locally absolutely continuous functions with compact supports on I .

Denote by W̊ 1
p (ρ, υ) ≡ W̊ 1

p (ρ, υ, I) the closure of the set ÅC (I) ∩W 1
p (ρ, υ) with respect to the norm of

the space W 1
p (ρ, υ) .

Consider the operators

K+f(x) =

x∫
a

K(x, s)f(s)ds, x ∈ I, (1)

K−g(s) =

b∫
s

K(x, s)g(x)dx, s ∈ I, (2)

with a kernel K(·, ·) ≥ 0 measurable on Ω = {(x, s) : a < s ≤ x < b} .
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Let T ≡ K+ or T ≡ K− . In this paper, under some assumptions on the kernel K(·, ·) , we establish a
criterion of the boundedness of the operator T from W̊ 1

p (ρ, υ) to Lq,(ω, I) , i.e. the validity of the inequality

∥ωTf∥q ≤ C(∥ρf ′∥p + ∥υf∥p), f ∈ W̊ 1
p (ρ, υ). (3)

In the case where ρ ≡ 0 , the validity of the inequality (3) means the boundedness of the integral
operator T from Lp,υ to Lq,ω . For the last few years, this problem has been the subject of many papers and
monographs (see, e.g., the papers [4, 10] and monographs [2, 3, 9]). In the works [5] and [7], the inequality
(3) for the operator (1) is studied for a more restricted class of kernels K(·, ·) than in this paper. In [6], the
inequality (3) is characterized for the same class of kernels K(·, ·) as here. However, the technique applied in [6]
assumes the validity of some strict condition on the weights. The purpose in this paper is to reduce this strict
condition. We achieve this purpose by using a new technique based on the equivalence of certain inequalities of
independent interest.

The paper is organized as follows: in Section 2, we present the notations, definitions, and known
statements required to prove the main results; in Section 3, we obtain necessary and sufficient conditions
for the validity of the inequality (3) for the operators (1) and (2).

In the work, the notation A ≈ B means c1B ≤ A ≤ c2B , where constants c2 > c1 > 0 possibly depend
only on some nonessential parameters.

2. Required definitions, statements, and facts

As in [7] (see also [5, 6]), we introduce the function

δ(x, y) = sup

d > 0 :

x∫
x−d

ρ−p′
(t)dt ≤

x+y∫
x

ρ−p′
(t)dt, (x− d, x] ⊂ I

 ,

with the domain D(δ) = {(x, y) : x ∈ I, y > 0, [x, x + y) ∈ I} . If we fix x ∈ I , then at least for a sufficient
small y > 0 , we have

x∫
x−δ(x,y)

ρ−p′
(t)dt =

x+y∫
x

ρ−p′
(t)dt. (4)

Let x ∈ I and Dx be a set of y > 0 for which x+ y ∈ I and (4) is fulfilled. For all x ∈ I we define

d+(x) = sup{d : ∥ρ−1∥p′,(x−δ(x,d),x+d)∥υ∥p,(x−δ(x,d),x+d) ≤ 1, d ∈ Dx},

and assume that d−(x) = δ(x, d+(x)) , µ−(x) = x− d−(x) and µ+(x) = x+ d+(x) .
Let for some c ∈ I ,

∥ρ−1∥p′,(a,c) + ∥υ∥p,(a,c) = ∞, ∥ρ−1∥p′,(c,b) + ∥υ∥p,(c,b) = ∞. (5)

For simplicity, we assume that (5) holds that is equivalent to the condition W̊ 1
p (ρ, υ) = W 1

p (ρ, υ) (see
[7]). How to overcome the difficulties that arise when the condition (5) does not hold is given in [7].
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On the basis of lemmas 1.1–1.3 of [7], the functions µ−(x) = x − d−(x) and µ+(x) = x + d+(x) are
continuous and strictly increasing on I . Moreover,

lim
x→a

µ±(x) = a, lim
x→b

µ±(x) = b. (6)

This gives that a < µ±(x) < b for any x ∈ I . Furthermore, we need the following statement of [5, 6].

Lemma 2.1 Let the condition (5) hold. Then the functions µ−(x) and µ+(x) are locally absolutely continuous
on I .

We denote the inverse functions of the functions µ− and µ+ by φ+ and φ− , respectively. Then the
functions φ+ and φ− are continuous and strictly increasing on I and φ+(x) > φ−(x) , x ∈ I , lim

x→a+
φ±(x) = a

and lim
x→b−

φ±(x) = b .

On the basis of theorem 2 of [5], we have the following theorem.
Theorem A. Let 1 < p, q < ∞ . The inequality (3) for all functions f ∈ W̊ 1

p (ρ, υ) is equivalent to the inequality


b∫

a

 φ+(x)∫
φ−(x)

(T ∗g)(t)dt


p′

ρ−p′
(x)dx


1
p′

≤ C1

 b∫
a

ω−q′(t)gq
′
(t)dt


1
q′

(7)

for all nonnegative functions g ∈ Lq′(ω
−1, I) , where T ∗ is the dual operator to the operator T with respect to

the bilinear form
b∫
a

f(t)g(t)dt . Moreover, C ≈ C1 , where C > 0 and C1 > 0 are the best constants in (3) and

(7), respectively.

Remark 2.2 Theorem A was firstly proved in [5], but there, the functions φ+ and φ− are inverse to the
functions µ−(µ−) and µ+(µ+) , respectively. In [1], it is shown that Theorem A is also correct when the
functions φ+ and φ− are inverse of the functions µ− and µ+ , respectively.

For every integer n ≥ 0 , we define the classes O±
n (Ω) (see [4]) of the kernels of the operators (1) and (2).

We agree to write K(·, ·) ≡ Kn(·, ·) if K(·, ·) ∈ O±
n (Ω) .

Let K+(·, ·) and K−(·, ·) be nonnegative measurable functions defined on Ω such that K+(·, ·) is
nondecreasing in the first argument and K−(·, ·) is nonincreasing in the second argument.

The functions K±(·, ·) ≡ K±
0 (·, ·) belong to the classes O±

0 (Ω) if and only if K+
0 (x, s) = υ(s) ≥ 0 and

K−
0 (x, s) = u(x) ≥ 0 for all (x, s) ∈ Ω .

Suppose that the classes O±
i (Ω) , i = 0, 1, ..., n− 1 , n ≥ 1 , are defined. The functions K(·, ·) ≡ K±

n (·, ·)
belong to the classes O±

n (Ω) if and only if there exist functions K±
i (·, ·) ∈ O±

i (Ω) , i = 0, 1, ..., n− 1 , such that

K+
n (x, s) ≈

n∑
i=0

K+
n,i(x, t)K

+
i (t, s), (8)
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K−
n (x, s) ≈

n∑
i=0

K−
i (x, t)K−

i,n(t, s) (9)

for a < s ≤ t ≤ x < b . Moreover, K±
n,n(·, ·) ≡ 1 , where the functions K+

n,i(·, ·) and K−
i,n(·, ·) , i = 0, 1, ..., n ,

are, generally speaking, arbitrary nonnegative measurable functions defined on Ω satisfying the conditions (8)
and (9), respectively.

On the basis of theorems 5 and 6 of [4], we have the following theorems.
Theorem B+ . Let 1 < p ≤ q < ∞ and the kernel of the operator (1) belong to the class O+

n (Ω)
∪
O−

n (Ω) , n ≥
0 . Then the operator (1) is bounded from Lp(ρ, I) to Lq(ω, I) if and only if the condition B+

i = sup
z∈I

B+
i (z) < ∞

holds at least for one of i = 1, 2 , where

B+
1 (z) =

 b∫
z

ωq(x)

 z∫
a

Kp′
(x, s)ρ−p′

(s)ds


q
p′

dx


1
q

,

B+
2 (z) =


z∫

a

ρ−p′
(s)

 b∫
z

Kq(x, s)ωq(x)dx


p′
q

ds


1
p′

.

Moreover, for the norm ∥K+∥ of the operator K+ from Lp(ρ, I) to Lq(ω, I) the relation ∥K+∥ ≈ B+
1 ≈ B+

2 is
valid.
Theorem B− . Let 1 < p ≤ q < ∞ and the kernel of the operator (2) belong to the class O+

n (Ω)
∪

O−
n (Ω) , n ≥

0 . Then the operator (2) is bounded from Lp(ρ, I) to Lq(ω, I) if and only if the condition B−
i = sup

z∈I
B−

i (z) < ∞

holds at least for one of i = 1, 2 , where

B−
1 (z) =

 z∫
a

ωq(s)

 b∫
z

Kp′
(x, s)ρ−p′

(x)dx


q
p′

ds


1
q

,

B−
2 (z) =


b∫

z

ρ−p′
(x)

 z∫
a

Kq(x, s)ωq(s)ds


p′
q

dx


1
p′

.

Moreover, for the norm ∥K−∥ of the operator K− from Lp(ρ, I) to Lq(ω, I) the relation ∥K−∥ ≈ B−
1 ≈ B−

2 is
valid.

Consider the integral operators

(K+f)(x) =

β(x)∫
α(x)

K(x, s)f(s)ds, x ∈ I, (10)
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(K−g)(s) =

β(s)∫
α(s)

K(x, s)g(x)dx, s ∈ I, (11)

where α(x) and β(x) are locally absolute continuous functions strictly increasing on I such that α(x) < β(x) ,
∀x ∈ I , and lim

x→a+
α(x) = lim

x→a+
β(x) = a , lim

x→b−
α(x) = lim

x→b−
β(x) = b .

Let Ω+ = {(x, s) : a < x < b, α(x) ≤ s ≤ β(x)} and Ω− = {(x, s) : a < s < b, α(s) ≤ x ≤ β(s)} .
Let K±(·, ·) ≥ 0 be measurable functions defined on Ω± such that K+(·, ·) is nondecreasing in the first

argument and K−(·, ·) is nonincreasing in the second argument. As above, we define [8] the classes O±
n (Ω

±) ,
n ≥ 0 , of kernels of the operators (10) and (11). The classes O+

0 (Ω
+) and O−

0 (Ω
−) consist of the functions

K+
0 (x, s) = υ(s) and K−

0 (x, s) = u(x) for all (x, s) ∈ Ω+ and (x, s) ∈ Ω− , respectively.

Let the classes O±
i (Ω

±) , i = 0, 1, ..., n − 1 , n ≥ 1 be defined. The functions K±
n (·, ·) belong to the

classes O±
n (Ω

±) if and only if for K+
n (·, ·) and K−

n (·, ·) there exist the functions K+
i (·, ·) ∈ O+

i (Ω
+) and

K−
i (·, ·) ∈ O−

i (Ω
−) , i = 0, 1, ..., n − 1 , respectively, and the relations (8) and (9) hold for a < t ≤ x < b ,

α(x) ≤ s ≤ β(t) and a < s ≤ t < b , α(t) ≤ x ≤ β(s) , respectively, where K±
n,n(·, ·) ≡ 1 . As above, the

functions K+
n,i(·, ·) and K−

i,n(·, ·) , i = 0, 1, ..., n − 1 are, generally speaking, arbitrary nonnegative measurable
functions defined on Ω satisfying the conditions (8) and (9), respectively.

Remark 2.3 If K±
n (x, s) ∈ O±

n (Ω) , then K+(β(x), s) ∈ O+
n (Ω

+) and K−(x , α(s)) ∈ O−
n (Ω

−) .

Assume that

D+
1 (z) = sup

y∈∆+(z)


z∫

y

ωq(x)

 β(y)∫
α(z)

Kp′
(x, s)ρ−p′

(s)ds


q
p′

dx


1
q

,

D+
2 (z) = sup

y∈∆+(z)


β(y)∫

α(z)

ρ−p′
(s)

 z∫
y

Kq(x, s)ωq(x)dx


p′
q

ds


1
p′

,

D−
1 (z) = sup

y∈∆−(z)


y∫

z

ωq(s)

 β(z)∫
α(y)

Kp′
(x, s)ρ−p′

(x)dx


q
p′

ds


1
q

,

D−
2 (z) = sup

y∈∆−(z)


β(z)∫

α(y)

ρ−p′
(x)

 y∫
z

Kq(x, s)ωq(s)ds


p′
q

dx


1
p′

,

where ∆+(z) = [β−1(α(z)), z] and ∆−(z) = [z, α−1(β(z))] .
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From the results of [8], we have the following theorems.
Theorem C+ . Let 1 < p ≤ q < ∞ and the kernel of the operator (10) belong to O+

n (Ω
+)
∪
O−

n (Ω
−) , n ≥ 0 .

Then the operator (10) is bounded from Lp(ρ, I) to Lq(ω, I) if and only if the condition D+
i = sup

z∈I
D+

i (z) < ∞

holds at least for one of i = 1, 2 . Moreover, for the norm ∥K+∥ of the operator K+ from Lp(ρ, I) to Lq(ω, I)

the relation ∥K+∥ ≈ D+
1 ≈ D+

2 is valid.
Theorem C− . Let 1 < p ≤ q < ∞ and the kernel of the operator (11) belong to O+

n (Ω
+)
∪
O−

n (Ω
−) , n ≥ 0 .

Then the operator (11) is bounded from Lp(ρ, I) to Lq(ω, I) if and only if the condition D−
i = sup

z∈I
D−

i (z) < ∞

holds at least for one of i = 1, 2 . Moreover, for the norm ∥K−∥ of the operator K− from Lp(ρ, I) to Lq(ω, I)

the relation ∥K−∥ ≈ D−
1 ≈ D−

2 is valid.

3. Criteria of validity of inequality (3) for operators (1) and (2)

Here and in the sequel, we suppose that the conditions in (5) are fulfilled.

Theorem 3.1 Let 1 < p ≤ q < ∞ and the kernel of the operator (1) belong to the class O−
n (Ω) , n ≥ 0 . Then

for the operator (1) the inequality (3) holds if and only if max{F+
i , G+

j } < ∞ at least for one of the pairs (i, j) ,

i, j = 1, 2 . Moreover, for the best constant C > 0 in (3), the relation C ≈ max{F+
i , G+

j } , i, j = 1, 2 , is valid.

Here, F+
i = sup

z∈I
F+
i (z) , G+

j = sup
z∈I

G+
j (z) ,

F+
1 (z) =


µ−(z)∫
a

ρ−p′
(x)

 b∫
z

 φ+(x)∫
φ−(x)

K(t, s)ds


q

ωq(t)dt


p′
q

dx


1
p′

,

F+
2 (z) =


b∫

z

ωq(t)


µ−(z)∫
a

 φ+(x)∫
φ−(x)

K(t, s)ds


p′

ρ−p′
(x)dx


q
p′

dt


1
q

,

G+
1 (z) = sup

y∈∆+
µ (z)


µ+(y)∫

µ−(z)

ρ−p′
(x)

 z∫
y

 t∫
φ−(x)

K(t, s)ds


q

ωq(t)dt


p′
q

dx


1
p′

,

G+
2 (z) = sup

y∈∆+
µ (z)


z∫

y

ωq(t)


µ+(y)∫

µ−(z)

 t∫
φ−(x)

K(t, s)ds


p′

ρ−p′
(x)dx


q
p′

dt


1
q

,

where ∆+
µ (z) = [φ−(µ−(z)), z] .
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Theorem 3.2 Let 1 < p ≤ q < ∞ and the kernel of the operator (2) belong to the class O+
n (Ω) , n ≥ 0 . Then

the inequality (3) for the operator (2) holds if and only if max{F−
i , G−

j } < ∞ at least for one of the pairs (i, j) ,

i, j = 1, 2 . Moreover, for the best constant C > 0 in (3) the relation C = max{F−
i , G−

j } , i, j = 1, 2 , is valid.

Here F−
i = sup

z∈I
F−
i (z) , G−

j = sup
z∈I

G−
j (z) ,

F−
1 (z) =


b∫

µ+(z)

ρ−p′
(x)

 z∫
a

 φ+(x)∫
φ−(x)

K(t, s)dt


q

ωq(s)ds


p′
q

dx


1
p′

,

F−
2 (z) =


z∫

a

ωq(s)


b∫

µ+(z)

 φ+(x)∫
φ−(x)

K(t, s)dt


p′

ρ−p′
(x)dx


q
p′

ds


1
q

,

G−
1 (z) = sup

y∈∆−
µ (z)


µ−(z)∫

µ−(y)

ρ−p′
(x)

 y∫
z

 φ+(x)∫
s

K(t, s)dt


q

ωq(s)ds


p′
q

dx


1
p′

,

G−
2 (z) = sup

y∈∆−
µ (z)


y∫

z

ωq(s)


µ−(z)∫

µ−(y)

ρ−p′
(x)

 φ+(x)∫
s

K(t, s)dt


p′

dx


q
p′

ds


1
q

,

where ∆−
φ (z) = [z, φ+(µ+(z)))] .

Theorems 3.1 and 3.2 are proved in [6] under the condition:

E±
J = sup

ω⊂J

∫
ω

ρ−p′
(t)dt

−1 ∫
µ±(ω)

ρ−p′
(s)ds < 2.

This condition is a strong restriction on the weight functions. Here, using a method different from that of the
work [6], we reprove theorems 3.1 and 3.2 without this restriction.

We first prove a statement that is equivalent to Theorem A.

Lemma 3.3 Let 1 < p, q < ∞ . The inequality (3) for all functions f ∈ W 1
◦

p(ρ, υ) is equivalent to the inequality:

 b∫
a

ω(x)T

 µ+(·)∫
µ−(·)

f(t)dt

 (x)


q

dx


1
q

≤ C1

 b∫
a

ρp(t)fp(t)dt


1
p

(12)

for all nonnegative functions f ∈ Lp(ρ, I) . Moreover, C ≈ C1 , where C > 0 and C1 > 0 are the best constants
in (3) and (12), respectively.
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Proof [Proof of Lemma 3.3] We find the dual operator to the operator
φ+(x)∫
φ−(x)

(T ∗g)(t)dt with respect to bilinear

form
b∫
a

f(t)u(t)dt , where f ∈ Lp(ρ, I) and u ∈ Lp′(ρ−1 , I) . Let f ∈ Lp(ρ, I) and g ∈ Lq′(ω
−1, I) . Then by

Theorem A, we have that
φ+(x)∫

φ−(x)

(T ∗g)(t)dt ∈ Lp′(ρ−1, I)

and
b∫

a

f(x)

φ+(x)∫
φ−(x)

(T ∗g)(t)dtdx =

b∫
a

(T ∗g)(t)

µ+(t)∫
µ−(t)

f(x)dxdt =

b∫
a

g(t)T

 µ+(·)∫
µ−(·)

f(x)dx

 (t)dt,

i.e. the operator T

(
µ+(·)∫
µ−(·)

f(x)dx

)
(t) is the dual operator to

φ+(x)∫
φ−(x)

(T ∗g)(t)dt . Since by Theorem A, the

operator
φ+(x)∫
φ−(x)

(T ∗g)(t)dt acts from Lq′(ω
−1, I) to Lp′(ρ−1, I) , then the dual operator T

(
µ+(·)∫
µ−(·)

f(x)dx

)
(t)

acts from Lp(v, I) to Lq(ω, I) , i.e. (12) and (7) are equivalent, and the best constants in (12) and (7) coincide.
Then by Theorem A, the best constants in (12) and (3) are equivalent. The proof of Lemma 3.3 is complete.2

Proof [Proof of Theorem 3.1] Let T = K+ . Then by Lemma 3.3 the inequality (3) holds if and only if the

inequality (12) holds for T = K+ , i.e. when the operator K+

(
µ+(·)∫
µ−(·)

f(x)dx

)
(t) is bounded from Lp(v, I) to

Lq(ω, I) . Since

K+

 µ+(·)∫
µ−(·)

f(x)dx

 (t) =

t∫
a

K(t, s)

µ+(s)∫
µ−(s)

f(x)dxds, (13)

the change of order of integration gives

t∫
a

K(t, s)

µ+(s)∫
µ−(s)

f(x)dxds =

µ−(t)∫
a

f(x)

φ+(x)∫
φ−(x)

K(t, s)dsdx+

µ+(t)∫
µ−(t)

f(x)

t∫
φ−(x)

K(t, s)dsdx. (14)

From (12)–(14), it follows that the operator

K̃+f(t) ≡ K+

 µ+(·)∫
µ−(·)

f(x)dx

 (t)

is bounded from Lp(v, I) to Lq(ω, I) if and only if
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K̃+
1 f(t) ≡

µ−(t)∫
a

f(x)

φ+(x)∫
φ−(x)

K(t, s)dsdx

and

K̃+
2 f(t) ≡

µ+(t)∫
µ−(t)

f(x)

t∫
φ−(x)

K(t, s)dsdx

are bounded from Lp(v, I) to Lq(ω, I) . Moreover, between the norms of the operators ∥K̃+∥ , ∥K̃+
1 ∥ and ∥K̃+

2 ∥
from Lp(v, I) to Lq(ω, I) the relation

∥K̃+∥ ≈ ∥K̃+
1 ∥+ ∥K̃+

2 ∥ (15)

is valid. Let us estimate the values ∥K̃+
1 ∥ and ∥K̃+

2 ∥ :

K̃+
1 f(s) =

µ−(s)∫
a

K̃+
1 (s, x)f(x)dx, K̃+

1 (s, x) =

φ+(x)∫
φ−(x)

K(s, t)dt,

K̃+
2 f(s) =

µ+(s)∫
µ−(s)

K̃+
2 (s, x)f(x)dx, K̃+

2 (s, x) =

s∫
φ−(x)

K(s, t)dt.

In K̃+
1 f(s) , the variables x and t change within the bounds a ≤ x ≤ µ−(s) and φ−(x) ≤ t ≤ φ+(x) . Therefore,

a ≤ φ+(x) ≤ s and φ−(x) ≤ t ≤ φ+(x) ≤ s . Then from K(s, t) ∈ O−
n (Ω) , n ≥ 0 , we have that

K̃+
1 (s, x) ≈

n∑
i=0

K−
i (s, φ+(x))

φ+(x)∫
φ−(x)

K−
i,n(φ

+(x), t)dt, (16)

where K−
i (·, ·) ∈ O−

i (Ω) , i = 0, 1, ..., n , and K−
n (·, ·) ≡ K(·, ·) . Hence,

K̃+
1 f(s) ≈

n∑
i=0

µ−(s)∫
a

K−
i (s, φ+(x))Φ−

i (x)f(x)dx, (17)

where Φ−
i (x) =

φ+(x)∫
φ−(x)

K−
i,n(φ

+(x), t)dt , i = 0, 1, ..., n .

Denote by ∥K+
i,φ+∥ the norm of the operator

K+
i,φ+f(s) =

µ−(s)∫
a

K−
i (s, φ+(x))Φ−

i (x)f(x)dx, i = 0, 1, ..., n,

from Lp(ρ, I) to Lq(ω, I) .
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In these integrals, we change the variables φ+(x) = y or x = µ−(y) and get

K+
i,φ+f(s) =

s∫
a

K−
i (s, y)Φ−

i (µ
−(y))f(µ−(y))(µ−(y))′dy, i = 0, 1, ..., n.

Therefore,

∥K+
i,φ+∥ = ∥K+

i ∥, i = 0, 1, ..., n, (18)

where ∥K+
i ∥ is a norm of the operator

K+
i f(s) =

s∫
a

K−
i (s, y)Φ−

i (µ
−(y))f(y)dy, i = 0, 1, ..., n,

from Lp(ρ̃, I) to Lq(ω, I) and ρ̃(y) = ρ(µ−(y))[(µ−(y))′]
− 1

p′ .
Then from (17) and (18), it follows that

∥K̃+
1 ∥ ≈

n∑
i=0

∥K+
i ∥. (19)

Since K−
i (·, ·) ∈ O−

i (Ω) , 0 ≤ i ≤ n , then on the basis of Theorem B+ we have

∥K+
i ∥ ≈ sup

z∈I

 b∫
z

ωq(x)

 z∫
a

(K−
i (x, y))p

′
(Φ−

i (µ
−(y)))p

′
ρ̃−p′

(y)dy


q
p′

dx


1
q

(we change the variables in the inside integral t = µ−(y))

= sup
z∈I


b∫

z

ωq(x)

 µ−(z)∫
a

(K−
i (x, φ+(t)))p

′
(Φ−

i (t))
p′
ρ−p′

(t)dt


q
p′

dx


1
q

= sup
z∈I

 b∫
z

ωq(x)

 µ−(z)∫
a

(
K−

i (x, φ+(t)) ×
φ+(t)∫

φ−(t)

K−
i,n(φ

+(t), s)ds


p′

ρ−p′
(t)dt


q
p′

dx


1
q

, (20)

and similarly,

∥K+
i ∥ ≈ sup

z∈I


µ−(z)∫
a

ρ−p′
(t)

 φ+(t)∫
φ−(t)

K−
i,n(φ

+(t), s)ds


p′

×

 b∫
z

(
K−

i (x, φ+(t))
)q

ωq(x)dx


p′
q

dt


1
p′

. (21)
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From (20), (19), (18), (16) and (9), we have

∥K̃+
1 ∥ ≈ sup

z∈I


b∫

z

ωq(x)


µ−(z)∫
a

 φ+(t)∫
φ−(t)

n∑
i=0

K−
i (x, φ+(t))K−

i,n(φ
+(t), s)ds


p′

× ρ−p′
(t)dt

) q
p′
dx

) 1
q

≈ F+
2 .

Similarly, from (21), (19), (18), (16) and (9), it follows that ∥K̃+
1 ∥ ≈ F+

1 , i.e.,

∥K̃+
1 ∥ ≈ F+

1 ≈ F+
2 . (22)

Now, we estimate the value ∥K̃+
2 ∥ . Consider the kernel of the operator K̃+

2 :

K̃+
2 (s, x) ≡ K−

n+1(s, x) =

s∫
φ−(x)

K(s, t)dt.

In the operator K̃+
2 , the variables x , t and s change within the bounds a < s < b , a < φ−(x) ≤ t ≤ s < b and

µ−(s) ≤ x ≤ µ+(x) . Let a < x ≤ y < b and φ−(y) ≤ s ≤ φ+(x) . Then

K−
n+1(s, x) =

φ−(y)∫
φ−(x)

K(s, t)dt+

s∫
φ−(y)

K(s, t)dt =

φ−(y)∫
φ−(x)

K(s, t)dt+K−
n+1(s, y). (23)

From the conditions K(·, ·) ∈ O−
n (Ω) , n ≥ 0 , and φ−(x) ≤ t ≤ φ−(y) ≤ s ≤ φ+(x) , we have

φ−(y)∫
φ−(x)

K(s, t)dt ≈
n∑

i=0

K−
i (s, φ−(y))

φ−(y)∫
φ−(x)

K−
i,n(φ

−(y), t)dt =

n∑
i=0

K−
i (s, φ−(y))K−

i,n+1(y, x), (24)

where K−
i,n+1(y, x) =

φ−(y)∫
φ−(x)

K−
i,n(φ

−(y), t)dt , i = 0, 1, ..., n , K−
i (·, ·) ∈ O−

i (Ω) , i = 0, 1, ..., n , and K−
n (s, φ−(y)) =

K(s, φ−(y)) . From (23) and (24), we get K̃+
2 (s, x) ≡ K−

n+1(s, x) ≈ K−
n+1(s, y) +

n∑
i=0

K̂−
i (s, y)K−

i,n+1(y, x) for

a < x ≤ y < b and φ−(y) ≤ s ≤ φ+(x) , where K̂−
i (s, y) ≡ K−

i (s, φ−(y)) , i = 0, 1, ..., n , and K−
n+1,n+1(·, ·) ≡ 1 .

Due to Remark 2.3, the functions K̂−
i (·, ·) belong to the class O−

i (Ω
−) , i = 0, 1, ..., n . Then by the definition

of the class O−
n+1(Ω

−) , the kernel K̃+
2 (s, x) of the operator K̃+

2 belongs to the class O−
n+1(Ω

−) and by Lemma
2.1, the functions µ− and µ+ are locally absolute continuous on I . Therefore, by Theorem C+ for α = µ−

and β = µ+ , we have

∥K̃+
2 ∥ ≈ G+

1 ≈ G+
2 . (25)

From (25), (22), (14) and (15), it follows that the inequality (12) for T = K+ holds if and only if max{F+
i , G+

j } <

∞ at least for one of the pairs (i, j) , i, j = 1, 2 , and C1 ≈ max{F+
i , G+

j } , i, j = 1, 2 , where C1 is the best
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constant in (12). Hence, by Lemma 3.3, it follows the validity of Theorem 3.1. The proof of Theorem 3.1 is
complete. 2

Proof [Proof of Theorem 3.2] Let T = K− . Then by Lemma 3.3 the inequality (3) holds if and only if the
inequality (12) holds, i.e. the operator

K−

 µ+(·)∫
µ−(·)

f(x)dx

 (s)

is bounded from Lp(v, I) to Lq(ω, I) . Since

K̃−f(s) ≡ K−

 µ+(·)∫
µ−(·)

f(x)dx

 (s) =

b∫
s

K(t, s)

µ+(t)∫
µ−(t)

f(x)dxdt, (26)

the change of order of integration gives

b∫
s

K(t, s)

µ+(t)∫
µ−(t)

f(x)dxdt =

b∫
µ+(s)

f(x)

φ+(x)∫
φ−(x)

K(t, s)dtdx+

µ+(s)∫
µ−(s)

f(x)

φ+(x)∫
s

K(t, s)dtdx. (27)

From (12), (26), and (27), as in the proof of theorem 3.1, it follows that the operator K̃−f(s) is bounded

from Lp(v, I) to Lq(ω, I) if and only if the operators K̃−
1 f(s) ≡

b∫
µ+(s)

f(x)
φ+(x)∫
φ−(x)

K(t, s)dtdx and K̃−
2 f(s) ≡

µ+(s)∫
µ−(s)

f(x)
φ+(x)∫

s

K(t, s)dtdx are bounded from Lp(v, I) to Lq(ω, I) , and between the norms of the operators

∥K̃−∥, ∥K̃−
1 ∥ , and ∥K̃−

2 ∥ from Lp(v, I) to Lq(ω, I) the relation

∥K̃−∥ ≈ ∥K̃−
1 ∥+ ∥K̃−

2 ∥ (28)

is valid. We estimate the values ∥K̃−
1 ∥ and ∥K̃−

2 ∥ and get

K̃−
1 f(s) =

b∫
µ+(s)

K̃−
1 (x, s)f(x)dx, K̃−

1 (x, s) =

φ+(x)∫
φ−(x)

K(t, s)dt,

K̃−
2 f(s) =

µ+(s)∫
µ−(s)

K̃−
2 (x, s)f(x)dx, K̃−

2 (x, s) =

φ+(x)∫
s

K(t, s)dt.

In the operator K̃−
1 , the variables x , s , and t change within the bounds a < x < b and a < s ≤ φ−(x) ≤

t ≤ φ+(x) < b . Hence, by taking into account that K(·, ·) ∈ O+
n (Ω) , we have

K̃−
1 (x, s) ≈

n∑
i=0

φ+(x)∫
φ−(x)

K+
n,i(t, φ

−(x))dtK+
i (φ−(x), s) =

n∑
i=0

Φ+
i (x)K

+
i (φ−(x), s), (29)
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where Φ+
i (x) =

φ+(x)∫
φ−(x)

K+
n,i(t, φ

−(x))dt , i = 0, 1, ..., n .

Then

K̃−
1 f(s) ≈

n∑
i=0

K−
i,φ−f(s), K−

i,φ−f(s) =

b∫
µ+(s)

Φ+
i (x)K

+
i (φ−(x), s)f(x)dx,

i = 0, 1, ..., n . This, together with the change of variables φ−(x) = y , gives

∥K̃−
1 ∥ ≈

n∑
i=0

∥K−
i ∥, (30)

where ∥K−
i ∥ is a norm of the operator

K−
i f(s) =

b∫
s

Φ+
i (µ

+(y))K+
i (y, s)f(y)dy, s ∈ I,

from Lp(ρ̂, I) to Lq(ω, I) and ρ̂(y) = ρ(µ+(y))[(µ+(y))′]
− 1

p′ . Since K+
i (·, ·) ∈ O+

i (Ω) , i = 0, 1, ..., n , by
Theorem B− we have

∥K−
i ∥ ≈ sup

z∈I

 z∫
a

ωq(s)

 b∫
z

(K+
i (y, s)Φ+

i (µ
+(y)))p

′
ρ̂−p′

(y)dy


q
p′

ds


1
q

= sup
z∈I


z∫

a

ωq(s)

 b∫
µ+(z)

(
K+

i (φ−(x), s)Φ+
i (x)

)p′

ρ−p′
(x)dx


q
p′

ds


1
q

= sup
z∈I


z∫

a

ωq(s)


b∫

µ+(z)

K+
i (φ−(x), s)×

φ+(x)∫
φ−(x)

K+
n,i(t, φ

−(x))dt


p′

ρ−p′
(x)dx


q
p′

ds


1
q

, (31)

i = 0, 1, ..., n , and similarly,

∥K−
i ∥ ≈ sup

z∈I


b∫

µ+(z)

 φ+(x)∫
φ−(x)

K+
n,i(t, φ

−(x))dt


p′

ρ−p′
(x)×

 z∫
a

[
K+

i (φ−(x), s)
]q

ωq(s)ds


p′
q

dx


1
p′

, (32)

i = 0, 1, ..., n . From (32), (31), and (30), by taking into account (29), we have

∥K̃−
1 ∥ ≈ F−

1 ≈ F−
2 . (33)
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Now, we consider the operator K̃−
2 and its kernel. Let a < τ ≤ x < b and φ−(x) ≤ s ≤ φ+(τ) . Then

K̃−
2 (x, s) ≡ K+

n+1(x, s) =

φ+(x)∫
s

K(t, s)dt =

φ+(x)∫
φ+(τ)

K(t, s)dt+

φ+(τ)∫
s

K(t, s)dt

=

φ+(x)∫
φ+(τ)

K(t, s)dt+K+
n+1(τ, s). (34)

In the expression
φ+(x)∫
φ+(τ)

K(t, s)dt , the variables t and s change within the bounds φ+(x) ≥ t ≥ φ+(τ) ≥

s ≥ φ−(x) . Therefore, by taking into account K(·, ·) ∈ O+
n (Ω) , n ≥ 0 , we have

φ+(x)∫
φ+(τ)

K(t, s)ds ≈
n∑

i=0

φ+(x)∫
φ+(τ)

K+
n,i(t, φ

+(τ))dtK+
i (φ+(τ), s)

=

n∑
i=0

K+
n+1,i(x, τ)K

+
i (φ+(τ), s), (35)

where K+
n+1,i(x, τ) =

φ+(x)∫
φ+(τ)

Kn,i(t, φ
+(τ))dt , K+

i (·, ·) ∈ O+
i (Ω) , i = 0, 1, ..., n , and K+

n (·, ·) ≡ K(·, ·) . From

(34) and (35), we obtain

K̃+
2 (x, s) ≡ K+

n+1(x, s) ≈
n+1∑
i=0

K+
n+1,i(x, τ)K

+
i (φ+(τ), s),

K+
n+1,n+1(·, ·) ≡ 1

(36)

for a < τ ≤ x < b and φ−(x) ≤ s ≤ φ+(τ) . Since due to Remark 2.3, we have that K+
i (φ+(τ), s) ∈ O+

i (Ω
+) ,

i = 0, 1, ..., n , from (36) and the definition of the class O+
n+1(Ω

+) it follows K̃+
2 (·, ·) ≡ K+

n+1(·, ·) ∈ O+
n+1(Ω

+) .
Then by Theorem C− , we have

∥K̃−
2 ∥ ≈ G−

1 ≈ G−
2 . (37)

From (37), (33) and (28) we get the validity of theorem 3.2.
The proof of theorem 3.2 is complete. 2
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