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Abstract: It has been known that some numbers, including Bernoulli, Cauchy, and Euler numbers, have such corre-
sponding numbers in terms of determinants of Hessenberg matrices. There exist inversion relations between the original
numbers and the corresponding numbers. In this paper, we introduce the numbers related to harmonic numbers in de-
terminants. We also give several of their arithmetical and/or combinatorial properties and applications. These concepts
can be generalized in the case of hyperharmonic numbers.
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1. Introduction
It is known that Bernoulli numbers Bn , defined by

x

ex − 1
=

∞∑
n=0

Bn
xn

n!
,

have determinant expressions such as

Bn = (−1)nn!

∣∣∣∣∣∣∣∣∣∣∣
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...
... . . . 1 0
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2! 1
1

(n+1)!
1
n! · · · 1

3!
1
2!

∣∣∣∣∣∣∣∣∣∣∣
(1)

([6, p. 53]).
Cauchy numbers cn , defined by

x

ln(1 + x)
=

∞∑
n=0

cn
xn

n!
,
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also have determinant expressions such as

cn = n!

∣∣∣∣∣∣∣∣∣∣∣
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n · · · 1

3
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∣∣∣∣∣∣∣∣∣∣∣
([6, p. 50]).

Similarly, Euler numbers En , defined by

1

coshx
=

∞∑
n=0

En
xn

n!
,

have determinant expressions such as

E2n = (−1)n(2n)!

∣∣∣∣∣∣∣∣∣∣∣

1
2! 1 0
1
4!

1
2!

...
... . . . 1 0

1
(2n−2)!

1
(2n−4)! · · · 1

2! 1
1

(2n)!
1

(2n−2)! · · · 1
4!

1
2!

∣∣∣∣∣∣∣∣∣∣∣
(cf. [6, p. 52]). Note that En = 0 if n is odd.

In the aspect of determinants of the (lower) Hessenberg matrices, there exist the inversion numbers. See
the later section about Trudi’s formula.

(−1)nBn

n!
⇐⇒ 1

(n+ 1)!

cn
n!

⇐⇒ 1

n+ 1

(−1)nE2n

(2n)!
⇐⇒ 1

(2n)!

For example, (−1)nBn/n! can be expressed in terms of 1/(k + 1)! (k = 1, 2, . . . , n) in the determinant and
vice versa. In addition, it is known that some hypergeometric numbers also have the corresponding inversion
numbers (see, e.g., [12]). Recently it was proved that the complementary Euler numbers ([8]) and Lehmer’s
generalized Euler numbers ([10, 14]) also have the corresponding inversion numbers.

Let Hn = 1+ 1
2 + · · ·+ 1

n be harmonic numbers. In this paper, we introduce the determinantal harmonic
numbers hn , so that the harmonic numbers Hn appear in determinant expressions. Namely, we have the
corresponding inversion relation:

Hn ⇐⇒ hn .

We give several of their arithmetical and/or combinatorial properties and applications. These concepts can

be generalized in the case of hyperharmonic numbers H
(r)
n , defined by H

(0)
n = 1

n and H
(r)
n =

∑n
k=1 H

(r−1)
k

(r > 0).
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2. Definitions and preliminary properties

For nonnegative integers n , define determinantal harmonic numbers hn by

1 + x

1 + x− ln(1 + x)
=

∞∑
n=0

hnx
n (|x| < 1) . (2)

We have the list of the numbers hn .

n 0 1 2 3 4 5 6 7 8 9 10
hn 1 1 − 1

2 − 1
6

1
3 − 2

15 − 23
360

241
2520 − 47

1680 − 403
15120

139
4725

Definition (2) may be obvious or artificial for readers with different backgrounds. However, there are
motivations from combinatorics and in particular graph theory. In 1989, Cameron [3] considered the operator
A defined on the set of sequences of nonnegative integers as follows: for x = {xn}n≥1 and z = {zn}n≥1 , set
Ax = z , where

1 +

∞∑
n=1

znt
n =

(
1−

∞∑
n=1

xnt
n

)−1

. (3)

The operator A also plays an important role for free associative (noncommutative) algebras. More motivations
and background together with many concrete examples (in particular, for aspects of graph theory) for this
operator can be seen in [3].

There is a recurrence relation for determinantal harmonic numbers.

Lemma 1 For any integer n ≥ 1 ,

hn =

n−1∑
k=0

(−1)n−k−1Hn−khk

with h0 = 1 .

Proof [Proof of Lemma 1] Notice that the generating function of harmonic numbers Hn is given by

∞∑
n=1

Hnz
n = − ln(1− z)

1− z
.

By definition (2),

1 =

( ∞∑
n=0

hnx
n

)(
1− ln(1 + x)

1 + x

)

=

( ∞∑
n=0

hnx
n

)(
1 +

∞∑
l=1

(−1)lHlx
l

)

=

∞∑
n=0

hnx
n +

∞∑
n=1

n−1∑
k=0

hk(−1)n−kHn−kx
n .
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Comparing the coefficients on both sides, we have h0 = 1 and for n ≥ 1

hn +

n−1∑
k=0

(−1)n−kHn−khk = 0 .

2

The determinantal harmonic numbers are expressed in terms of harmonic numbers in the determinant.

Theorem 1 For any integer n ≥ 1 ,

hn =

∣∣∣∣∣∣∣∣∣∣∣

H1 1 0
H2 H1

...
... . . . 1 0

Hn−1 Hn−2 · · · H1 1
Hn Hn−1 · · · H2 H1

∣∣∣∣∣∣∣∣∣∣∣
. (4)

Proof [Proof of Theorem 1] For n = 1 , h1 = 1 = H1 . Assume that the result is valid up to n− 1 . By Lemma
1, expanding at the first row of the determinant, we have

H1hn−1 −

∣∣∣∣∣∣∣∣∣∣∣

H2 1 0
H3 H1

...
... . . . 1 0

Hn−1 Hn−3 · · · H1 1
Hn Hn−2 · · · H2 H1

∣∣∣∣∣∣∣∣∣∣∣
= H1hn−1 −H2hn−2 + · · ·+ (−1)n−2

∣∣∣∣ Hn−1 1
Hn H1

∣∣∣∣
=

n−1∑
k=0

(−1)n−k−1Hn−khk = hn .

2

The determinantal harmonic numbers have an explicit expression.

Theorem 2 For any integer n ≥ 1 ,

hn =

n∑
k=1

(−1)n−k
∑

i1+···+ik=n

i1,...,ik≥1

Hi1 · · ·Hik .

Proof [Proof of Theorem 2] When n = 1 , it is easy to see that h1 = H1 . Assume that the result is valid up
to n− 1 . Then by Lemma 1, we have
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hn =

n−1∑
l=0

(−1)n−l−1Hn−lhl

= (−1)n−1Hn

+

n−1∑
l=1

(−1)n−l−1Hn−l

l∑
k=1

(−1)l−k
∑

i1+···+ik=l

i1,...,ik≥1

Hi1 · · ·Hik

= (−1)n−1Hn

+

n−1∑
k=1

n−1∑
l=k

(−1)n−k−1Hn−l

∑
i1+···+ik=l

i1,...,ik≥1

Hi1 · · ·Hik

= (−1)n−1Hn

+

n∑
k=2

n−1∑
l=k−1

(−1)n−kHn−l

∑
i1+···+ik−1=l

i1,...,ik−1≥1

Hi1 · · ·Hik−1

= (−1)n−1Hn

+

n∑
k=2

(−1)n−k
∑

i1+···+ik−1=l

i1,...,ik≥1

Hi1 · · ·Hik (n− l = ik)

=

n∑
k=1

(−1)n−k
∑

i1+···+ik=n

i1,...,ik≥1

Hi1 · · ·Hik .

2

3. Applications by Trudi’s formula
Such forms of determinants are very useful, though there are many expressions for Bernoulli, Euler, and other
numbers in determinants.

We shall use Trudi’s formula to obtain different explicit expressions and inversion relations for the numbers
hn .

Lemma 2 For a positive integer n , we have∣∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 · · ·

a2 a1
. . . ...

...
... . . . . . . 0

an−1 · · · a1 a0
an an−1 · · · a2 a1

∣∣∣∣∣∣∣∣∣∣∣∣
=

∑
t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)
(−a0)

n−t1−···−tnat11 at22 · · · atnn ,

where
(
t1+···+tn
t1,...,tn

)
= (t1+···+tn)!

t1!···tn! are the multinomial coefficients.

This relation is known as Trudi’s formula [17, Vol. 3, p. 214] [21] and the case a0 = 1 of this formula is
known as Brioschi’s formula [2] [17, Vol. 3, pp. 208–209].

344



KOMATSU and PIZARRO-MADARIAGA/Turk J Math

In addition, there exists the following inversion formula (see, e.g., [11]), which is based upon the following
relation:

n∑
k=0

(−1)n−kαkD(n− k) = 0 (n ≥ 1) .

Lemma 3 If {αn}n≥0 is a sequence defined by α0 = 1 and

αn =

∣∣∣∣∣∣∣∣∣∣
D(1) 1

D(2)
. . . . . .

... . . . . . . 1
D(n) · · · D(2) D(1)

∣∣∣∣∣∣∣∣∣∣
, then D(n) =

∣∣∣∣∣∣∣∣∣∣
α1 1

α2
. . . . . .

... . . . . . . 1
αn · · · α2 α1

∣∣∣∣∣∣∣∣∣∣
.

By Trudi’s formula, it is possible to give the combinatorial expression

αn =
∑

t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)
(−1)n−t1−···−tnD(1)t1D(2)t2 · · ·D(n)tn .

By applying these lemmas to Theorem 1, we obtain an explicit expression for shifted harmonic numbers.

Theorem 3 For n ≥ 1 , we have

hn =
∑

t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)
(−1)n−t1−···−tnHt1

1 · · ·Htn
n .

By applying the inversion relation in Lemma 3 to Theorem 1, we have the following.

Theorem 4 For n ≥ 1 , we have

Hn =

∣∣∣∣∣∣∣∣∣∣∣

h1 1 0
h2 h1

...
... . . . 1 0

hn−1 hn−2 · · · h1 1
hn hn−1 · · · h2 h1

∣∣∣∣∣∣∣∣∣∣∣
.

Therefore, we also have the inversion relations in Theorem 2 and Theorem 3.

Theorem 5 For n ≥ 1 , we have

Hn =

n∑
k=1

(−1)n−k
∑

i1+···+ik=n

i1,...,ik≥1

hi1 · · ·hik

=
∑

t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)
(−1)n−t1−···−tnht1

1 · · ·htn
n .
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4. Convolution identities
There are many identities involving harmonic numbers (see, e.g., [4, 20] and references therein). In particular,
the sums of products of two harmonic numbers (cf. [20, p. 861]) are given as follows:

n∑
k=0

HkHn−k = (n+ 1)
(
(Hn+1 − 1)2 −H(2)

n+1 + 1
)
,

where

H(r)
n =

n∑
k=1

1

kr

are the generalized harmonic numbers with Hn = H(1)
n . The sums of products have been extensively studied

for many numbers, including Bernoulli, Euler, Stirling, and Cauchy and their generalized numbers, by many
authors. The famous Euler’s formula can be written as

n∑
k=0

(
n

k

)
BkBn−k = −nBn−1 − (n− 1)Bn (n ≥ 1) ,

where Bn are the Bernoulli numbers, defined by

x

ex − 1
=

∞∑
n=0

Bn
xn

n!
,

and this formula has been generalized in various ways (see, e.g., [1]).
The structure of the determinantal harmonic numbers is not as simple as that of harmonic numbers.

Nevertheless, we can find the sums of products of two determinantal harmonic numbers.

Theorem 6 For n ≥ 0 ,

n∑
k=0

hkhn−k = −(n+ 2)hn+2 − (2n+ 1)hn+1 − (n− 1)hn .

Proof Put

h(x) :=

∞∑
n=0

hnx
n =

(
1− ln(1 + x)

1 + x

)−1

.

Then

h′(x) = h(x)2
(

1

(1 + x)2
− ln(1 + x)

(1 + x)2

)

=
h(x)2

(1 + x)2
− h(x)2

1 + x

(
1− h(x)−1

)
= − x

(1 + x)2
h(x)2 +

h(x)

1 + x
.
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Hence,

h(x)2 = − (1 + x)2

x
h′(x) +

1 + x

x
h(x)

= −
(
1

x
+ 2 + x

) ∞∑
n=1

nhnx
n−1 +

(
1

x
+ 1

) ∞∑
n=0

hnx
n

= −
∞∑

n=−1

(n+ 2)hn+2x
n − 2

∞∑
n=0

(n+ 1)hn+1x
n −

∞∑
n=1

nhnx
n

+

∞∑
n=−1

hn+1x
n +

∞∑
n=0

hnx
n

=

∞∑
n=0

(
−(n+ 2)hn+2 − (2n+ 1)hn+1 − (n− 1)hn

)
xn .

On the other hand,

h(x)2 =

∞∑
n=0

n∑
k=0

hkhn−kx
n .

Comparing the coefficients, we get the result. 2

5. Hyperharmonic numbers

The nth hyperharmonic number of order r , denoted by H
(r)
n , is recursively defined by the following relations:

H(0)
n =

1

n

and

H(r)
n =

n∑
k=1

H
(r−1)
k (r > 0) . (5)

The generating function of hyperharmonic numbers is given by

∞∑
n=1

H(r)
n zn = − ln(1− z)

(1− z)r
.

In [15], the exponential generating function of hyperharmonic numbers is given. In [16], it is shown that the
sum of the series formed by hyperharmonic numbers can be expressed in terms of the Riemann zeta function.

When r = 1 , Hn = H
(1)
n are the original Harmonic numbers.

For nonnegative integers n , define determinantal hyperharmonic numbers h
(r)
n by

(1 + x)r

(1 + x)r − ln(1 + x)
=

∞∑
n=0

h(r)
n xn (|x| < 1) . (6)

We have the list of the numbers h
(r)
n .
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n 0 1 2 3 4 5 6 7 8 9 10

h
(0)
n 1 1 1

2
1
3

1
6

7
60

19
360

3
70

5
336

13
756

199
75600

hn 1 1 − 1
2

− 1
6

1
3

− 2
15

− 23
360

241
2520

− 47
1680

− 403
15120

139
4725

h
(2)
n 1 1 − 3

2
1
3

2 − 61
20

41
72

2687
630

− 4537
720

7531
7560

17127
18900

h
(3)
n 1 1 − 5

2
11
6

25
6

− 1971
15

4003
360

5591
280

− 118169
1680

1010273
15120

7085539
75600

h
(4)
n 1 1 − 7

2
13
3

35
6

− 2033
60

18811
360

226511
630

− 552871
1680

2284103
3780

1322737
10800

h
(5)
n 1 1 − 9

2
47
6

6 − 339
5

55849
360

10567
2520

− 1001705
1008

8674609
3024

− 33243599
18900

When r = 0 , the sequence of coefficients of the exponential generating function is given by

{n!h(0)
n }∞n=0 = 1, 1, 1, 2, 4, 14, 38, 216, 600, 6240, 9552, 319296,−519312, . . .

from [19, A006252] and also studied in [18, p. 9]. It can be expressed as

n!h(0)
n =

n∑
k=0

(−1)n−kk!
[n
k

]
,

where
[
n
k

]
denotes the (unsigned) Stirling numbers of the first kind. Notice that Fubini numbers (or ordered

Bell numbers) Fn are given by

Fn =

n∑
k=0

k!
{n
k

}
,

where
{

n
k

}
denotes the Stirling numbers of the second kind.

Hyperharmonic numbers of order r can be obtained from those of order r − 1 , as seen in (5). Though

there does not exist a similar simpler relation between h
(r)
n and h

(r−1)
n , we can see some relations for small n .

Since

h
(r)
1 = 1 ,

h
(r)
2 = −2r − 1

2
,

h
(r)
3 =

3r2 − 6r + 2

6
,

h
(r)
4 = − (2r − 1)(r2 − 7r + 2)

6
= −2r3 − 15r2 + 11r − 2

6
,

we have

h
(r)
2 = −h

(r−1)
1 + h

(r−1)
2 ,

h
(r)
3 = −h

(r−1)
2 + h

(r−1)
3 ,

h
(r)
4 = 4− 2h

(r−2)
3 + h

(r−1)
4 .

We also have

h(0)
n = h(1)

n = 1, h(2)
n = −2n− 1

1
,

h(3)
n =

3n2 − 6n+ 2

6
, h(5)

n = − (2n− 1)(n2 − 7n+ 2

2
.
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Similarly to the results of harmonic numbers, we can obtain some results for hyperharmonic numbers.

Lemma 4 For any integer n ≥ 1 ,

h(r)
n =

n−1∑
k=0

(−1)n−k−1H
(r)
n−kh

(r)
k

with h
(r)
0 = 1 .

Theorem 7 For any integer n ≥ 1 ,

h(r)
n =

∣∣∣∣∣∣∣∣∣∣∣∣

H
(r)
1 1 0

H
(r)
2 H

(r)
1

...
... . . . 1 0

H
(r)
n−1 H

(r)
n−2 · · · H

(r)
1 1

H
(r)
n H

(r)
n−1 · · · H

(r)
2 H

(r)
1

∣∣∣∣∣∣∣∣∣∣∣∣
. (7)

Theorem 8 For any integer n ≥ 1 ,

h(r)
n =

n∑
k=1

(−1)n−k
∑

i1+···+ik=n

i1,...,ik≥1

H
(r)
i1

· · ·H(r)
ik

=
∑

t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)
(−1)n−t1−···−tn

(
H

(r)
1

)t1 · · · (H(r)
n

)tn
.

Theorem 9 For n ≥ 1 , we have

H(r)
n =

∣∣∣∣∣∣∣∣∣∣∣∣

h
(r)
1 1 0

h
(r)
2 h

(r)
1

...
... . . . 1 0

h
(r)
n−1 h

(r)
n−2 · · · h

(r)
1 1

h
(r)
n h

(r)
n−1 · · · h

(r)
2 h

(r)
1

∣∣∣∣∣∣∣∣∣∣∣∣
.

Theorem 10 For n ≥ 1 , we have

H(r)
n =

n∑
k=1

(−1)n−k
∑

i1+···+ik=n

i1,...,ik≥1

h
(r)
i1

· · ·h(r)
ik

=
∑

t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)
(−1)n−t1−···−tn

(
h
(r)
1

)t1 · · · (h(r)
n

)tn
.
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6. Shifted determinantal hyperharmonic numbers

For m,n, r ≥ 0 , define the shifted determinantal hyperharmonic numbers h
(r)
n,m by

∞∑
n=0

h(r)
n,mxn

=

1 +
1

(−x)m−1(1 + x)r
(
− ln(1 + x) + Fm−1(x)

)
− x

r∑
j=1

H
(j)
m−1

(1 + x)r−j+1

−1

, (8)

where

Fm(z) = z − z2

2
+ · · ·+ (−1)m−1zm

m

is the partial summation of ln(1 + z) . Fm(z) has an important role to introduce incomplete Cauchy numbers

[9]. When r = 1 , hn,m = h
(1)
n,m are the shifted determinantal harmonic numbers. When m = 1 , h(r)

n = h
(r)
n,1 are

the determinantal harmonic numbers. When m = r = 1 , hn = h
(1)
n,1 are the original determinantal harmonic

numbers.
Then the fundamental determinantal results are obtained by the recurrence relation.

Lemma 5 For m, r ≥ 0 , we have

h(r)
n,m =

n−1∑
k=0

(−1)n−kH
(r)
m+n−k−1h

(r)
k,m (n ≥ 1) (9)

and h
(r)
0,m = 1 .

Proof Since
∞∑

n=1

Hm+n−1z
n =

∞∑
n=1

m+n−1∑
k=1

zn

k

=
1

(1− z)zm−1
(− ln(1− z) + Fm−1(−z)) +

zHm−1

1− z
,

we have

1 =

( ∞∑
n=0

hn,mxn

)

×
(
1 +

1

(−x)m−1(1 + x)

(
− ln(1 + x) + Fm−1(x)

)
− xHm−1

1 + x

)

=

( ∞∑
n=0

hn,mxn

)(
1 +

∞∑
l=1

(−1)lHm+l−1x
l

)

=

∞∑
n=0

hn,mxn +

∞∑
n=1

n−1∑
k=0

(−1)n−kHm+n−k−1hk,mxn .
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By comparing the coefficients on both sides, we have

hn,m =

n−1∑
k=0

(−1)n−kHm+n−k−1hk,m (n ≥ 1) (10)

and h0,m = 1 .
By induction on r , together with the definition of hyperharmonic numbers in (5), we can prove that

∞∑
n=1

H
(r)
m+n−1z

n =
1

(1− z)rzm−1
(− ln(1− z) + Fm−1(−z)) + z

r∑
j=1

H
(j)
m−1

(1− z)r−j+1
.

This is also valid for r = 0 . Then, analogous to (10), we obtain the desired result. 2

By Lemma 5, in view of Trudi’s formula, we obtain the determinantal results with their inversion forms.
The proof is similar to that of Theorem 1.

Theorem 11 For m,n ≥ 1 and r ≥ 0 , we have

h(r)
n,m =

∣∣∣∣∣∣∣∣∣∣∣∣

H
(r)
m 1 0

H
(r)
m+1 H

(r)
m

...
... . . . 1 0

H
(r)
m+n−2 H

(r)
m+n−3 · · · H

(r)
m 1

H
(r)
m+n−1 H

(r)
m+n−2 · · · H

(r)
m+1 H

(r)
m

∣∣∣∣∣∣∣∣∣∣∣∣
and

H
(r)
m+n−1 =

∣∣∣∣∣∣∣∣∣∣∣∣

h
(r)
1,m 1 0

h
(r)
2,m h

(r)
1,m

...
... . . . 1 0

h
(r)
n−1,m h

(r)
n−2,m · · · h

(r)
1,m 1

h
(r)
n,m h

(r)
n−1,m · · · h

(r)
2,m h

(r)
1,m

∣∣∣∣∣∣∣∣∣∣∣∣
.

We have two kinds of explicit expressions of shifted determinantal hyperharmonic numbers in terms
of hyperharmonic numbers. The shifted determinantal hyperharmonic numbers can be expressed explicitly
together with Trudi’s formula. There are several ways to prove them, one of which is similar to the proof
in 2. Another proof using the Hasse–Teichmüller derivative can be seen in [12]. Once shifted determinantal
hyperharmonic numbers can be expressed in terms of hyperharmonic numbers, hyperharmonic numbers can be
expressed in terms of shifted determinantal hyperharmonic numbers because they have the inversion relations
with each other.

Theorem 12 For m,n ≥ 1 and r ≥ 0 ,

h(r)
n,m =

n∑
k=1

(−1)n−k
∑

i1+···+ik=n

i1,...,ik≥1

H
(r)
m+i1−1 · · ·H

(r)
m+ik−1

=
∑

t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)
(−1)n−t1−···−tn

(
H(r)

m

)t1 · · · (H(r)
m+n−1

)tn
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and

H
(r)
m+n−1 =

n∑
k=1

(−1)n−k
∑

i1+···+ik=n

i1,...,ik≥1

h
(r)
i1,m

· · ·h(r)
ik,m

=
∑

t1+2t2+···+ntn=n

(
t1 + · · ·+ tn
t1, . . . , tn

)
(−1)n−t1−···−tn

(
h
(r)
1,m

)t1 · · · (h(r)
n,m

)tn
.

7. Examples
Set m = 5 and r = 1 . Then

(
1− 1

(−x)4(1 + x)

(
− ln(1 + x) + F4(x)

)
− xH4

1 + x

)−1

= 1 +
137

60
x+

9949

3600
x2 +

5003111

1512000
x3 +

361705747

90720000
x4 +

26049679919

5443200000
x5 + · · · .

We can get ∣∣∣∣ H5 1
H6 H5

∣∣∣∣ = ∣∣∣∣ 137
60 1
49
20

137
60

∣∣∣∣ = 9949

3600
= h2,5

and ∣∣∣∣ h1,5 1
h1,6 h1,5

∣∣∣∣ = ∣∣∣∣ 137
60 1

9949
3600

137
60

∣∣∣∣ = 49

20
= H6 ,

∣∣∣∣∣∣
H5 1 0
H6 H5 1
H7 H6 H5

∣∣∣∣∣∣ =
∣∣∣∣∣∣

137
60 1 0
49
20

137
60 1

363
140

49
20

137
60

∣∣∣∣∣∣ = 5003111

1512000
= h3,5

and ∣∣∣∣∣∣
h1,5 1 0
h1,6 h1,5 1
h1,7 h1,6 h1,5

∣∣∣∣∣∣ =
∣∣∣∣∣∣

137
60 1 0

9949
3600

137
60 1

5003111
1512000

9949
3600

137
60

∣∣∣∣∣∣ = 363

140
= H7 .

Set m = 5 , n = 2 , and r = 1 . Since (i1) = (2) and (i1, i2) = (1, 1) satisfy the condition i1+ · · ·+ ik = 2

with i1, . . . , ik ≥ 1 for k ≥ 1 , we get

−H6 + (H5)
2 =

9949

3600
= h2,5 .

Since {(t1, t2)|t1 + 2t2 = 2, t1, t2 ≥ 0} = (2, 0) , (0, 1) , we get

2!

2!
(−1)2−2(H5)

2 +
2!

1!1!
(−1)2−1H6 =

9949

3600
= h2,5 .

On the other hand, we get

−h1,6 + (h1,5)
2 =

49

20
= H6
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and
2!

2!
(−1)2−2(h1,5)

2 +
2!

1!1!
(−1)2−1h1,6 =

49

20
= H6 .

Set m = 5 , n = 3 , and r = 1 . Since (i1) = (3) , (i1, i2) = (1, 2), (2, 1) , and (i1, i2, i3) = (1, 1, 1) satisfy the
condition i1 + · · ·+ ik = 3 with i1, . . . , ik ≥ 1 for k ≥ 1 , we get

H7 − 2H5H6 + (H5)
3 =

5003111

1512000
= h3,5 .

Since {(t1, t2, t3)|t1 + 2t2 + 3t3 = 3, t1, t2, t3 ≥ 0} = (3, 0, 0) , (1, 1, 0) , (0, 0, 1) , we get

3!

3!
(−1)3−3(H5)

3 +
2!

1!1!
(−1)3−1−1H5H6 +

1!

1!
(−1)3−1H7 =

5003111

1512000
= h3,5 .

On the other hand, we get

h1,7 − 2h1,5h1,6 + (h1,5)
3 =

363

140
= H7

and
3!

3!
(−1)3−3(h1,5)

3 +
2!

1!1!
(−1)3−1−1h1,5h1,6 +

1!

1!
(−1)3−1h1,7 =

363

140
= H7 .
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