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Abstract: In this paper, the universal enveloping algebra of color hom-Lie algebras is studied. A construction of the free
involutive hom-associative color algebra on a hom-module is described and applied to obtain the universal enveloping
algebra of an involutive hom-Lie color algebra. Finally, the construction is applied to obtain the well-known Poincaré–
Birkhoff–Witt theorem for Lie algebras to the enveloping algebra of an involutive color hom-Lie algebra.
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1. Introduction
The investigations of various quantum deformations (or q -deformations) of Lie algebras started a period of
rapid expansion in 1980s, stimulated by the introduction of quantum groups motivated by applications to
the quantum Yang–Baxter equation, quantum inverse scattering methods, and constructions of the quantum
deformations of universal enveloping algebras of semisimple Lie algebras. Since then, several other versions
of q -deformed Lie algebras have appeared, especially in physical contexts such as string theory, vertex models
in conformal field theory, quantum mechanics and quantum field theory in the context of deformations of
infinite-dimensional algebras, primarily the Heisenberg algebras, oscillator algebras, and Witt and Virasoro
algebras [3, 16–19, 21–23, 28, 30, 41–43]. In these pioneering works, it has been discovered in particular
that in these q -deformations of Witt and Visaroro algebras and some related algebras, some interesting q -
deformations of Jacobi identities, extending Jacobi identity for Lie algebras, are satisfied. This has been one
of the initial motivations for the development of general quasideformations and discretizations of Lie algebras
of vector fields using more general σ -derivations (twisted derivations) in [25], and introduction of abstract
quasi-Lie algebras and subclasses of quasi-hom-Lie algebras and hom-Lie algebras as well as their general
colored (graded) counterparts in [25, 36, 37, 39, 58]. These generalized Lie algebra structures with (graded)
twisted skew-symmetry and twisted Jacobi conditions by linear maps are tailored to encompass within the
same algebraic framework such quasideformations and discretizations of Lie algebras of vector fields using σ -
derivations, describing general descritizations and deformations of derivations with twisted Leibniz rule, and
the well-known generalizations of Lie algebras such as color Lie algebras, which are the natural generalizations
of Lie algebras and Lie superalgebras.

Quasi-Lie algebras are nonassociative algebras for which the skew-symmetry and the Jacobi identity
∗Correspondence: farhang@shirazu.ac.ir
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are twisted by several deforming twisting maps and also the Jacobi identity in quasi-Lie and quasi-hom-Lie
algebras in general contains six twisted triple bracket terms. Hom-Lie algebras is a special class of quasi-
Lie algebras with the bilinear product satisfying the nontwisted skew-symmetry property as in Lie algebras,
whereas the Jacobi identity contains three terms twisted by a single linear map, reducing to the Jacobi identity
for ordinary Lie algebras when the linear twisting map is the identity map. Subsequently, hom-Lie admissible
algebras were considered in [45], where the hom-associative algebras were also introduced and shown to be
hom-Lie admissible natural generalizations of associative algebras corresponding to hom-Lie algebras. In [45],
moreover, several other interesting classes of hom-Lie admissible algebras generalizing some nonassociative
algebras, as well as examples of finite-dimentional hom-Lie algebras were described. Since these pioneering
works [25, 36, 37, 39, 40, 45], hom-algebra structures have become a popular area with increasing number of
publications in various directions.

Hom-Lie algebras, hom-Lie superalgebras, and color hom-Lie algebras are important special classes of
color (Γ -graded) quasi-Lie algebras introduced first by Larsson and Silvestrov in [37, 39]. Hom-Lie algebras and
hom-Lie superalgebras were studied further in different aspects by Makhlouf, Silvestrov, Sheng, Ammar, Yau
and other authors [12, 38, 44–48, 51, 52, 57, 59–62, 64–66, 68, 69], and color hom-Lie algebras were considered,
for example, in [1, 13, 14, 68]. In [4], the constructions of hom-Lie and quasi-hom-Lie algebras based on twisted
discretizations of vector fields [25] and hom-Lie admissible algebras were extended to hom-Lie superalgebras,
a subclass of graded quasi-Lie algebras [37, 39]. We also wish to mention that Z3 -graded generalizations
of supersymmetry, Z3 -graded algebras, ternary structures, and related algebraic models for classifications of
elementary particles and unification problems for interactions, quantum gravity and noncommutative gauge
theories [2, 31–34] also provide interesting examples related to hom-associative algebras, graded hom-Lie
algebras, twisted differential calculi, and n -ary hom-algebra structures. It would be a project of great interest
to extend and apply all the constructions and results in the present paper in the relevant contexts of the articles
[2, 4, 6, 8–10, 31–33, 37, 39, 45].

An important direction with many fundamental open problems in the theory of (color) quasi-Lie algebras
and in particular (color) quasi-hom-Lie algebras and (color) hom-Lie algebras is the development of comprehen-
sive fundamental theory, explicit constructions, examples and algorithms for enveloping algebraic structures,
expanding the corresponding more developed fundamental theory and constructions for enveloping algebras
of Lie algebras, Lie superalgebras, and general color Lie algebras [11, 20, 29, 49, 50, 53–56]. Several authors
have tried to construct the enveloping algebras of hom-Lie algebras. For instance, Yau has constructed the
enveloping hom-associative algebra UHLie(L) of a hom-Lie algebra L in [64] as the left adjoint functor of HLie
using combinatorial objects of weighted binary trees, i.e. planar binary trees in which the internal vertices are
equipped with weights of nonnegative integers. This is analogous to the fact that the functor Lie admits a
left adjoint U , the enveloping algebra functor. He also introduced construction of the counterpart functors
HLie and UHLie for hom-Leibniz algebras. In [26], for hom-associative algebras and hom-Lie algebras, the
envelopment problem, operads, and the Diamond Lemma, and Hilbert series for the hom-associative operad
and free algebra were studied. Recently, making use of free involutive hom-associative algebras, the authors in
[24] have found an explicit constructive way to obtain the universal enveloping algebras of hom-Lie algebras in
order to prove the Poincaré–Birkhoff–Witt theorem.

In this paper, we will give a brief review of well-known facts about hom-Lie algebras and their enveloping
algebras. We will then present some new results, in the hope that they may eventually have a bearing on
representation theory of color hom-Lie algebras. In Section 2, some necessary notions and definitions are
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presented as an introduction to color hom-Lie algebras. In Section 3 the notion of universal enveloping algebras
of color hom-Lie algebras is given and several useful result about involutive color hom-Lie algebras are proven.
In Section 4, we prove the analogous of the well known Poincaré–Birkhoff–Witt theorem for color hom-Lie
algebras, using the definitions and results of Sections 2 and 3. Finally, due to the importance of hom-Lie
superalgebras, we present the most important results of the paper in hom-Lie superalgebras case.

2. Basic concepts on hom-Lie algebras and color quasi-Lie algebras

We start by recalling some basic concepts from [24, 45, 47]. We use k to denote a commutative unital ring (for
example a field).

Definition 2.1 (i) A hom-module is a pair (M,α) consisting of a k-module M and a linear operator
α :M →M .

(ii) A hom-associative algebra is a triple (A, ., α) consisting of a k-module A , a linear map · : A⊗A→ A called
the multiplication and a multiplicative linear operator α : A → A which satisfies the hom-associativity
condition, namely

α(x) · (y · z) = (x · y) · α(z),

for all x, y, z ∈ A .

(iii) A hom-associative algebra or a hom-module is called involutive if α2 = id .

(iv) Let (M,α) and (N, β) be two hom-modules. A k-linear map f : M → N is called a morphism of
hom-modules if

f(α(x)) = β(f(x)),

for all x ∈M .

(v) Let (A, ·, α) and (B, •, β) be two hom-associative algebras. A k-linear map f : A → B is called a
morphism of hom-associative algebras if

(1) f(x · y) = f(x) • f(y),

(2) f(α(x)) = β(f(x)), for all x, y ∈ A .

(vi) If (A, ·, α) is a hom-associative algebra, then B ⊆ A is called a hom-associative subalgebra of A if it is
closed under the multiplication · and α(B) ⊆ B . A submodule I is called a hom-ideal of A if x · y ∈ I

and x · y ∈ I for all x ∈ I and y ∈ A , and also α(I) ⊆ I .

One can find various examples of hom-associative algebras and their properties in [45, 47].

Definition 2.2 Let (M,α) be an involutive hom-module. A free involutive hom-associative algebra on M

is an involutive hom-associative algebra (FM , ⋆, β) together with a morphism of hom-modules j : M → FM

with the property that for any involutive hom-associative algebra A together with a morphism f : M → A of
hom-modules, there is a unique morphism f̄ : FM → A of hom-associative algebras such that f = f̄ ◦ j .
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Our next goal is to recall the definition of an involutive hom-associative algebra on an involutive hom-
module (M,α) from [24], which is known as the hom-tensor algebra and is denoted here by T (M) . Note that
as an R -module, T (M) is the same as the tensor algebra, i.e.

T (M) =
⊕
i≥1

M⊗i,

on which we have the following multiplication in order to obtain a hom-associative algebra. First, the linear
map α on M is extended to a linear map αT on M⊗i by the tensor multiplicativity, i.e.

αT (x) = αT (x1 ⊗ · · · ⊗ xi) := α(x1)⊗ · · · ⊗ α(xi),

for all pure tensors x := x1 ⊗ · · · ⊗ xi ∈M⊗i , i ≥ 1 . One can see that αT has the following properties:

(i) αT (x⊗ y) = αT (x)⊗ αT (y) , for all x ∈M⊗i , y ∈M⊗j .

(ii) α2
T = id .

Now, the binary operation on T (M) is defined as follows:

x⊙ y := αi−1
T (x)⊗ y1 ⊗ · · ·αT (y2 ⊗ · · · ⊗ yi), (2.1)

for all x ∈M⊗i and y ∈M⊗j .

Theorem 2.3 [24] Let (M,α) be an involutive hom-module. Then,

(i) The triple T (M) := (T (M),⊙, αT ) is an involutive hom-associative algebra.

(ii) The quadruple (T (M),⊙, αT , iM ) is the free involutive hom-associative algebra on M .

It is now convenient to recall some definitions for hom-Lie algebras [25, 36, 37, 39, 45].

Definition 2.4 A hom-Lie algebra is a triple (g, [, ], α) , where g is a vector space equipped with a skew-
symmetric bilinear map [, ] : g× g → g and a linear map α : g → g such that

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0,

for all x, y, z ∈ g , which is called hom-Jacobi identity.

A hom-Lie algebra is called a multiplicative hom-Lie algebra if α is an algebraic morphism, i.e. for any
x, y ∈ g ,

α([x, y]) = [α(x), α(y)].

We call a hom-Lie algebra regular if α is an automorphism. Moreover, it is called involutive if α2 = id .
A subvector space h ⊂ g is a hom-Lie subalgebra of (g, [, ], α) if α(h) ⊂ h and h is closed under the

bracket operation, i.e.
[x1, x2]g ∈ h,
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for all x1, x2 ∈ h. Let (g, [, ], α) be a multiplicative hom-Lie algebra. Let αk denote the k -times composition
of α by itself, for any nonnegative integer k , i.e.

αk = α ◦ ... ◦ α (k − times),

where we define α0 = Id and α1 = α . For a regular hom-Lie algebra g , let

α−k = α−1 ◦ ... ◦ α−1 (k − times).

We now recall the notion of a color hom-Lie algebra step by step in order to indicate them as a
generalization of Lie color algebras.

Definition 2.5 [11, 39, 49, 53, 54] Given a commutative group Γ (referred to as the grading group), a
commutation factor on Γ with values in the multiplicative group K \ {0} of a field K of characteristic 0
is a map

ε : Γ× Γ → K \ {0},

satisfying three properties:

(i) ε(α+ β, γ) = ε(α, γ)ε(β, γ),

(ii) ε(α, γ + β) = ε(α, γ)ε(α, β),

(iii) ε(α, β)ε(β, α) = 1.

A Γ-graded ε-Lie algebra (or a Lie color algebra) is a Γ-graded linear space

X =
⊕
γ∈Γ

Xγ ,

with a bilinear multiplication (bracket) [., .] : X ×X → X satisfying the following properties:

(i) Grading axiom: [Xα, Xβ ] ⊆ Xα+β ,

(ii) Graded skew-symmetry: [a, b] = −ε(α, β)[b, a],

(iii) Generalized Jacobi identity:
ε(γ, α)[a, [b, c]] + ε(β, γ)[c, [a, b]] + ε(α, β)[b, [c, a]] = 0,

for all a ∈ Xα, b ∈ Xβ , c ∈ Xγ and α, β, γ ∈ Γ . The elements of Xγ are called homogenous of degree γ , for all
γ ∈ Γ .

Analogous to the other kinds of definitions of hom-algebras, the definition of a color hom-Lie algebra can
be given as follows [1, 13, 14, 39, 68].

Definition 2.6 A color hom-Lie algebra is a quadruple (g, [., .], ε, α) consisting of a Γ-graded vector space g ,
a bi-character ε , an even bilinear mapping

[., .] : g× g → g,

(i.e. [ga, gb] ⊆ ga+b , for all a, b ∈ Γ) and an even homomorphism α : g → g such that for homogeneous
elements x, y, z ∈ g , we have
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1. ε-skew symmetric: [x, y] = −ε(x, y)[y, x],

2. ε-Hom-Jacobi identity:
∑

cyclic{x,y,z} ε(z, x)[α(x), [y, z]] = 0.

Color hom-Lie algebras are a special class of general color quasi-Lie algebras (Γ -graded quasi-Lie algebras)
defined first by Larsson and Silvestrov in [39].

Let g =
⊕

γ∈Γ gγ and h =
⊕

γ∈Γ hγ be two Γ -graded color Lie algebras. A linear mapping f : g → h is
said to be homogenous of the degree µ ∈ Γ if

f(gγ) ⊆ hγ+µ,

for all γ ∈ Γ . If in addition, f is homogenous of degree zero, i.e.

f(gγ) ⊆ hγ ,

holds for any γ ∈ Γ , then f is said to be even.
Let (g, [, ], ε, α) and (g′, [, ]′, ε′, α′) be two color hom-Lie algebras. A homomorphism of degree zero

f : g → g′ is said to be a morphism of color hom-Lie algebras if

1. [f(x), f(y)]′ = f([x, y]) , for all x, y ∈ g,

2. f ◦ α = α′ ◦ f.

In particular, if α is a morphism of color Lie algebras, then we call (g, [, ], ε, α) , a multiplicative color
hom-Lie algebra.

Example 2.7 [1] As in case of hom-associative and hom-Lie algebras, examples of multiplicative color hom-
Lie algebras can be constructed for example by the standard method of composing multiplication with algebra
morphism.

Let (g, [, ], ε) be a color Lie algebra and α be a color Lie algebra morphism. Then (g, [, ]α := α◦ [., .], ε, α)
is a multiplicative color hom-Lie algebra.

Definition 2.8 A hom-associative color algebra is a triple (V, µ, α) consisting of a color space V , an even
bilinear map µ : V × V → V and an even homomorphism α : V → V satisfying

µ(α(x), µ(y, z)) = µ(µ(x, y), α(z)),

for all x, y, z ∈ V .

A hom-associative color algebra or a color hom-Lie algebra is said to be involutive if α2 = id .
As in the case of an associative algebra and a Lie algebra, a hom-associative color algebra (V, µ, α) gives

a color hom-Lie algebra by antisymmetrization. We denote this color hom-Lie algebra by (A, [, ]A, βA) , where
βA = α and [x, y]A = xy − yx , for all x, y ∈ A .

321



ARMAKAN et al./Turk J Math

3. The universal enveloping algebra
In this section, we introduce the notion of the universal enveloping algebra of a color hom-Lie algebra. Moreover,
we prove a new result on the free involutive hom-associative color algebra on an involutive hom-module.

Definition 3.1 Let (V, αV ) be an involutive hom-module. A free involutive hom-associative color algebra on
V is an involutive hom-associative color algebra (F (V ), ∗, αF ) together with a morphism of hom-modules

jV : (V, αV ) → (F (V ), αF ),

with the property that, for any involutive hom-associative color algebra (A, ., αA) together with a morphism
f : (V, αV ) → (A,αA) of hom-modules, there is a unique morphism f : (F (V ), ∗, αF ) → (A, ., αA) of hom-
associative color algebras such that f = f ◦ jV .

Definition 3.2 Let (g, [, ], α) be a color hom-Lie algebra. A universal enveloping hom-associative color algebra
of g is a hom-associative color algebra

U(g) := (U(g), µU , αU ),

together with a morphism φg : g → U(g) of color hom-Lie algebras such that for any hom-associative color
algebra (A,µ, αA) and any color hom-Lie algebra morphism ϕ : (g, [, ]g, βg) , there exists a unique morphism
ϕ̄ : U(g) → A of hom-associative color algebras such that ϕ̄ ◦ φg = ϕ .

The following lemma shows an easy way to construct the universal algebra when we have an involutive
color hom-Lie algebra.

Lemma 3.3 Let (g, [, ]g, βg) be an involutive color hom-Lie algebra.

(i) Let (A, ·, αA) be a hom-associative algebra. Let

f : (g, [, ]g, βg) → (A, [, ]A, βA)

be a morphism of color hom-Lie algebras and let B be the hom-associative subcolor algebra of A generated
by f(g) . Then B is involutive.

(ii) The universal enveloping hom-associative algebra (U(g), φg) of (g, [, ]g, βg) is involutive.

(iii) In order to verify the universal property of (U(g), φg) in Definition 3.2, we only need to consider involutive
hom-associative algebras A := (A, ·A, αA) .

Proof

(i) Let
S = {x ∈ A|α2

A(x) = x}.

One can easily check that S is a submodule. Also, for x, y ∈ S , we have xy ∈ S , since α2
A(xy) =

α2
A(x)α

2
A(y) = xy . Moreover, we have

α2
A(αA(x)) = αA(α

2
A(x)) = αA(x),

which shows that αA(x) ∈ S , for all x ∈ S . Thus, S is a hom-associative subalgebra of A since f is a
morphism.
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(ii) Since U(g) is generated by φg(g) as a hom-associative algebra, the statement follows from (i) .

(iii) We should prove that, assuming that the universal property of U(g) holds for involutive hom-associative
algebras, then it holds for all hom-associative algebras. Let (A, ·, αA) be a hom-associative algebra and
let

ψ : (g, [, ]g, βg) → (A, [, ]A, βA)

be a morphism of color hom-Lie algebras. Let

S = {x ∈ A|α2
A(x) = x}

be the involutive hom-associative subalgebra of A defined in the proof of (i) . Since im(ψ) is contained in
S , ψ is the composition of a morphism ψS : (g, [, ]g, βg) → (S, [, ]S , βS) of hom-associative color algebras
with the inclusion i : S → A . By assumption, there is a morphism ψ̄S : U(g) → A of hom-associative
color algebras such that ψ̂S ◦ φg = ψS . Then composing with the inclusion i : B → A , we obtain a
morphism ψ̄ : U(g) → A of hom-associative color algebras such that ψ̄ ◦ φg = ψ .
Now, let ψ̄′ : U(g) → A be another morphism of hom-associative color algebras such that ψ̄′ ◦ φg = ψ .
By (ii) , im(ψ̄′) is involutive. So ψ̄′ is the composition of a morphism ψ̄′

S : U(g) → S with the inclusion
i : S → A and ψ̄′

S◦φg = ψS . Since S is involutive, the morphisms ψ̄′
S and ψ̄S coincide. As a consequence,

ψ̄′ and ψ̄ coincide, which completes the proof.

2

We can now give the construction of the universal enveloping hom-associative color algebra of an involutive
color hom-Lie algebra.

Theorem 3.4 Let g := (g, [, ]g, βg) be an involutive color hom-Lie algebra. Let

T (g) := (T (g),⊙, αT )

be the free hom-associative algebra on the hom-module underlying g obtained in Theorem 2.3. Let I be the
hom-ideal of T (g) generated by the set

{a⊗ b− ε(a, b)b⊗ a− [a, b]} (3.1)

and let

U(g) =
T (g)

I

be the quotient hom-associative algebra. Let ψ be the composition of the natural inclusion i : g → T (g) with the
quotient map π : T (g) → U(g) . Then (U(g), ψ) is a universal enveloping hom-associative algebra of g . Also,
the universal enveloping hom-associative algebra of g is unique up to isomorphism.

Proof The multiplication in U(g) is denoted by ∗ . The map ψ is a morphism of hom-modules since it is the
composition of two hom-module morphisms. We have

ψ([x, y]g) =π([x, y]g) = π(x⊗ y − ε(x, y)y ⊗ x)

=π(x⊙ y − ε(x, y)y ⊙ x) = π(x) ∗ π(y)− ε(x, y)π(y) ∗ π(x)

=ψ(x) ∗ ψ(y)− ε(x, y)ψ(y) ∗ ψ(x) = [ψ(x), ψ(y)]g,
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for all x, y ∈ g , since x⊗ y − ε(x, y)y ⊗ x− [x, y]g is in I = ker(π) . Therefore, ψ is a morphism of color hom-
Lie algebras. Now, using Lemma 3.3 (iii) , we consider an arbitrary involutive hom-associative color algebra
A := (A, ·A, αA) . Let ξ : (g, [, ]g, βg) → (A, [, ]A, βA) be a morphism of color hom-Lie algebras. Since T (g) is
the free involutive hom-associative color algebra on the underlying hom-module of g , according to Theorem
2.3, there exists a hom-associative color algebra morphism ξ̃ : T (g) → A of hom-associative color algebras such
that ξ̃ ◦ ig = ξ . We have

ξ̃(x⊗ y − ε(x, y)y ⊗ x) =ξ̃(x⊙ y − ε(x, y)y ⊙ x)

=ξ̃(x) ·A ξ̃(y)− ε(x, y)ξ̃(y) ·A ξ̃(x)

=ξ(x) ·A ξ(y)− ε(x, y)ξ(y) ·A ξ(x) = [ξ(x), ξ(y)]A

=ξ([x, y]A) = ξ̃([x, y]A).

So I is contained in ker(ξ̃) and ξ̃ induces a morphism ξ̄ : U(g) → A of hom-associative color algebras such
that ξ̃ = ξ̄ ◦ π . Therefore, ξ̄ ◦ ψ = ξ̄ ◦ π ◦ i = ξ̃ ◦ i = ξ .

Let ξ̄′ : U(g) → A be another morphism of hom-associative color algebras such that ξ̄′ ◦ψ = ξ . We must
show that ξ̄(u) = ξ̄′(u) , for all u ∈ U(g) . It is sufficient to show that ξ̄π(a) = ξ̄′π(a) , for a ∈ g⊗i with i ≥ 1 ,
since T (g) =

⊕
i≥1 g

⊗i . We do this by using the induction on i ≥ 1 . For i = 1 , we have

(ξ̄ ◦ π)(a) = (ξ̄ ◦ π ◦ i)(a) = (ξ̃ ◦ i)(a) = ξ(a) = (ξ̄′ ◦ ψ)(a) = (ξ̄′ ◦ π)(a).

Now, assume that the statement holds for i ≥ 1 . Let a = a′ ⊗ ai+1 ∈ g⊗(i+1) , where a′ ∈ g⊗i . We have

(ξ̄ ◦ π)(a) =(ξ̄ ◦ π)(a′ ⊙ ai+1) = ξ̄(π(a′)) ·A ξ̄(π(ai+1))

=ξ̄′(π(a′)) ·A ξ̄′(π(ai+1)) = (ξ̄′ ◦ π)(a′ ⊙ ai+1) = (ξ̄′ ◦ π)(a).

Thus, the uniqueness of ξ̄ makes (U(g), ψ) a universal enveloping algebra of g .
The only thing left to prove is the uniqueness of U(g) up to isomorphism. Let (U(g)1, ψ1) be another

universal enveloping algebra of g . By the definition of universal algebra, there exist homomorphisms

f : U(g) → U(g)1

and
f1 : U(g)1 → U(g)

of hom-associative color algebras such that f ◦ ψ = ψ1 and f1 ◦ ψ1 = ψ . Therefore,

f1 ◦ f ◦ ψ = ψ = idU(g) ◦ ψ.

Since id and f1 ◦ f are both hom-associative homomorphisms, by the uniqueness in the universal property of
(U(g), ψ) , we have f1 ◦ f = idU(g) , and hence

f ◦ f1 = idU(g)1 ,

which completes the proof. 2
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4. The Poincaré–Birkhoff–Witt theorem
In this section we prove a Poincaré–Birkhoff–Witt like type theorem for involutive color hom-Lie algebras.

Let g be a Lie color algebra with an ordered basis

X = {xn|n ∈ H},

where H is a well- and totally ordered set. Let I be the ideal of the free associative algebra T (g) on g , which
was given in Theorem 3.4, so that U(g) is the universal enveloping algebra of g . The Poincaré–Birkhoff–Witt
theorem states that the linear subspace I of T (g) has a canonical linear complement which has a basis given
by

W := {xn1
⊗ · · · ⊗ xni

|n1 ≥ · · · ≥ ni, i ≥ 0}, (4.1)

called the Poincaré–Birkhoff–Witt basis of U(g) .
To simplify the notations, we denote x̄ := βg(x) for x ∈ g and x̄ := αT (x) for x ∈ g⊗i , i ≥ 1 . There

exists a linear operator which is introduced in [24].

θ : g⊗i → g⊗i, (4.2)

which maps every x := x1 ⊗ · · · ⊗ xi to x̃1 ⊗ · · · ⊗ x̃i , where

x̃n =

{
x̄n if n = 2k + 1 and k ≥ 1,
xn otherwise.

Now, we can study linear generators of the hom-ideal I and express them in terms of the tensor product.
Since βg is involutive, it is also bijective, so

βg(g) = g,

and we have the same argument for θ :
θ(g⊗i) = g⊗i.

Let us now review some properties of the linear operator αT and the multiplication ⊙ which was stated
in [24]. First we have

αj
T (g

⊗i) = g⊗i, j ≥ 0, i ≥ 0.

Then for any natural numbers r, s ≥ 1 , we have

g⊗r ⊙ g⊗s = αs−1
T (g⊗r)⊗ g⊗ αT (g

⊗(s−1)) = g⊗r+s.

In the following lemma, for a = a1 ⊗ · · · ⊗ ai ∈ g⊗i and i ≥ 1 , we denote l(a) = i .

Lemma 4.1 Let u = u1 ⊗ · · · ⊗ uj ∈ g⊗j , v = v1 ⊗ · · · ⊗ vk ∈ g⊗k and w = w1 ⊗ · · · ⊗ wl ∈ g⊗l . Let θ be
defined as in (4.2). Then

(i) θ(u) = u1 ⊗ u2 ⊗ αT (u3)⊗ α2
T (u4) · · · ⊗ αj−2

T (uj) = u1 ⊗⊗j
k=2α

k−2
T (uk) ,

(ii) θ(αT (u)) = αT (θ(u)) ,

(iii) θ(u⊗w) = θ(u)⊗ αj−1
T (w1)⊗ · · · ⊗ αj+l−2

T (wl)
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(iv) If l(v) ≥ 1 and l(u) = l(v) + 1 , i.e. j = k + 1 , then there is c ∈ g⊗j such that

θ(u⊗w) = θ(u)⊗ c and θ(v⊗w) = θ(v)⊗ αT (c).

Proof Straightforward calculations. 2

Theorem 4.2 Let g be an involutive color hom-Lie algebra. Let θ : T (g) → T (g) be as defined in (4.2). Let I
be the hom-ideal of T (g) as defined in Theorem 3.4. Let

J =
∑

n,m≥0

∑
a∈g⊗n

b∈g⊗m

∑
a,b∈g

(a⊗ (a⊗ b− ε(a, b)b⊗ a)⊗ b− αT (a)⊗ [a, b]g ⊗ αT (b)). (4.3)

Then

(i) I =
∑

n,m≥0

∑
a,b∈g(g

⊗n ⊙ (a⊗ b− ε(a, b)b⊗ a− [a, b]g))⊙ g⊗m

(ii) θ(I) = J

Proof

(i) Since the hom-ideal I is generated by the elements of the form

a⊗ b− ε(a, b)b⊗ a− [a, b]g,

for all a, b ∈ g , the right-hand side is contained in the left-hand side. To prove the opposite, we just
need to prove that the right-hand side is a hom-ideal of T (g) , i.e. it is closed under the left and right
multiplication and the operator αT . Therefore, we should check these one by one. For any natural number
k ≥ 0 , we have

((g⊗n ⊙ (a⊗ b− ε(a, b)b⊗ a− [a, b]g))⊙ g⊗m)⊙ g⊗k

=αT (g
⊗n ⊙ (a⊗ b− ε(a, b)b⊗ a− [a, b]g))⊙ (g⊗m ⊙ αT (g

⊗k))

=αT (g
⊗n ⊙ (a⊗ b− ε(a, b)b⊗ a− [a, b]g))⊙ g⊗m+k

=(αT (g
⊗n)⊙ αT (a⊗ b− ε(a, b)b⊗ a− [a, b]g))⊙ g⊗m+k

=(g⊗n ⊙ (αT (a)⊗ αT (b)− ε(a, b)αT (b)⊗ αT (a)− [αT (a), αT (b)]g))

⊙ g⊗m+k,

which is seen to be contained in∑
x,y∈g

(g⊗n ⊙ (x⊗ y − ε(x, y)y ⊗ x− [x, y]g))⊙ g⊗m+k.

Thus the right-hand side is closed under the right multiplication. We can also get

αT ((g
⊗n ⊙ (a⊗ b− ε(a, b)b⊗ a− [a, b]g))⊙ g⊗m)

=(g⊗n ⊙ (αT (a)⊗ αT (b)− ε(a, b)αT (b)⊗ αT (a)− [αT (a), αT (b)]g))

⊙g⊗m,
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which is contained in ∑
x,y∈g

(g⊗n ⊙ (x⊗ y − ε(x, y)y ⊗ x− [x, y]g))⊙ g⊗m.

So the right-hand side is a hom-ideal of (T (g),⊙, αT ) , which also contains the elements of the form

(x⊗ y − ε(x, y)y ⊗ x− [x, y]g)

for all x, y ∈ g . Therefore, it contains the left-hand side.

(ii) We first prove that θ(I) is contained in J . By the first part of the proposition, we just need to verify
that the element

θ((a⊙ (x⊗ y − ε(x, y)y ⊗ x− [x, y]g))⊙ b

is contained in J , for x, y ∈ g and a, b in g⊗n, g⊗m , respectively, n,m ≥ 0 .
We have

(a⊙ (x⊗ y − ε(x, y)y ⊗ x− [x, y]g))⊙ b

=(αT (a)⊗ (x⊗ αT (y)− ε(x, y)y ⊗ αT (x))− a⊗ [x, y]g)⊙ b

=αm−1
T (αT (a)⊗ (x⊗ αT (y)− ε(x, y)y ⊗ αT (x))⊗ b1

⊗αT (b2 ⊗ · · · ⊗ bm)

−αm−1
T (a⊗ [x, y]g)⊗ b1 ⊗ αT (b2 ⊗ · · · ⊗ bm),

by the definition of ⊙ . Furthermore, according to Lemma 4.1 (iv), there exists c ∈ g⊗n such that

θ((a⊙ (x⊗ y − ε(x, y)y ⊗ x− [x, y]g))⊙ b)

=θ(αm−1
T (αT (a)⊗ (x⊗ αT (y)− ε(x, y)y ⊗ αT (x))))⊗c

−θ(αm−1
T (a⊗ [x, y]g))⊗ αT (c)

=θ(αm−1
T (a)⊗ (αm−1

T (x)⊗ (x⊗ αT (y)− ε(x, y)y ⊗ αT (x))))⊗ c

−θ(αm−1
T (a)⊗ [αm−1

T (x), αm−1
T (y)]g))⊗ αT (c)

=θ(αm
T (a))⊗ (αn−1

T (αm−1
T (x))⊗ αn

T (α
m
T (y))− ε(x, y)αn−1

T (αm−1
T (y))

⊗ αn
T (α

m
T (x)))⊗ c− θ(αm−1

T (a)⊗ [αm−1
T (x), αm−1

T (y)]g))⊗ αT (c)

=θ(αm
T (a))⊗ (αn+m

T (x)⊗ αn+m
T (y)− ε(x, y)αn+m

T (y)⊗ αn+m
T (x))⊗ c

−αT (θ(α
m
T (a)))⊗ [αn+m

T (x), αn+m
T (y)]g))⊗ αT (c).

This is an element in∑
u∈g⊗n

v∈g⊗m

∑
s,t∈g

u⊗ (s⊗ t− ε(s, t)t⊗ s)⊗ v− αT (u)⊗ [s, t]g ⊗ αT (v))

if we simply take u := θ(αm
T (a)) , s := αm+n

T (x) and t := αm+n
T (y) . Therefore, θ(I) is contained in J .

Conversely, since θ and αT are bijective, the above argument shows that any term

u⊗ (s⊗ t− ε(s, t)t⊗ s)⊗ v− αT (u)⊗ [s, t]g ⊗ αT (v)),
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in the previous sum can be expressed in the form

θ((a⊙ (x⊗ y − ε(x, y)y ⊗ x− [x, y]g))⊙ b),

which shows the surjectivity of θ and completes the proof.

2

In the next theorem, we suppose that g is an involutive color hom-Lie algebra with a basis X = {xn|n ∈ ω}
for a well-ordered set ω .

Theorem 4.3 Let g := (g, [, ]g, βg) be an involutive color hom-Lie algebra such that βg(X) = X . Let W be
the one defined in (4.1) and let µ ∈ k be given. If we define

Jµ :=
∑

n,m≥0

∑
a∈g⊗n

b∈g⊗m

∑
a,b∈g

(a⊗ (a⊗ b− ε(a, b)b⊗ a)⊗ b− µn+mαT (a)⊗ [a, b]g ⊗ αT (b)), (4.4)

then we can have the linear decomposition
T (g) = Jµ ⊕ kW.

Proof Let us first introduce some notations. For i ≥ 2 let

x := xn1
⊗ xn2

⊗ · · · ⊗ xni
∈ X⊗i ⊆ g⊗i.

Define the index of x to be
d :=| {(r, s)|r < s, nr < ns, 1 ≤ r, s ≤ i} | .

Let gi,d be the linear span of all pure tensors x of degree i and index d . Then we have

g⊗i =
⊕
d⩾0

gi,d.

In particular, gi,0 = kW (i) , where

W (i) := {xn1
⊗ xn2

⊗ · · · ⊗ xni
∈ X⊗i|n1 ⩾ n2 ⩾ · · · ⩾ ni}.

In order to prove T (g) = Jµ ⊕ kW , we need to prove that

g⊗i ⊆ Jµ ⊕
∑

1⩽q⩽i

kW (q),

using induction on i ≥ 1 . For i = 1 , we have kW (1) = g . So g ⊆ Jµ⊕kW (1) . Suppose that the above equation
is true for n ≥ 1 . Since g⊗(i+1) =

∑
d≥0 gi+1,d , we just need to prove that

gi+1,d ⊆ Jµ ⊕
∑

1⩽q⩽i+1

kW (q),

for all d ≥ 0 . We use induction on d . For d = 0 , we have gi+1,0 = kW (i+1) . Suppose for l ≥ 0 we have

gi+1,l ⊆ Jµ ⊕
∑

1⩽q⩽i+1

kW (q).
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Let x = xn1 ⊗ xn2 ⊗ · · · ⊗ xni ∈ X⊗(i+1) ∩ qi+1,l+1 . Since l + 1 ≥ 1 , we can choose an integer 1 ≤ r ≤ i such
that nr ≤ nr+1 . Let

x′ = xn1
⊗ · · · ⊗ xnr+1

⊗ xnr
⊗ · · · ⊗ xni+1

be the pure tensor formed by interchanging xnr
by xnr+1

in x . Then

x′ ∈ gi+1,l ⊆ Jµ ⊕
∑

1⩽q⩽i+1

kW (q).

Since the definition of Jµ gives

x− x′ ≡ µi−1αT (xn1 ⊗ · · · ⊗ xni)⊗ [xnr , xnr+1 ]g ⊗ αT (xnr+2 ⊗ · · · ⊗ xni+1)(mod Jµ),

by the induction hypothesis on i , we have

x ∈ Jµ ⊕
∑

1⩽q⩽i+1

kW (q) ⊕
∑

1⩽q⩽i

kW (q).

So x is in Jµ ⊕
∑

1⩽q⩽i+1 kW
(q) . This proves that gi+1,l+1 ⊆ Jµ ⊕

∑
1⩽q⩽i+1 kW

(q) . Hence, g⊗i+1 ⊆

Jµ ⊕
∑

1⩽q⩽i+1 kW
(q) which completes the induction steps on i .

Now, we want to show that Jµ ∩ kW = 0 . Let S be an operator on T (g) such that

(i) S(t) = t, for all t ∈W.

(ii) if p ≥ 2, 1 ≤ s ≤ p− 1, and ns < ns+1, then (4.5)

S(xn1 ⊗ · · · ⊗ xns ⊗ xns+1 ⊗ · · · ⊗ xnp)

= S(xn1
⊗ · · · ⊗ xns+1

⊗ xns
⊗ · · · ⊗ xnp

)

+S(µp−2αT (xn1
⊗ · · · ⊗ xns−1

)⊗ [xns
, xns+1

]g ⊗ αT (xns+2
⊗ · · · ⊗ xnp

)).

We define S on
∑

1⩽q⩽i g
⊗q by induction on i . For i = 1 , we define S := Idg . Let n ≥ 2 and let S be an

operator on
∑

1⩽q⩽i g
⊗q satisfying (4.5) for all tensors of degree i . Note that g⊗i+1 =

∑
d⩽0 gi+1,d . For a pure

tensor
x = xn1 ⊗ xn2 ⊗ · · · ⊗ xni+1 ∈ X⊗i+1 ⊆ g⊗i+1,

we use induction again on d which is the index of x , in order to extend S to an operator on
∑

1⩽q⩽i+1 g
⊗q .

For d = 0 , define S(x) = x . For l ≥ 0 , suppose that S(x) has been defined for

x ∈
∑

1⩽p⩽l

gi+1,p.

Let x ∈ gi+1,l+1 . Let 1 ⩽ r ⩽ i be an integer such that nr < nr+1 . Then

S(x) := S(xn1
⊗ · · · ⊗ xnr+1

⊗ xnr
⊗ · · · ⊗ xni+1

)

+ S(µi−1αT (xn1
⊗ · · · ⊗ xnr−1

)⊗ [xnr
, xnr+1

]g ⊗ αT (xnr+2
⊗ · · · ⊗ xni+1

)).
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We should show that S is well-defined and it is independent of the choice of r . Therefore, let r′ be another
integer, 1 ≤ r′ ≤ i , such that nr′ < nr′+1 . Consider

u :=S(xn1
⊗ · · · ⊗ xnr+1

⊗ xnr
⊗ · · · ⊗ xni+1

)

+S(µi−1αT (xn1
⊗ · · · ⊗ xnr−1

)⊗ [xnr
, xnr+1

]g ⊗ αT (xnr+2
⊗ · · · ⊗ xni+1

)),

and

v :=S(xn1 ⊗ · · · ⊗ xnr′+1
⊗ xnr′ ⊗ · · · ⊗ xni+1)

+S(µi−1αT (xn1 ⊗ · · · ⊗ xnr′−1
)⊗ [xnr′ , xnr′+1

]g ⊗ αT (xnr′+2
⊗ · · · ⊗ xni+1)).

We check that u = v . There appear two cases:
Case 1: If |r − r′| ≥ 2 , without losing the generality, we assume r − r′ ≥ 2 . Since u, v ∈

∑
0⩽p⩽l gi+1,p +∑

1⩽q⩽i g
⊗q , we have

u =S(xn1 ⊗ · · · ⊗ xnr+1 ⊗ xnr ⊗ · · · ⊗ xnr′ ⊗ xnr′+1
⊗ · · · ⊗ xni+1)

+S(µi−1αT (xn1 ⊗ · · · ⊗ xnr−1)⊗ [xnr , xnr+1 ]g ⊗ αT (xnr+2 ⊗ · · · ⊗ xni+1))

=S(xn1 ⊗ · · · ⊗ xnr+1 ⊗ xnr ⊗ · · · ⊗ xni+1)

+S(µi−1αT (xn1 ⊗ · · · ⊗ xnr−1 ⊗ xnr ⊗ · · · )⊗ [xnr′ , xnr′+1
]g

⊗ αT (· · · ⊗ xnr+1))

+S(µi−1αT (xn1 ⊗ · · · )⊗ [xnr , xnr+1 ]g

⊗ αT (· · · ⊗ xnr′ ⊗ xnr′+1
⊗ · · · ⊗ xni+1)),

v =S(xn1 ⊗ · · · ⊗ xnr ⊗ xnr+1 ⊗ · · · ⊗ xnr′+1
⊗ xnr′ ⊗ · · · ⊗ xni+1)

+S(µi−1αT (xn1 ⊗ · · · ⊗ xnr ⊗ xnr−1 ⊗ · · · )⊗ [xnr′ , xnr′+1
]g

⊗ αT (xnr+2 ⊗ · · · ⊗ xni+1))

=S(xn1
⊗ · · · ⊗ xnr+1

⊗ xnr
⊗ · · · ⊗ xnr′+1

⊗ xnr′ ⊗ · · · ⊗ xni+1
)

+S(µi−1αT (xn1
⊗ · · · )⊗ [xnr

, xnr+1
]g

⊗ αT (· · · ⊗ xnr′+1
⊗ xnr′+1

⊗ xni+1
))

+S(µi−1αT (xn1
⊗ · · · ⊗ xnr

⊗ xnr+1
⊗ · · · )⊗ [xnr′ , xnr′+1

]g

⊗ αT (· · · ⊗ xni+1
)),

by the induction hypothesis. Now, since βg(X) = X and

xnr
̸= xnr+1

, xnr′ ̸= xnr′+1
,

we get αT (xnr
), αT (xnr+1

), αT (xnr′ ), αT (xnr′+1
) ∈ X and

αT (xnr ) ̸= αT (xnr+1), αT (xnr′ ) ̸= αT (xnr′+1
).
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This leads to four different cases among which we consider only the case of αT (xnr ) > αT (xnr+1) and
αT (xnr′ ) < αT (xnr′+1

) without loosing the generality. We obtain

S(µi−1αT (xn1
⊗ · · · ⊗ xnr+1

⊗ xnr
⊗ · · · )⊗ [xnr′ , xnr′+1

]g

⊗ αT (· · · ⊗ xni+1))

= S(µi−1αT (xn1
⊗ · · · ⊗ xnr

⊗ xnr+1
⊗ · · · )⊗ [xnr′ , xnr′+1

]g

⊗ αT (· · · ⊗ xni+1))

+ S(µ2i−3(xn1
⊗ · · · ⊗ [αT (xnr+1

), αT (xnr
)]g

⊗ · · · ⊗ [αT (xnr′ ), αT (xnr′+1
)]g ⊗ · · · ⊗ xni+1

)),

and

S(µi−1αT (xn1 ⊗ · · · )⊗ [xnr , xnr+1 ]g

⊗ αT (· · · ⊗ xnr′ ⊗ xnr′+1
⊗ · · · ⊗ xni+1))

=S(µi−1αT (xn1 ⊗ · · · )⊗ [xnr , xnr+1 ]g

⊗ αT (· · · ⊗ xnr′+1
⊗ xnr′ ⊗ · · · ⊗ xni+1))

+S(µ2i−3(xn1 ⊗ · · · ⊗ [αT (xnr ), αT (xnr+1)]g

⊗ · · · ⊗ [αT (xnr′ ), αT (xnr′+1
)]g ⊗ · · · ⊗ xni+1)).

If we combine the two former expressions for u , we get

u =S(xn1 ⊗ · · · ⊗ xnr+1 ⊗ xnr ⊗ · · · ⊗ xnr′+1
⊗ xnr′ ⊗ · · · ⊗ xni+1)

+S(µi−1αT (xn1 ⊗ · · · ⊗ xnr ⊗ xnr+1 ⊗ · · · )⊗ [xnr′ , xnr′+1
]g

⊗ αT (· · · ⊗ xni+1))

+S(µi−1αT (xn1 ⊗ · · · )⊗ [xnr , xnr+1 ]g

⊗ αT (· · · ⊗ xnr′+1
⊗ xnr′ ⊗ · · · ⊗ xni+1))

+S(µ2i−3(xn1 ⊗ · · · ⊗ [αT (xnr+1), αT (xnr )]g ⊗ · · ·

⊗ [αT (xnr′ ), αT (xnr′+1
)]g ⊗ · · · ⊗ xni+1))

+S(µ2i−3(xn1 ⊗ · · · ⊗ [αT (xnr ), αT (xnr+1)]g ⊗ · · ·

⊗ [αT (xnr′ ), αT (xnr′+1
)]g ⊗ · · · ⊗ xni+1))

=S(xn1
⊗ · · · ⊗ xnr+1

⊗ xnr
⊗ · · · ⊗ xnr′+1

⊗ xnr′ ⊗ · · ·xni+1
)

+S(µi−1αT (xn1
⊗ · · · ⊗ xnr

⊗ xnr+1
⊗ · · · )⊗ [xnr′ , xnr′+1

]g

⊗ αT (· · · ⊗ xni+1
))

+S(µi−1αT (xn1
⊗ · · · )⊗ [xnr

, xnr+1
]g

⊗ αT (· · · ⊗ xnr′+1
⊗ xnr′ ⊗ · · · ⊗ xni+1

)) = v,
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by the skew-symmetry condition of the bracket.
Case 2: If |r − r′| = 1 , once again, without loosing the generality, let us suppose r′ = r + 1 . This leads to
nr < ni+1 < ni+2 . We obtain

u =S(xn1
⊗ · · · ⊗ xnr+1

⊗ xnr
⊗ xnr+2

⊗ · · · ⊗ xni+1
)

+S(µi−1αT (xn1
⊗ · · · ⊗ xnr−1

)⊗ [xnr
, xnr+1

]g

⊗ αT (xnr+2
⊗ · · · ⊗ xni+1

))

=S(xn1
⊗ · · · ⊗ xnr+1

⊗ xnr+2
⊗ xnr

⊗ · · · ⊗ xni+1
)

+S(µi−1αT (xn1
⊗ · · · ⊗ xnr+1

)⊗ [xnr
, xnr+2

]g ⊗ αT (· · · ⊗ xni+1
))

+S(µi−1αT (xn1
⊗ · · · ⊗ xnr−1

)⊗ [xnr
, xnr+1

]g

⊗ αT (xnr+2
⊗ · · · ⊗ xni+1

))

=S(xn1
⊗ · · · ⊗ xnr+2

⊗ xnr+1
⊗ xnr

⊗ · · · ⊗ xni+1
)

+S(µi−1αT (xn1
⊗ · · · )⊗ [xnr+1

, xnr+2
]g ⊗ αT (xnr

⊗ · · · ⊗ xni+1
))

+S(µi−1αT (xn1
⊗ · · · ⊗ xnr+1

)⊗ [xnr
, xnr+2

]g ⊗ αT (· · · ⊗ xni+1
))

+S(µi−1αT (xn1
⊗ · · · ⊗ xnr−1

)⊗ [xnr
, xnr+1

]g

⊗ αT (xnr+2
⊗ · · · ⊗ xni+1

)),

and

v =S(xn1
⊗ · · · ⊗ xnr

⊗ xnr+2
⊗ xnr+1

⊗ · · · ⊗ xni+1
)

+S(µi−1αT (xn1
⊗ · · · ⊗ xnr

)⊗ [xnr+1
, xnr+2

]g ⊗ αT (· · · ⊗ xni+1
))

=S(xn1
⊗ · · · ⊗ xnr+2

⊗ xnr
⊗ xnr+1

⊗ · · · ⊗ xni+1
)

+S(µi−1αT (xn1
⊗ · · · )⊗ [xnr

, xnr+2
]g ⊗ αT (xnr+1

⊗ · · · ⊗ xni+1
))

+S(µi−1αT (xn1
⊗ · · · ⊗ xnr

)⊗ [xnr+1
, xnr+2

]g ⊗ αT (· · · ⊗ xni+1
))

=S(xn1 ⊗ · · · ⊗ xnr+2 ⊗ xnr+1 ⊗ xnr ⊗ · · · ⊗ xni+1)

+S(µi−1αT (xn1
⊗ · · · ⊗ xnr+2

)⊗ [xnr
, xnr+1

]g ⊗ αT (· · · ⊗ xni+1
))

+S(µi−1αT (xn1
⊗ · · · )⊗ [xnr

, xnr+2
]g ⊗ αT (xnr+1

⊗ · · · ⊗ xni+1
))

+S(µi−1αT (xn1
⊗ · · · ⊗ xnr

)⊗ [xnr+1
, xnr+2

]g ⊗ αT (· · · ⊗ xni+1
)).

Moreover, for any a < b , t1 ∈ g⊗m , t2 ∈ g⊗k , m+ k = i− 2 , we have

S(t1 ⊗ a⊗ b⊗ t2)− S(t1 ⊗ b⊗ a⊗ t2) = S(µm+kαT (t1)⊗ [a, b]⊗ αT (t2)).
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So the sum of the last three terms of the previous expression of u is

S(µi−1αT (xn1
⊗ · · · )⊗ [xnr+1

, xnr+2
]g ⊗ αT (xnr

⊗ · · · ⊗ xni+1
))

+S(µi−1αT (xn1
⊗ · · · ⊗ xnr+1

)⊗ [xnr
, xnr+2

]g ⊗ αT (· · · ⊗ xni+1
))

+S(µi−1αT (xn1
⊗ · · · ⊗ xnr−1

)⊗ [xnr
, xnr+1

]g ⊗ αT (xni+2
⊗ · · · ⊗ xni+1

))

=S(µi−1αT (xn1
⊗ · · · )⊗ αT (xnr

)⊗ [xnr+1
, xnr+2

]g ⊗ αT (· · · ⊗ xni+1
))

+S(µ2i−3(xn1
⊗ · · · ⊗ [[xnr+1

, xnr+2
]g, αT (xnr

)]g ⊗ · · · ⊗ xni+1
))

+S(µi−1αT (xn1
⊗ · · · )⊗ [xnr

, xnr+2
]g ⊗ αT (xnr+1

)⊗ αT (· · · ⊗ xni+1
))

+S(µ2i−3xn1
⊗ · · · ⊗ xnr−1

⊗ [αT (xnr+1
), [xnr

, xnr+2
]g]g ⊗ · · · ⊗ xni+1

)

+S(µi−1αT (xn1
⊗ · · · ⊗ xnr−1

)⊗ αT (xnr+2
)⊗ [xnr

, xnr+1
]g

⊗ αT (· · · ⊗ xni+1
))

+S(µ2i−3xn1
⊗ · · · ⊗ xnr−1

⊗ [[xnr
, xnr+1

]g, αT (xnr+2
)]g ⊗ · · · ⊗ xni+1

)

=S(µi−1αT (xn1
⊗ · · · ⊗ xnr

)⊗ [xnr+1
, xnr+2

]g ⊗ αT (· · · ⊗ xni+1
))

+S(µi−1αT (xn1
⊗ · · · )⊗ [xnr

, xnr+2
]g ⊗ αT (xni+1

⊗ · · · ⊗ xni+1
))

+S(µi−1αT (xn1
⊗ · · · ⊗ xnr+2

)⊗ [xnr
, xnr+1

]g ⊗ αT (· · · ⊗ xni+1
))

using the hom-Jacobi identity. Thus, we can obtain

u =S(xn1
⊗ · · · ⊗ xnr+2

⊗ xnr+1
⊗ xnr

⊗ · · · ⊗ xni+1
)

+S(µi−1αT (xn1
⊗ · · · ⊗ xnr

)⊗ [xnr+1
, xnr+2

]g ⊗ αT (· · · ⊗ xni+1
))

+S(µi−1αT (xn1
⊗ · · · )⊗ [xnr

, xnr+2
]g ⊗ αT (xni+1

⊗ · · · ⊗ xni+1
))

+S(µi−1αT (xn1
⊗ · · · ⊗ xnr+2

)⊗ [xnr
, xnr+1

]g ⊗ αT (· · · ⊗ xni+1
))

=v.

Now that u = v in either cases, let x ∈ Jg,β ∩ kW . Then S(x) = x and S(x) = 0 . Therefore x = 0 and we get
that Jg,β ∩ kW = 0 which completes the proof. 2

We are now ready to prove the Poincaré–Birkhoff–Witt theorem for involutive color hom-Lie algebras in
the second part of the next theorem.

Theorem 4.4 Let k be a field whose characteristic is not 2. Let g := (g, [, ]g, βg) be an involutive color hom-Lie
algebra on k . Let θ : T (g) → T (g) be as described in (4.2). Let I be the hom-ideal of T (g) generated by the
commutators defined in Theorem 3.4. Let J be as defined in (4.4). Then there is a well-ordered basis X of g

such that for
W =WX = {xi1 ⊗ · · · ⊗ xin |i1 ≥ · · · ≥ in, n ≥ 0},

the following statements hold.

(i) T (g) = J ⊕ kH,
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(ii) θ(W ) is a basis of U(g) .

Proof

(i) Let g+ and g− be the eigenspaces of 1 and –1 of g , respectively. Then we have the decomposition

g = g+ ⊕ g−.

Let B+ and B− be some basis for g+ and g− , respectively. There are two different cases:
If the cardinality of B+ is more than the cardinality of B− , fix an injection ι : B− → B+ . Then the
following set is a basis of g

X := {ι(x) + x, ι(x)− x|x ∈ B−} ∪ (B+ \B−),

and βg(X) = X . Let W be defined with a well order on X and choose µ = 1 in (4.4). Then we have

T (g) = Jg,β,1 ⊕ kW.

If the cardinality of B+ is not more than the cardinality of B+ , it suffices to assume γ := −βg and take
µ = −1 as it is in the last case.

(ii) follows directly from Theorem.4.3 and (i) .

2

5. Hom-Lie superalgebras case
The study of hom-Lie superalgebras has been widely in the center of interest these last years. The motivation
came from the generalization of Lie superalgebras, or in some cases, the generalization of hom-Lie algebras.
However, here, we deal with them as a special case of color hom-Lie algebras. One can simply put Γ =

Z2 in Definition 2.6 and define ε in such a way that ε(x, y) = (−1)|x||y| to get the following definition
[1, 7, 13, 14, 39, 68].

Definition 5.1 A hom-Lie superalgebra is a triple (g, [, ], α) consisting of a superspace g , a bilinear map
[, ] : g× g → g and a superspace homomorphism α : g → g , both of which are degree zero satisfying

1. [x, y] = −(−1)|x||y|[y, x],

2. (−1)|x||z|[α(x), [y, z]] + (−1)|y||x|[α(y), [z, x]] + (−1)|z||y|[α(z), [x, y]] = 0,

for all homogeneous elements x, y, z ∈ g .

In particular, one can easily recall from the first section, the notions of a multiplicative hom-Lie superalgebra,
a morphism of hom-Lie superalgebras, and a hom-associative superalgebra. Moreover, a hom-associative
superalgebra or a hom-Lie superalgebra is said to be involutive if α2 = id .

Again, as in the previous cases, a hom-associative superalgebra (V, µ, α) gives a hom-Lie superalgebra
by antisymmetrization. We denote this hom-Lie superalgebra again by (A, [, ]A, βA) , where βA = α , [x, y]A =

xy − yx , for all x, y ∈ A .
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Let (V, αV ) be an involutive hom-module. A free involutive hom-associative color algebra on V is an in-
volutive hom-associative super algebra (F (V ), ∗, αF ) together with a morphism of hom-modules jV : (V, αV ) →
(F (V ), αF ) with the property that, for any involutive hom-associative superalgebra (A, ., αA) together with a
morphism f : (V, αV ) → (A,αA) of hom-modules, there is a unique morphism f : (F (V ), ∗, αF ) → (A, ., αA)

of hom-associative superalgebras such that f = f ◦ jV .
The definition of the universal enveloping algebra, as can be predicted, is just a modification of the

Definition 3.2.

Definition 5.2 Let (g, [, ], α) be a hom-Lie superalgebra. A universal enveloping hom-associative superalgebra
of g is a hom-associative superalgebra

U(g) := (U(g), µU , αU ),

together with a morphism φg : g → U(g) of hom-Lie superalgebras such that for any hom-associative superalgebra
(A,µ, αA) and any hom-Lie superalgebra morphism ϕ : (g, [, ]g, βg) , there exists a unique morphism ϕ̄ : U(g → A)

of hom-associative superalgebras such that ϕ̄ ◦ φg = ϕ .

The following lemma shows an easy way to construct the universal algebra when we have an involutive
hom-Lie superalgebra.

Lemma 5.3 Let (g, [, ]g, βg) be an involutive hom-Lie superalgebra.

(i) Let (A, ·, αA) be a hom-associative algebra, f : (g, [, ]g, βg) → (A, [, ]A, βA) be a morphism of hom-Lie
superalgebras and B be the hom-associative subsuperalgebra of A generated by f(g) . Then B is involutive.

(ii) The universal enveloping hom-associative algebra (U(g), φg) of (g, [, ]g, βg) is involutive.

(iii) In order to verify the universal property of (U(g), φg) in Definition 5.2, we need to consider only the
involutive hom-associative algebras A := (A, ·A, αA) .

We can now give the construction of the universal enveloping hom-associative superalgebra of an involutive
hom-Lie superalgebra.

Theorem 5.4 Let g := (g, [, ]g, βg) be an involutive hom-Lie superalgebra. Let

T (g) := (T (g),⊙, αT )

be the free hom-associative algebra on the hom-module underlying g . Let I be the hom-ideal of T (g) generated
by the set

{a⊗ b− (−1)|a||b|b⊗ a− [a, b]} (5.1)

and let

U(g) =
T (g)

I

be the quotient hom-associative algebra. Let ψ be the composition of the natural inclusion i : g → T (g) with the
quotient map π : T (g) → U(g) . Then (U(g), ψ) is a universal enveloping hom-associative algebra of g . Also,
the universal enveloping hom-associative algebra of g is unique up to isomorphism.
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We can also have a Poincaré–Birkhoff–Witt-like theorem for involutive hom-Lie superalgebras as a special
case of color hom-Lie algebras, i.e. if g is a Lie superalgebra with an ordered basis X = {xn|n ∈ H} where H
is a well- and totally ordered set, let I be the ideal of the free associative algebra T (g) on g , which was given
in Theorem 5.4, so that U(g) is the universal enveloping algebra of g . We also suppose that g is an involutive
hom-Lie superalgebra with a basis X = {xn|n ∈ ω} for a well-ordered set ω . The next theorem, which is
a combination of theorems in the previous section, will help us give the Poincaré–Birkhoff–Witt theorem for
involutive hom-Lie superalgebras.

Theorem 5.5 Let g := (g, [, ]g, βg) be an involutive hom-Lie superalgebra such that βg(X) = X . Let
θ : T (g) → T (g) be as defined in (4.2), I be the hom-ideal of T (g) as defined in Theorem 5.4, let W be
like the one defined in (4.1) and let µ ∈ k be given. Moreover, let

Jµ :=
∑

n,m≥0

∑
a∈g⊗n

b∈g⊗m

∑
a,b∈g

(a⊗ (a⊗ b− (−1)|a||b|b⊗ a)⊗ b

− µn+mαT (a)⊗ [a, b]g ⊗ αT (b)), (5.2)

Then

(i) I =
∑

n,m≥0

∑
a,b∈g(g

⊗n ⊙ (a⊗ b− (−1)|a||b|b⊗ a− [a, b]g))⊙ g⊗m.

(ii) θ(I) = J

(iii) We can have the linear decomposition T (g) = Jµ ⊕ kW .

Finally, we give the Poincaré–Birkhoff–Witt theorem for involutive hom-Lie superalgebras.

Theorem 5.6 Let k be a field whose characteristic is not 2. Let g := (g, [, ]g, βg) be an involutive hom-Lie
superalgebra on k . Let θ : T (g) → T (g) be as described in (4.2). Let I be the hom-ideal of T (g) generated by
the commutators defined in Theorem 5.4. Let J be as defined in (5.2). Then there is a well-ordered basis X of
g such that for

W =WX = {xi1 ⊗ · · · ⊗ xin |i1 ≥ · · · ≥ in, n ≥ 0}

the following statements hold.

(i) T (g) = J ⊕ kH,

(ii) θ(W ) is a basis of U(g) .
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