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Abstract: A restraint r on a graph G is a function that assigns each vertex of the graph a finite subset of N . For each
vertex v of the graph, r(v) is called the set of colors forbidden at v . A proper coloring of G is said to be permitted
by a given restraint r if each vertex v of the graph receives a color that is not from its set of forbidden colors r(v) .
The restrained chromatic function, denoted by πr(G, x) , is a function whose evaluations at integer x values count the
number of proper x -colorings of the graph G permitted by the restraint r and this function is known to be a polynomial
function of x for large enough x . The restrained chromatic function πr(G, x) is a generalization of the well-known
chromatic polynomial π(G, x) , as πr(G, x) = π(G, x) if r(v) = ∅ for each vertex v of the graph. Whitney’s celebrated
broken cycle theorem gives a combinatorial interpretation of the coefficients of the chromatic polynomial via certain
subgraphs (the so-called broken cycles). We provide an extension of this result by finding combinatorial interpretations
of the coefficients of the restrained chromatic function.
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1. Introduction
In this article all graphs are finite, simple, and undirected. Given a graph G , let V (G) be the vertex set of G

and E(G) be the edge set of G . The order and size of G are |V (G)| and |E(G)| , respectively. For a positive
integer x , an x− coloring of G is a function c : V (G) → {1, . . . , x} and it is called a proper x− coloring of G

if c(u) ̸= c(v) for every edge uv in E(G) . The well-known chromatic polynomial of G , denoted by π(G, x) , is
the polynomial whose evaluations at positive integer x -values count the number of proper x -colorings of G .

In generalized graph coloring problems, each vertex has a list of available or forbidden colors and the
goal is to properly color the graph obeying the restrictions. They arise naturally in the regular graph coloring
problem because the assignment of some color to each vertex imposes restrictions on the neighbor vertices.
Such problems are also useful tools in modeling real-world problems such as scheduling and timetabling [13]
and they have been extensively studied in the literature; see, for example, [1, 19]. Here we shall focus on
restrained colorings . In a restrained coloring, there is a restraint function r that assigns each vertex of the
graph a finite subset of N . For each vertex v of the graph, r(v) is called the set of colors forbidden at v . An
x -coloring c of a graph G is said to be permitted by the restraint r if c(v) /∈ r(v) for every vertex v in V (G) .
The study of restrained colorings proved useful in the construction of critical graphs [17] and recently several
extremal problems on this topic were studied in [4, 5, 11].
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Counting the number of generalized colorings has also been studied in a number of settings. Enumeration
of list colorings was studied and relations to the chromatic polynomial were investigated in [10, 16, 20]. Recently,
Knox and Mohar (arXiv:1708.01781) proved a long-standing conjecture on the chromatic polynomial by studying
a list coloring function. Given a positive integer x , let πr(G, x) be the number of proper x -colorings of the
graph G permitted by restraint r . It is known that πr(G, x) is a polynomial function of x when x is large
enough, or more precisely, when x > max∪v∈V (G)r(v) (see Theorem 4.1.2, p. 102 in [11]). Furthermore,
πr(G, x) is a monic polynomial of degree |V (G)| with integer coefficients that alternate in sign [11]. We call
πr(G, x) the restraint chromatic function of G with respect to the restraint r . It is clear that the restraint
chromatic function generalizes the chromatic polynomial because πr(G, x) = π(G, x) if r(v) = ∅ for every
vertex v of G .

Since the restrained chromatic function πr(G, x) turns out to be a polynomial function of x for large
enough x , a natural problem is to find a combinatorial interpretation of the coefficients and such interpretation
is of crucial importance to study this function. A celebrated result due to Whitney gives a combinatorial
interpretation of the coefficients of the chromatic polynomial via the so-called broken cycles (Theorem 2.1). Our
main result (Theorem 2.2) generalizes this result to a restrained chromatic function by providing a combinatorial
interpretation for its coefficients.

2. The broken cycle theorem

A subgraph H of a graph G is called a spanning subgraph of G if V (H) = V (G) . A spanning forest of a
graph G is a spanning subgraph that is a forest. Given a graph G , let C(G) denote the family of all connected
components of G . Given a set S and an integer k , let

(
A
k

)
denote the family of all subsets of A with size k .

Also, let Mr(G) be equal to max
∪

v∈V (G) r(v) if it is nonempty and 0 otherwise.

Let f be a labeling of the edges of the graph G such that f : E(G) → {1, 2, . . . , |E(G)|} is a bijection.
A path P in the graph G is called a broken cyclewith respect to f if P is obtained from a cycle by removing
the edge of the maximum label in the cycle. In other words, there is a cycle C and an edge e ∈ E(C)

such that P = C − e and f(e) > f(e′) for every edge e′ in E(C) \ {e} ; see the Figure. The family of
subgraphs of a graph that do not contain any broken cycle forms an abstract simplicial complex, known as the
broken circuit complex . Such a complex has received considerable attention and has been investigated from
combinatorial algebraic, topological, and geometric points of view [2, 6, 7, 14, 15].
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Figure. A graph G with an edge labeling f and its broken cycles B1 , B2 , and B3 with respect to f .

Theorem 2.1 [21] [Whitney’s broken cycle theorem] Let G be a graph on n vertices and m edges, and
f : E(G) → {1, 2, . . . ,m} be a bijection. Then
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π(G, x) =

n∑
k=1

(−1)kak(G)xn−k,

where ak(G) is the number of spanning forests of G with size k that do not contain any broken cycle with
respect to f .

Whitney’s broken cycle theorem is a classical result in the theory of chromatic polynomials and several
generalizations of this theorem were obtained via various other structures, such as lattices [3], two-variable
generalization of the chromatic polynomial [8], matroids (Grinberg, arXiv:1604.03063), and hypergraphs [18];
see [9] for more related work. Our main result is the following, which generalizes Theorem 2.1 via restrained
colorings.

Theorem 2.2 Let G be a graph on n vertices, r be a restraint on G , and x > Mr(G) . Then,

πr(G, x) =

n∑
k=0

(−1)k ak(G, r)xn−k

and

ak(G, r) =

k∑
t=0

∑
H∈BCt

∑
A∈(C(H)

k−t )

∏
C∈A

|
∪

v∈V (C)

r(v)|,

where BCt is the family of spanning forests of G with size t that do not contain any broken cycle with respect
to f .

Observe that Theorem 2.2 reduces to Theorem 2.1 when r(v) = ∅ for every vertex v of G . In that case,
|
∪

v∈V (C) r(v)| = 0 in the formula for ak(G, r) . Note that
∏

C∈A 0 is 1 if A = ∅ and it is 0 otherwise. Also,

A = ∅ if and only if t = k . Thus, when r(v) = ∅ for each vertex v , ak(G, r) =
∑

H∈BCk 1 , which is precisely
the number of spanning forests of size k that do not contain any broken cycle.

The broken cycle interpretation of the coefficients has been invaluable in the study of chromatic polyno-
mials. It proved to be a useful tool to understand significant properties of chromatic polynomials. For example,
a long-standing log-concavity conjecture was settled by applying algebro-geometric tools to the broken circuit
complex [12]. The restrained chromatic function has not been studied as much as the chromatic polynomial and
it has not been well understood yet. There are various aspects of this function to be explored and we believe
that Theorem 2.2 may provide insights into a better understanding of the properties of the restrained chromatic
function.

3. Proof of the main result
Lemma 3.1 Let G be a graph, r be a restraint on G , and x > Mr(G) . Then,

πr(G, x) =

m∑
t=0

(−1)t
∑

H∈S(G)t

∏
C∈C(H)

x−
∣∣ ∪
v∈V (C)

r(v)
∣∣ ,

where S(G)t is the family of spanning subgraphs of G that have size t .
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Proof Let e1, . . . , em be the edges of G . Also, let Ai denote the set of all x -colorings of G permitted by r

such that the vertices of the edge ei receive the same color. The total number of x -colorings of G permitted
by r is

∏
v∈V (G) (x− |r(v)|) . The number of x -colorings of G permitted by r that are not proper is equal to

|A1 ∪ · · · ∪Am| . Therefore, the number of proper x -colorings of G permitted by r is

πr(G, x) =
∏

v∈V (G)

(x− |r(v)|)− |A1 ∪ · · · ∪Am|.

By the principle of inclusion-exclusion, we get

πr(G, x) =
∏

v∈V (G)

(x− |r(v)|) +
m∑
t=1

(−1)t
∑

1≤i1<···<it≤m

|Ai1 ∩ · · · ∩Ait |.

Consider t edges of G , without loss, say e1, . . . , et . Let H be the spanning subgraph of G whose edge
set is {e1, . . . , et} . Now |A1 ∩ · · · ∩ At| is precisely the number of x -colorings of G permitted by r such that
each connected component of H is monochromatic, i.e. the vertices in the same connected component of H

receive the same color. Thus,

|A1 ∩ · · · ∩At| =
∏

C∈C(H)

x−

∣∣∣∣∣∣
∪

v∈V (C)

r(v)

∣∣∣∣∣∣


and ∑
1≤i1<···<it≤m

|Ai1 ∩ · · · ∩Ait | =
∑

H∈S(G)t

∏
C∈C(H)

x−
∣∣ ∪
v∈V (C)

r(v)
∣∣ .

Hence, the result follows.
2

Now using Lemma 3.1 we shall derive the next result.

Lemma 3.2 Let G be a graph of order n and size m , r be a restraint on G , and x > Mr(G) . Also, let
f : E(G) → {1, . . . ,m} be a bijection. Then,

πr(G, x) =

n−1∑
t=0

(−1)t
∑

H∈BCt

∏
C∈C(H)

x−
∣∣ ∪
v∈V (C)

r(v)
∣∣ ,

where BCt is the family of spanning forests of G with size t that do not contain any broken cycle with respect
to f .

Proof Let B1, . . . , Bk be broken cycles in G for some k ≥ 0 . Also let e1, . . . , ek be the edges of G such
that ei /∈ E(Bi) and Bi + ei is a cycle in G for each i = 1, . . . , k . Given a broken cycle B , we define
µ(B) = max{f(e) : e ∈ E(B)} . We may assume that µ(B1) ≤ · · · ≤ µ(Bk). Now we partition the family of
spanning subgraphs of G into k + 1 subfamilies as follows. For 1 ≤ i ≤ k , let Fi be the family of spanning
subgraphs of G that contain Bi but do not contain any of B1, . . . , Bi−1 (if i ≥ 2). Also, let Fk+1 be the
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family of spanning subgraphs of G that contains none of B1, . . . , Bk as a subgraph. It is clear that F1, . . . ,Fk+1

are mutually disjoint and every spanning subgraph of G belongs to some subfamily Fi . Let 1 ≤ i ≤ k be
fixed. For every subgraph H in Fi that does not contain the edge ei , there exists a unique subgraph H + ei .
It is clear that H + ei also contains Bi . Moreover, for 2 ≤ i ≤ k , the subgraph H + ei does not contain
any of B1, . . . , Bi−1 because f(ei) > µ(Bi) by the definition of broken cycles, and µ(Bi) ≥ µ(Bj) for each
j = 1, . . . i− 1 by the assumption. Note that H and H + ei have exactly the same connected components and
their sizes differ by one. Hence, in the formula for πr(G, x) given in Lemma 3.1, the contribution of H and
H + ei cancel each other. Thus, the total contribution of each subfamily Fi is zero for 1 ≤ i ≤ k . Thus, it
suffices to consider the contributions of the subgraphs in Fk+1 . Since the subgraphs in Fk+1 do not contain
any broken cycle, they cannot contain any cycle at all. Therefore, Fk+1 consists of spanning forests of G that
do not contain any broken cycle with respect to f and we obtain the result by Lemma 3.1. 2

We are now ready to prove our main result.

Proof [Proof of Theorem 2.2] Let H ∈ BCt for some t . Then |C(H)| = n − t as H is a spanning forest.
Observe that ∏

C∈C(H)

x− |
∪

v∈V (C)

r(v)|

 =

n−t∑
j=0

(−1)j
∑

A∈(C(H)
j )

∏
C∈A

|
∪

v∈V (C)

r(v)| xn−t−j .

By Lemma 3.2, πr(G, x) is equal to

n−1∑
t=0

(−1)t
∑

H∈BCt

n−t∑
j=0

(−1)j
∑

A∈(C(H)
j )

∏
C∈A

|
∪

v∈V (C)

r(v)| xn−t−j ,

which equals
n−1∑
t=0

n−t∑
j=0

(−1)t+j
∑

H∈BCt

∑
A∈(C(H)

j )

∏
C∈A

|
∪

v∈V (C)

r(v)| xn−t−j .

Now, letting k = t+ j , we see that the latter is equal to

n∑
k=0

(−1)k
k∑

t=0

∑
H∈BCt

∑
A∈(C(H)

k−t )

∏
C∈A

|
∪

v∈V (C)

r(v)|xn−k

and the result follows. 2
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