http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2019) 43: $361-372$
© TÜBİTAK
doi:10.3906/mat-1803-77

A discrete chaotic dynamical system on the Sierpinski gasket

Mustafa SALTAN(ㄷ) Nisa ASLAN* ${ }^{\text {© }}$, Bünyamin DEMİR ${ }^{\text {(}}$
Department of Mathematics, Eskişehir Technical University, Eskişehir, Turkey

Received: 15.03.2018 • Accepted/Published Online: 17.12.2018 • Final Version: 18.01 .2019

Abstract

The Sierpinski gasket (also known as the Sierpinski triangle) is one of the fundamental models of self-similar sets. There have been many studies on different features of this set in the last decades. In this paper, initially we construct a dynamical system on the Sierpinski gasket by using expanding and folding maps. We then obtain a surprising shift map on the code set of the Sierpinski gasket, which represents the dynamical system, and we show that this dynamical system is chaotic on the code set of the Sierpinski gasket with respect to the intrinsic metric. Finally, we provide an algorithm to compute periodic points for this dynamical system.

Key words: Sierpinski gasket, intrinsic metric, code set, dynamical system, chaos

1. Introduction

Fractals were introduced as the geometry of nature by Mandelbrot [10] and studied in various fields including mathematics, social science, computer science, engineering, economics, physics, chemistry, and biology (for details see $[1-3,5,7,8,12]$). As typical examples for fractals can be given the Julia sets of the functions (or discrete dynamical systems) $f: \mathbb{C} \rightarrow \mathbb{C}, f_{c}(z)=z^{2}+c(c \in \mathbb{C})$ since they generally have the properties of self-similarity and noninteger fractal dimension (as an example, see Figure 1). Discrete dynamical system f_{c} on Julia set J_{c} is chaotic in the sense of Devaney and thus chaotic dynamical systems on J_{c} emerge naturally (for details see [5]).

Figure 1. The filled Julia set for $c=0.360284+0.100376 i$.

[^0]Barnsley considered the right Sierpinski gasket (or briefly S) as the Julia set of the following dynamical system:

$$
f(x, y)= \begin{cases}(2 x, 2 y-1), & y \geq 0.5 \tag{1.1}\\ (2 x-1,2 y), & x \geq 0.5, y<0.5 \\ (2 x, 2 y), & \text { otherwise }\end{cases}
$$

The relationship between the dynamical system $\left\{\mathbb{R}^{2} ; f\right\}$ and the iterated function system (IFS), whose attractor is S with vertices $(0,0),(0,1),(1,0)$, is that $\{S ; f\}$ is a shift dynamical system associated with the IFS. Note that f is not continuous. Moreover, Barnsley did not examine in detail whether this transformation is chaotic (for details see [2]).

An interesting question is how to construct chaotic dynamical systems on the different fractals. It is known that there are several definitions of chaos in the sense of Devaney, Li and Yorke, Block and Coppel, etc. In [6], Ercai investigated the chaotic behavior of the Sierpinski carpet in the sense of Li and Yorke.

In this paper, we construct a discrete dynamical system $\{S ; F\}$ by using the code representations of the points on the Sierpinski gasket and then we show that this dynamical system is chaotic in the sense of Devaney with respect to the intrinsic metric d in Proposition 2.2. To this end, we first obtain a dynamical system on S by using expanding and folding maps. As seen in (2.1), since F is quite complicated for some computations, the code representation of this dynamical system on S is determined in Proposition 2.1. In order to show that this dynamical system is chaotic with respect to the intrinsic metric of S, the formula that is expressed by the codes of the points on S is used ([11]). Note that this dynamical system is also chaotic in the sense of Li and Yorke since (S, d) is a compact metric space and F is a continuous map (for details, see [9]).

Using a similar method to our approach, chaotic dynamical systems can be defined on different fractals such as the Sierpinski carpet, Sierpinski tetrahedron, box fractal, etc.

First of all, let us recall basic concepts such as the code set, the code representation of the points on S, and the chaotic dynamical system in the sense of Devaney.

Construction of the Sierpinski gasket: The Sierpinski gasket can be defined in multiple ways. One of them is the IFS. The attractor of the iterated function system $\left\{\mathbb{R}^{2} ; f_{0}, f_{1}, f_{2}\right\}$ such that $f_{i}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}(i=0,1,2)$,

$$
\begin{aligned}
& f_{0}(x, y)=\left(\frac{x}{2}, \frac{y}{2}\right) \\
& f_{1}(x, y)=\left(\frac{x}{2}+\frac{1}{2}, \frac{y}{2}\right) \\
& f_{2}(x, y)=\left(\frac{x}{2}+\frac{1}{4}, \frac{y}{2}+\frac{\sqrt{3}}{4}\right)
\end{aligned}
$$

is the (classical) Sierpinski gasket whose vertices are $P_{0}=(0,0), P_{1}=(1,0)$, and $P_{2}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ (throughout this paper, we use these vertices).

Another definition of S can be given as follows: first consider the equilateral triangle denoted by T_{0}. Subdivide T_{0} into four smaller congruent equilateral triangles and remove the central one, except for external points. We thus obtain three smaller equilateral subtriangles and denote this by T_{1}. After one more step, we get nine smaller equilateral subtriangles and denote this by T_{2}. Continuing the process gives us the Sierpinski
gasket in Figure 2; in other words,

$$
S=\bigcap_{k \geq 0} T_{k}
$$

T_{2}

Figure 2. The construction of the Sierpinski gasket.
Coding process of S : Throughout this paper, we will be more concerned with the definition of the code set of S. The bottom-left part of S is denoted by

$$
S_{0}=\left\{0 a_{2} a_{3} a_{4} \ldots \mid a_{i} \in\{0,1,2\} \text { and } i=2,3,4, \ldots\right\}
$$

the bottom-right part of S is denoted by

$$
S_{1}=\left\{1 a_{2} a_{3} a_{4} \ldots \mid a_{i} \in\{0,1,2\} \text { and } i=2,3,4, \ldots\right\}
$$

and the upper part of S is denoted by

$$
S_{2}=\left\{2 a_{2} a_{3} a_{4} \ldots \mid a_{i} \in\{0,1,2\} \text { and } i=2,3,4, \ldots\right\}
$$

Obviously, the code set of S is the union of the code sets S_{0}, S_{1}, and S_{2} (Figure 3).
Similarly, denote the bottom-left part, the bottom-right part, and the upper part of S_{0} as

$$
\begin{aligned}
& S_{00}=\left\{00 a_{3} a_{4} \ldots \mid a_{i} \in\{0,1,2\} \text { and } i=3,4,5, \ldots\right\} \\
& S_{01}=\left\{01 a_{3} a_{4} \ldots \mid a_{i} \in\{0,1,2\} \text { and } i=3,4,5, \ldots\right\} \\
& S_{02}=\left\{02 a_{3} a_{4} \ldots \mid a_{i} \in\{0,1,2\} \text { and } i=3,4,5, \ldots\right\}
\end{aligned}
$$

respectively. It is clear that the code set of S_{0} is the union of the code sets S_{00}, S_{01}, and S_{02}. The subtriangles of S_{1} and S_{2} can be defined in a similar fashion. For the general case, fix $w_{1}, w_{2}, \ldots, w_{n}$ where $w_{i} \in\{0,1,2\}$ for $i=1,2, \ldots, n . S_{w_{1} w_{2} \ldots w_{n} 0}, S_{w_{1} w_{2} \ldots w_{n} 1}$, and $S_{w_{1} w_{2} \ldots w_{n} 2}$ are the bottom-left part, the bottom-right part, and the upper part of $S_{w_{1} w_{2} \ldots w_{n}}$ respectively. Thus, we have the subtriangle

$$
S_{w_{1} \ldots w_{n} w}=\left\{w_{1} \ldots w_{n} w a_{n+2} a_{n+3} \ldots \mid w, a_{i} \in\{0,1,2\} \text { and } i=n+2, n+3, \ldots\right\}
$$

(see Figure 4).
Let us now define the code representation of a point on S by using these code sets. Consider the code sets

$$
S_{a_{1}}, S_{a_{1} a_{2}}, S_{a_{1} a_{2} a_{3}}, \ldots, S_{a_{1} a_{2} \ldots a_{n}}, \ldots
$$

Due to the construction above, it is obvious that $S_{a_{1}} \supset S_{a_{1} a_{2}} \supset S_{a_{1} a_{2} a_{3}} \supset \ldots \supset S_{a_{1} a_{2} \ldots a_{n}} \supset \ldots$ By the Cantor intersection theorem, the infinite intersection

$$
\bigcap_{n=1}^{\infty} S_{a_{1} a_{2} \ldots a_{n}}
$$

is a point on S, say $\{a\}$. Let us denote the point $a \in S$ by $a_{1} a_{2} \ldots a_{n} \ldots$ where $a_{n} \in\{0,1,2\}, n \in \mathbb{N}$. The infinite word $a_{1} a_{2} \ldots a_{n} \ldots$ is called a code representation of a. Note that if $a \in S$ is the intersection point of any two subtriangles of $S_{a_{1} a_{2} \ldots a_{k}}$, then a is called a junction point of S. In this case, a has two different code representations such that $a_{1} a_{2} \ldots a_{k} \beta \alpha \alpha \alpha \alpha \ldots$ and $a_{1} a_{2} \ldots a_{k} \alpha \beta \beta \beta \beta \ldots$ where $\alpha, \beta \in\{0,1,2\}$ and $\alpha \neq \beta$. If any point is not in this form, then it has a unique code representation. For example, the points $\overline{01}=010101 \ldots, \overline{0}=000 \ldots, \overline{012}=012012012 \ldots$ and the sequences whose elements do not repeat regularly such as $011010210212010112 \ldots$ have a unique code representation.

Intrinsic metric on the code set of S : The intrinsic metric (or geodesic metric) on the Sierpinski gasket is defined as follows:

$$
d(x, y)=\inf \{\delta \mid \delta \text { is the length of a rectifiable curve in } S \text { joining } x \text { and } y\}
$$

(see [4]).
In [11], an explicit formula that gives the intrinsic distance between any two points of the code set of S is defined as follows:

Definition 1.1 Let $a_{1} a_{2} \ldots a_{k-1} a_{k} a_{k+1} \ldots$ and $b_{1} b_{2} \ldots b_{k-1} b_{k} b_{k+1} \ldots$ be two representations respectively of the points $a \in S$ and $b \in S$ such that $a_{i}=b_{i}$ for $i=1,2, \ldots, k-1$ and $a_{k} \neq b_{k}$. The distance $d(a, b)$ between a and b is determined by the following formula:

$$
\begin{equation*}
d(a, b)=\min \left\{\sum_{i=k+1}^{\infty} \frac{\alpha_{i}+\beta_{i}}{2^{i}}, \frac{1}{2^{k}}+\sum_{i=k+1}^{\infty} \frac{\gamma_{i}+\delta_{i}}{2^{i}}\right\} \tag{1.2}
\end{equation*}
$$

where

$$
\alpha_{i}=\left\{\begin{array}{ll}
0, & a_{i}=b_{k} \\
1, & a_{i} \neq b_{k}
\end{array}, \quad \beta_{i}=\left\{\begin{array}{ll}
0, & b_{i}=a_{k} \\
1, & b_{i} \neq a_{k}
\end{array},\right.\right.
$$

$$
\gamma_{i}=\left\{\begin{array}{ll}
0, & a_{i} \neq a_{k} \text { and } a_{i} \neq b_{k} \\
1, & \text { otherwise }
\end{array}, \quad \delta_{i}= \begin{cases}0, & b_{i} \neq b_{k} \text { and } b_{i} \neq a_{k} \\
1, & \text { otherwise }\end{cases}\right.
$$

Note that the metric d defined in (1.2) is a strictly intrinsic metric on the code set of S [11]. That is, there exists a shortest path between any two points.

Chaotic dynamical system in the sense of Devaney: Chaos theory constitutively studies the behavior of dynamical systems being sensitive to initial conditions. That is, small differences in initial conditions can change the long-term behavior of a system. The tent map and the doubling map are well-known examples of chaotic dynamical systems. Devaney gives the definition of chaos as follows:

A dynamical system is a transformation $f: X \longrightarrow X$ on a metric space (X, d) and is denoted by $\{X, f\}$. If $\{X, f\}$ satisfies the following three conditions, then it is chaotic:

- f depends sensitively on the initial condition: there exists $\epsilon>0$ such that, for any $x \in X$ and any ball $B(x, \delta)$ with radius $\delta>0$, there is $y \in B(x, \delta)$ and an integer $n \geq 0$ satisfying $d\left(f^{n}(x), f^{n}(y)\right)>\epsilon$.
- f is topologically transitive if, whenever U and V are open subsets of the metric space (X, d), there exists a finite integer n such that $U \cap f^{n}(V) \neq \emptyset$.
- Periodic points of f are dense in X : there exist periodic points of f that are sufficiently close to any point of X (see $[2,5]$).

We can now construct a chaotic dynamical system on the Sierpinski gasket that is equipped with metric d defined in (1.2).

2. The construction of a chaotic dynamical system on the Sierpinski gasket

In this section, we first define the function F on S as the composition of the expanding and folding maps. In Proposition 2.1, F is formulated on the code set of S both to show that F is chaotic and to compute the periodic points of F more easily. To avoid unnecessary repetitions, first let us denote the filled equilateral triangle whose vertices are $(0,0),(1,0),\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ by $\boldsymbol{\Delta}$ and the filled equilateral triangle with vertices $(0,0)$, $(2,0),(1, \sqrt{3})$ by $\boldsymbol{\Delta}^{\prime}$. We also denote the isosceles trapezoid whose vertices are $(0,0),(2,0),\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right),\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$ by $I T$ and the parallelogram with vertices $(0,0),(1,0),\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right),\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$ by \downarrow. We now define the composition function

$$
\begin{equation*}
F=f_{4} \circ f_{3} \circ f_{2} \circ f_{1} \tag{2.1}
\end{equation*}
$$

where $f_{1}, f_{2}, f_{3}, f_{4}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ as follows:

$$
\begin{aligned}
& f_{1}(x, y)=(2 x, 2 y) \\
& f_{2}(x, y)=\left(x, \frac{\sqrt{3}}{2}-\left|y-\frac{\sqrt{3}}{2}\right|\right) \\
& f_{3}(x, y)=\left(-\frac{\sqrt{3}}{2}\left|\frac{\sqrt{3}}{2}(x-1)-\frac{y}{2}\right|+\frac{(x-1)+y \sqrt{3}}{4}+1, \frac{\sqrt{3}}{2}\left(\frac{x-1}{2}+\frac{y \sqrt{3}}{2}\right)+\frac{1}{2}\left|\frac{\sqrt{3}(x-1)-y}{2}\right|\right) \\
& f_{4}(x, y)=\left(-\frac{\sqrt{3}}{2}\left|\frac{\sqrt{3}}{2}(x-1)+\frac{y}{2}\right|+\frac{(x-1)-y \sqrt{3}}{4}+1, \frac{\sqrt{3}}{2}\left(\frac{y \sqrt{3}}{2}-\frac{(x-1)}{2}\right)-\frac{1}{2}\left|\frac{\sqrt{3}(x-1)+y}{2}\right|\right) .
\end{aligned}
$$

These functions might seem a bit complicated and strange at first, but the geometry of the action of these functions is intelligible to construct a dynamical system on $\boldsymbol{\Delta}$. Namely, the function f_{1} is an expanding map such that $f_{1}(\mathbf{\Delta})=\boldsymbol{\Lambda}^{\prime}$. The function f_{2} is a folding map with respect to the line $y=\frac{\sqrt{3}}{2}$ such that $f_{2}\left(\boldsymbol{\Delta}^{\prime}\right)=I T$. The function f_{3} is a folding map with respect to the line $y=\sqrt{3}(x-1)$ such that $f_{3}(I T)=\boldsymbol{\downarrow}$. The function f_{4} is a folding map with respect to the line $y=-\sqrt{3}(x-1)$ such that $f_{4}(\boldsymbol{\wedge})=\boldsymbol{\Delta}$. As seen in Figure 5 , we obtain the function

$$
F=f_{4} \circ f_{3} \circ f_{2} \circ f_{1}
$$

such that $F(\mathbf{\Delta})=\mathbf{\Delta}$.

Figure 5. The action of the functions $f_{1}, f_{2}, f_{3}, f_{4}$ on $\boldsymbol{\Delta}$.

Let us now consider the restriction of F to S. Obviously, $\{S, F\}$ is a dynamical system. It is difficult to show whether F is chaotic or not since finding periodic points of F requires tedious processing. To eliminate this problem, we express this function on the code set of the Sierpinski gasket in the following proposition:

Proposition 2.1 If $x_{1} x_{2} x_{3} \ldots$ is the code representation of an arbitrary point x of S, then the function $F: S \rightarrow S$ defined in (2.1) is expressed by $F(x)=y$ such that the code representation of y is $y_{1} y_{2} y_{3} \ldots$ where $y_{i} \equiv x_{i+1}+x_{1}(\bmod 3)$ for $x_{i}, y_{i} \in\{0,1,2\}$ and $i=1,2,3, \ldots$.

Proof Initially, we show that F is well defined on the code set of S. If the point x has a unique code representation, the desired result is obtained. Suppose that x has two different code representations such that $x_{1} x_{2} x_{3} \ldots x_{n} \alpha \beta \beta \beta \ldots$ and $x_{1} x_{2} x_{3} \ldots x_{n} \beta \alpha \alpha \alpha \ldots$ where $\alpha, \beta \in\{0,1,2\}$ and $\alpha \neq \beta$,

$$
\begin{aligned}
& F\left(x_{1} x_{2} x_{3} \ldots x_{n} \alpha \beta \beta \beta \ldots\right)=y_{1} y_{2} y_{3} \ldots y_{n} y_{n+1} y_{n+2} \ldots \\
& F\left(x_{1} x_{2} x_{3} \ldots x_{n} \beta \alpha \alpha \alpha \ldots\right)=z_{1} z_{2} z_{3} \ldots z_{n} z_{n+1} z_{n+2} \ldots
\end{aligned}
$$

Let us now show that $y_{1} y_{2} y_{3} \ldots y_{n} y_{n+1} y_{n+2} \ldots$ and $z_{1} z_{2} z_{3} \ldots z_{n} z_{n+1} z_{n+2} \ldots$ are the code representations of the same point. Due to the definition of F, we obtain

$$
y_{i} \equiv z_{i} \equiv x_{1}+x_{i+1}(\bmod 3)
$$

for $i=1,2,3, \ldots, n-1$. Moreover, we have

$$
\begin{gathered}
y_{n} \equiv x_{1}+\alpha(\bmod 3) \\
y_{n+i} \equiv x_{1}+\beta(\bmod 3) \\
z_{n} \equiv x_{1}+\beta(\bmod 3) \\
z_{n+i} \equiv x_{1}+\alpha(\bmod 3)
\end{gathered}
$$

for $i=1,2,3, \ldots$ and $\gamma \neq \delta$. Let $x_{1}+x_{i+1} \equiv s_{i}(\bmod 3)$ for $i=1,2,3, \ldots, n-1$ and let $x_{1}+\alpha \equiv \gamma(\bmod 3)$ and $x_{1}+\beta \equiv \delta(\bmod 3)$. It follows that

$$
y_{1} y_{2} y_{3} \ldots y_{n} y_{n+1} y_{n+2} \ldots=s_{1} s_{2} s_{3} \ldots s_{n-1} \gamma \delta \delta \delta \ldots
$$

and

$$
z_{1} z_{2} z_{3} \ldots z_{n} z_{n+1} z_{n+2} \ldots=s_{1} s_{2} s_{3} \ldots s_{n-1} \delta \gamma \gamma \gamma \ldots
$$

, which shows that these points are different code representations of the same point.
We now reconstruct the function F by using the code representations of the points on S. At each step we obtain the images of the code sets S_{0}, S_{1}, and S_{2} under F, respectively. Notice that if we know x_{1}, then the image of $x_{1} x_{2} x_{3} \ldots$ can be acquired. We use different colors on each code set to make the proof more understandable and give a sketch of the proof using the following figures.

Case 1: Let $x_{1}=0$. Observe that $F\left(S_{0}\right)=S, F\left(S_{00}\right)=S_{0}, F\left(S_{01}\right)=S_{1}$, and $F\left(S_{02}\right)=S_{2}$. Likewise, the images of $S_{000}, S_{001}, S_{002}, S_{010}, S_{011}, S_{012}, S_{020}, S_{021}, S_{022}$ under F are $S_{00}, S_{01}, S_{02}, S_{10}, S_{11}$, $S_{12}, S_{20}, S_{21}, S_{22}$, respectively (Figure 6). Note that if the first term of the point $x_{1} x_{2} x_{3} x_{4} \ldots$ is zero, then $F\left(0 x_{2} x_{3} x_{4} \ldots\right)$ equals $x_{2} x_{3} x_{4} \ldots$ Hence, we get $F\left(0 x_{2} x_{3} x_{4} \ldots\right)=y_{1} y_{2} y_{3} \ldots$ where $y_{i} \equiv x_{i+1}(\bmod 3)$ for $i=1,2,3, \ldots$

Case 2: Let $x_{1}=1$. As seen in Figure 7, we have $F\left(S_{1}\right)=S, F\left(S_{10}\right)=S_{1}, F\left(S_{11}\right)=S_{2}$, and $F\left(S_{12}\right)=S_{0}$. In addition, the images of $S_{100}, S_{101}, S_{102}, S_{110}, S_{111}, S_{112}, S_{120}, S_{121}, S_{122}$ under F are S_{11}, S_{12}, S_{10}, $S_{21}, S_{22}, S_{20}, S_{01}, S_{02}, S_{00}$, respectively. In the general case, we obtain $F\left(1 x_{2} x_{3} x_{4} \ldots\right)=y_{2} y_{3} y_{4} \ldots$ where $y_{i} \equiv x_{i}+1(\bmod 3)$.

Case 3: Let $x_{1}=2$. Notice that $F\left(S_{2}\right)=S, F\left(S_{20}\right)=S_{2}, F\left(S_{21}\right)=S_{0}$, and $F\left(S_{22}\right)=S_{1}$. Furthermore, the images of $S_{200}, S_{201}, S_{202}, S_{210}, S_{211}, S_{212}, S_{220}, S_{221}, S_{222}$ under F are $S_{22}, S_{20}, S_{21}, S_{02}, S_{00}, S_{01}$, S_{12}, S_{10}, S_{11}, respectively (Figure 8). We thus have $F\left(2 x_{2} x_{3} x_{4} \ldots\right)=y_{2} y_{3} y_{4} \ldots$ where $y_{i} \equiv x_{i}+2(\bmod 3)$.

Hence, the proof is completed.
To prove Proposition 2.2 and to compute the periodic points of F, we will use the definition of F given in Proposition 2.1

Proposition 2.2 The dynamical system $\{S ; F\}$ is chaotic in the sense of Devaney.

Figure 6. The action of the function F on code sets $S_{0}, S_{0 x_{2}}$, and $S_{0 x_{2} x_{3}}$.

Proof

- We first prove that F is sensitive to initial conditions. Let us take an arbitrary point a of S such that

$$
a=a_{1} a_{2} \ldots a_{k-1} a_{k} a_{k+1} \ldots
$$

For any δ, there exists a large enough natural number k such that $\frac{1}{2^{k-2}}<\delta$. Let us choose the point

$$
b=a_{1} a_{2} \ldots a_{k-1} b_{k} b_{k+1} \ldots
$$

where $b_{i} \neq a_{k}$ for $i=k, k+1, k+2, \ldots$ Using the definition of metric d, one can compute that

$$
d(a, b)<\delta
$$

On the other hand, we have

$$
\begin{aligned}
& F^{k-1}(a)=c_{k} c_{k+1} c_{k+2} \ldots \\
& F^{k-1}(b)=d_{k} d_{k+1} d_{k+2} \ldots
\end{aligned}
$$

such that $c_{t} \equiv s+a_{t}(\bmod 3)$ and $d_{t} \equiv s+b_{t}(\bmod 3)$ where $t=k, k+1, k+2, \cdots$ and $s=$ $\left(2^{k-1} a_{1}+2^{k-2} a_{2}+\ldots+2 a_{k-1}\right)$. It follows that $s+a_{k} \neq s+b_{k+i}$ for $i=1,2,3, \ldots$, and therefore

$$
d\left(F^{k-1}(a), F^{k-1}(b)\right)>\frac{1}{4},
$$

which gives us the desired result.

- We now give the proof that F is topologically transitive. Let U and V be arbitrary nonempty open sets of S. Therefore, there exists an element $a=a_{1} a_{2} \ldots a_{k-1} a_{k} a_{k+1} \ldots$ of S and a natural number k such that $B\left(a, \frac{1}{2^{k-1}}\right) \subset U$. It is clear that $B\left(a, \frac{1}{2^{k-1}}\right)$ contains a subtriangle of the Sierpinski gasket such that

$$
U^{\prime}=\left\{a_{1} a_{2} \ldots a_{k} x_{k+1} x_{k+2} x_{k+2} \ldots \mid a_{1}, \ldots, a_{k} \text { are fixed }\right\}
$$

Figure 7. The action of the function F on code sets $S_{1}, S_{1 x_{2}}$, and $S_{1 x_{2} x_{3}}$.
where any $x_{i} \in\{0,1,2\}$ is arbitrary for $i=k+1, k+2, k+3, \ldots$ Due to the definition of F, we get

$$
F^{k}\left(U^{\prime}\right)=\left\{y_{1} y_{2} y_{3} \ldots \mid y_{i} \equiv s+x_{k+i}(\bmod 3), x_{k+1}, x_{k+2}, x_{k+3}, \ldots \text { are arbitrary }\right\}
$$

for $i=1,2,3, \ldots$ and $s=2^{k-1} a_{1}+2^{k-2} a_{2}+\ldots+a_{k}$. This shows that $F^{k}\left(U^{\prime}\right)=S$ and $F^{k}(U)=S$. Hence, there is a natural number k such that

$$
F^{k}(U) \cap V \neq \emptyset
$$

for any nonempty open subset U and V of S.

- To show that the periodic points of F are dense in S, we must find periodic points sufficiently close to any point of S. Let us take an arbitrary point a of S and open set U of S. There is $k \in \mathbb{N}$ such that $B\left(a, \frac{1}{2^{k-1}}\right) \subset U$ for large enough k. Because of the definition of metric d, we have

$$
U^{\prime}=\left\{a_{1} a_{2} \ldots a_{k} x_{k+1} x_{k+2} \ldots \mid a_{i} \text { is fixed, } x_{j} \text { is arbitrary }\right\} \subset B\left(a, \frac{1}{2^{k-1}}\right)
$$

for $i=1,2, \ldots, k$ and $j=k+1, k+2, \ldots$. We now show that U^{\prime} contains a k-period point:

$$
F^{k}\left(\left\{a_{1} a_{2} \ldots a_{k} x_{k+1} x_{k+2} \ldots\right\}\right)=\left\{y_{k+1} y_{k+2} y_{k+3} \ldots\right\}
$$

where $y_{k+l} \equiv s+x_{k+l}(\bmod 3)$ for $l=1,2,3, \ldots$ and $s=2^{k-1} a_{1}+2^{k-2} a_{2}+\ldots+a_{k}$, which gives us the following equations:

$$
\begin{aligned}
& s+x_{k+1} \equiv a_{1}(\bmod 3) \\
& s+x_{k+2} \equiv a_{2}(\bmod 3)
\end{aligned}
$$

Figure 8. The actions of the function F on code sets $S_{2}, S_{2 x_{2}}$, and $S_{2 x_{2} x_{3}}$.

$$
s+x_{2 k} \equiv a_{k}(\bmod 3)
$$

Since any x_{j} is arbitrary for $j=k+1, k+2, k+3, \ldots$, there always exists a solution of this system of equations. That is, we can find a periodic point sufficiently close to any point of S.

2.1. An algorithm for the computation of periodic points of F

In this part, we give a general formula that computes the periodic points of F. Let us take an arbitrary point a on the Sierpinski gasket whose code representation is $a_{1} a_{2} a_{3} \ldots a_{k} \ldots$. If we apply the function F to this point, then we get

$$
\begin{aligned}
F(a) & =b_{1} b_{2} b_{3} \ldots b_{k} \ldots \\
& =\left(a_{1}+a_{2}\right)\left(a_{1}+a_{3}\right)\left(a_{1}+a_{4}\right) \ldots\left(a_{1}+a_{k+1}\right) \ldots
\end{aligned}
$$

where $b_{k} \equiv a_{1}+a_{k+1}(\bmod 3)$ for $k=1,2,3 \ldots$ With simple calculations, we get three fixed points of F such that

$$
\bullet \overline{0}=000000 \ldots, \quad \bullet \overline{201}=201201201 \ldots, \quad \bullet \overline{102}=102102102 \ldots
$$

To obtain the 2-periodic points of F, observe that

$$
\begin{aligned}
F^{2}(a) & =c_{1} c_{2} \ldots c_{k} \ldots \\
& =\left(2 a_{1}+a_{2}+a_{3}\right)\left(2 a_{1}+a_{2}+a_{4}\right) \ldots\left(2 a_{1}+a_{2}+a_{k+2}\right) \ldots
\end{aligned}
$$

where $c_{k} \equiv 2 a_{1}+a_{2}+a_{k+2}(\bmod 3)$ for $k=1,2,3 \ldots$ Thus, 2 -periodic points of F are:

$$
\begin{gathered}
\bullet \overline{1}=111111 \ldots, \quad \bullet \overline{2}=2222 \ldots, \quad \bullet \overline{012}=012012012 \ldots, \\
\bullet \overline{120}=120120120 \ldots, \quad \bullet \overline{210}=210210210 \ldots, \quad \bullet \overline{021}=021021021 \ldots
\end{gathered}
$$

Continuing in this manner, the image of point a under F^{n} can be obtained as

$$
\begin{aligned}
F^{n}(a)= & d_{1} d_{2} \ldots d_{k} \ldots \\
= & \left(2^{n-1} a_{1}+2^{n-2} a_{2}+\ldots+a_{n}+a_{n+1}\right)\left(2^{n-1} a_{1}+2^{n-2} a_{2}+\ldots+a_{n}+a_{n+2}\right) \\
& \ldots\left(2^{n-1} a_{1}+2^{n-2} a_{2}+\ldots+a_{n}+a_{n+k}\right) \ldots
\end{aligned}
$$

where

$$
d_{k} \equiv 2^{n-1} a_{1}+2^{n-2} a_{2}+\ldots+a_{n}+a_{n+k}(\bmod 3)
$$

for $k=1,2,3 \ldots$ In order to compute n-periodic points of F, we solve the equation $F^{n}(a)=a$, which gives

$$
2^{n-1} a_{1}+2^{n-2} a_{2}+\ldots+a_{n}+a_{n+k} \equiv a_{k} \quad(\bmod 3)
$$

where $n=1,2,3, \ldots$ for $k=1,2,3 \ldots$.
By using the general case, we compute some cycles of period 3 as follows:

$$
\{\overline{011}, \overline{110}, \overline{212}\},\{\overline{022}, \overline{220}, \overline{121}\},\{\overline{001220112}, \overline{012201120}, \overline{122011200}\}
$$

$\{\overline{010121202}, \overline{101212020}, \overline{120201012}\},\{\overline{100022211}, \overline{111000222}, \overline{221110002}\}$,
$\{\overline{200011122}, \overline{222000111}, \overline{112220001}\}$.
Using similar calculations, some of the cycles of period 4 are as follows:

$$
\{\overline{1100}, \overline{2112}, \overline{0011}, \overline{0110}\},\{\overline{2200}, \overline{1221}, \overline{0022}, \overline{0220}\},\{\overline{1122}, \overline{2002}, \overline{2211}, \overline{1001}\}
$$

Some of the cycles of period 5 are
$\{\overline{00011}, \overline{00110}, \overline{01100}, \overline{11000}, \overline{21112}\},\{\overline{100000222221111}, \overline{111110000022222}$, $\overline{222211111000002}, \overline{111000002222211}, \overline{221111100000222}\}$
and some of the cycles of period 6 are

$$
\begin{aligned}
& \{\overline{20}, \overline{21}, \overline{01}, \overline{10}, \overline{12}, \overline{02}\},\{\overline{100}, \overline{112}, \overline{202}, \overline{211}, \overline{001}, \overline{010}\}, \\
& \{\overline{002211}, \overline{022110}, \overline{221100}, \overline{100221}, \overline{110022}, \overline{211002}\}
\end{aligned}
$$

3. Conclusion

As seen in the example of the right Sierpinski gasket in (1.1), a dynamical system can be naturally defined on any fractal that can be expressed by the attractor of an IFS. Thus, dynamical systems defined in this way are directly related to their IFSs. This paper presents an alternative method to construct a dynamical system on the equilateral Sierpinski gasket by using expanding and folding mappings. Our construction in the present paper does not depend on its IFS and is completely related to the structure of the Sierpinski gasket. Moreover, our method is very convenient to express this dynamical system via ternary numbers. In Proposition 2.2, we prove that $\{S, F\}$ is chaotic in the sense of Devaney. Since (S, d) is a compact metric space and F is a continuous map, this dynamical system is also chaotic in the sense of Li and Yorke. Furthermore, the proof of $\{S, F\}$ being chaotic in the sense of Devaney becomes easier by using the intrinsic metric formula on the code set of the Sierpinski gasket. This method will also guide the construction of chaotic dynamical systems on different fractals by using appropriate folding and expanding mappings.

Acknowledgment

The authors thank the anonymous referees for their valuable comments and suggestions.

References

[1] Alligood KT, Sauer TD, Yorke JA. Chaos: An Introduction to Dynamical Systems. New York, NY, USA: SpringerVerlag, 1996.
[2] Barnsley M. Fractals Everywhere. San Diego, CA, USA: Academic Press, 1988.
[3] Barnsley MF. Superfractals. New York, NY, USA: Cambridge University Press, 2006.
[4] Burago D, Burago Y, Ivanov S. A Course in Metric Geometry. Providence, RI, USA: AMS, 2001.
[5] Devaney RL. An Introduction to Chaotic Dynamical Systems. New York, NY, USA: Addison-Wesley Publishing Company, 1989.
[6] Ercai C. Chaos for the Sierpinski carpet. J Stat Phys 1997; 88: 979-984.
[7] Gulick D. Encounters with Chaos and Fractals. Boston, MA, USA: Academic Press, 1988.
[8] Hirsch MW, Smale S, Devaney RL. Differential Equations, Dynamical Systems, and an Introduction to Chaos. New York, NY, USA: Elsevier Academic Press, 2013.
[9] Huang W, Ye X. Devaney's chaos or 2-scattering implies Li-Yorke's chaos. Topology Appl 2002; 117: 259-272.
[10] Mandelbrot BB. The Fractal Geometry of Nature. San Francisco, CA, USA: W.H. Freeman and Company, 1982.
[11] Saltan M, Özdemir Y, Demir B. An explicit formula of the intrinsic metric on the Sierpinski gasket via code representation. Turk J Math 2018; 42: 716-725.
[12] Schroeder M. Fractals, Chaos, Power Laws. New York, NY, USA: W.H. Freeman, 1991.

[^0]: *Correspondence: nisakucuk@anadolu.edu.tr
 2010 AMS Mathematics Subject Classification: Primary 37D45; Secondary 37B10, 28A80

