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Abstract: In this study, we introduce multidelay fractional differential equations with variable coefficients in a unique
formula. A novel graph-operational matrix method based on the fractional Caputo, Riemann–Liouville, Caputo–Fabrizio,
and Jumarie derivative types is developed to efficiently solve them. We also make use of the collocation points and
matrix relations of the matching polynomial of the complete graph in the method. We determine which of the fractional
derivative types is more appropriate for the method. The solutions of model problems are improved via a new residual
error analysis technique. We design a general computer program module. Thus, we can explicitly monitor the usefulness
of the method. All results are scrutinized in tables and figures. Finally, an illustrative algorithm is presented.
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1. Introduction
In this study, we introduce multidelay fractional differential equations with variable coefficients in a unique
formula:

m∑
k=0

Pk,n (t)
M
t Dn

ay (λk,nt+ µk,n) = f (t) , n ≥ 0, c ≤ t ≤ d, (1.1)

subject to the mixed conditions
⌈n⌉−1∑
j=0

cj,nD
jy (c) + dj,nD

jy (d) = τj . (1.2)

Here, Pk,n (t) , f (t) are analytic functions on c ≤ t ≤ d ; λk,n , τj , and µk,n are proper constants; M
t Dn

ay (t) ,
(a ∈ Z, n ∈ R+) gives the nth integer and fractional order derivatives of y (t) with respect to t, and M represents
well-known fractional Caputo [14], Riemann–Liouville [17, 33, 41], Caputo–Fabrizio [15, 38], and Jumarie [20, 32]
derivative types. From now on, we denote them respectively as C, RL, CF, and J in this study.

Our first object in this study is to efficiently solve Eq. (1.1) by considering different fractional derivative
types. The second object is to determine which of the fractional derivative types is more appropriate for the
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method. We employ the graph-operational matrix method to find a matching polynomial solution of Eq. (1.1)
in the form

y (t) ∼= yN (t) =

N∑
r=0

yrMr (Kr, t) , (1.3)

where yr is the unknown coefficients to be found and Kr is a complete graph with r vertices and r(r-1)/2
edges. The standard collocation points used in matrices are defined by

ti = c+

(
d− c

N

)
i, (1.4)

where i = 0, 1, . . . , N and c = t0 < t1 < . . . < tN = d .
Since 1695, fractional differential equations (FDEs) and their classes continue to be of importance in

mathematics, physics, electroanalytical chemistry, capacitor theory, electrical circuits, biology, control theory,
and fluid dynamics [9, 13–15, 17, 20, 32, 33, 38, 39, 41, 45]. FDEs consist of broad classes of ordinary and
fractional differential equations. Thus, we can establish the modeling of stiff physical phenomena. For example,
Bagley and Torvik [9] constructed a fractional differential equation that estimates the placement of a rigid
plate in Newtonian fluid. Bode [13, 41] established a system that investigates the feedback of amplifier design.
It is necessary to specify that there is a problem while finding the analytical solution of FDEs. Most of the
time, solving FDEs analytically is too hard. Efficient numerical methods are developed in order to eliminate
this hardship. Some of them are the Taylor matrix [23, 24], Bernstein matrix collocation [51], quadrature [44],
differential transform [47], Fermat tau [50], multiscale collocation [40], and homotopy perturbation methods [3].

Recently, Gülsu et al. [23, 24] obtained the approximate solutions of fractional relaxation–oscillation and
Bagley–Torvik equations. Heris and Javidi [30] studied fractional delay differential equations with periodic and
antiperiodic conditions. Rahimkhani et al. [42] proposed the Bernoulli wavelet to solve fractional pantograph
differential equations. Abd-Elhameed and Youssri [1, 2] introduced the fifth-kind orthonormal Chebyshev poly-
nomial and the generalized Lucas polynomial sequence methods to obtain the numerical solution of FDEs. The
stability and asymptotics of solutions of fractional differential equations with constant delay were investigated
by Cermák et al. [16].

In the literature there is no study introducing a generalized form of delay FDEs with single fractional
term. We thus develop a novel graph-operational matrix method based on simplified matrices and collocation
points along with the matching polynomial of the complete graph in order to solve Eq. (1.1).

Readers are encouraged to see Sections 1.1 and 1.2 for brief information about fractional calculus,
matching polynomials, and graph theory.

1.1. A brief introduction to fractional calculus
Let us give some definitions and notations that form a basis of fractional calculus. Let f (t) be a continuous
function on I = {[a, b] : a, b ∈ R} , D be a differential operator, and Γ (n) be a Euler gamma function. We give
the following definitions.

Definition 1.1 [17, 33, 41] Assume that n > 0 and t > a (n, t ∈ R) . Then the fractional integral of f (t) is
defined by
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Jn
a f (t) =

1

Γ (n)

t∫
a

(t− s)
n−1

f (s) ds,

where Jn
a is a fractional integral operator.

Definition 1.2 [17, 33, 41] Assume that t > a and n, t ∈ R . Then the fractional Riemann–Liouville derivative
of order n is defined by

RL
t Dn

af (t) =

 1
Γ(⌈n⌉−n)D

⌈n⌉
t∫
a

(t− s)
⌈n⌉−n−1

f (s) ds, ⌈n⌉ − 1 < n < ⌈n⌉

f (n) (t) , n ∈ N.

Note that there is an noncompliance while taking the derivative of a constant. For example, RL
t D

1/2
0 (1) =

1/
√
tπ , but it should have been zero. To eliminate this noncompliance, Caputo [14] introduced the following

fractional derivative type.

Definition 1.3 [14] Assume that t > a and n, t ∈ R . Then the fractional Caputo derivative of order n is
defined by

C
t D

n
af (t) =

 1
Γ(⌈n⌉−n)

t∫
a

(t− s)
⌈n⌉−n−1

f (⌈n⌉) (s) ds, ⌈n⌉ − 1 < n < ⌈n⌉

f (n) (t) , n ∈ N.

In recent years, Jumarie [32] modified the fractional Riemann–Liouville derivative to eliminate errors
in the calculation of derivative of constants. Caputo and Fabrizio [15] established a new fractional derivative
without singular kernel. Both are as follows.

Definition 1.4 [32] Assume that t > 0 (t ∈ R) . Then the fractional Jumarie derivative of order n is defined
by

J
t D

n
0 f (t) =

1

Γ (1− n)
D1

t∫
0

(t− s)
−n

(f (s)− f (0)) ds, 0 < n < 1.

Then Ghosh et al. [20] generalized the above formulation as

J
t D

n
af (t) =

 1
Γ(1−n)D

1
t∫
a

(t− s)
−n

(f (s)− f (a)) ds, 0 < n < 1

Dm
(
J
t D

n−m
a f (t)

)
, m ≥ 1 & m ≤ n < m+ 1.

Definition 1.5 [15, 38] Assume that t ≥ 0 . Then the fractional Caputo–Fabrizio derivative of order n is
defined by

CF
t Dn

0 f (t) =
1

1− n

t∫
0

exp
(
−n (t− s)

1− n

)
f ′ (s) ds, 0 < n < 1.
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When m ≥ 1 and n ∈ [0, 1] , CF
t Dm+n

0 f (t) is of the following form [10, 15, 38]:

CF
t Dn+m

0 f (t) = CF
t Dn

0

(
C
t D

m
0 f (t)

)
.

Using Definitions 1.2, 1.3, 1.4, and 1.5 we merge them with the graph-operational matrix collocation
method.

1.2. Some properties of graph theory and matching polynomials
Graph theory is used in vulnerability, modeling of real life and networks, transportation, algorithms, and
mathematical chemistry [7, 8, 22, 25, 28, 31]. A finite simple graph is made up of a vertex set V (G) and an
edge set E (G) . Edges in a graph connect vertices to each other. Complete, complete bipartite, cycle, wheel,
path, tree, and star graphs are fundamental structures for graph theory. Our terminology and notations are
taken from [22, 28]. Complete graph Kr is illustrated in Figure 1a for r=10. The reason why we choose Kr

for our method is that Kr has a durable structure, because its vertices are incident to each other. Therefore,
the connection on Kr is strictly sustainable when it encounters a damage or an interruption. In Figure 1b, the
shaded (orange) area represents the durableness of K10 , while the diagonal white area shows that K 1 0 is a
simple graph.

(a) (b)

Figure 1. A complete graph (a) K10 and its adjacency matrix plot (b).

In 1972, Heilman and Lieb [29] introduced a polynomial, which has no specific name, for the theory of
monomer-dimer systems. In 1979, Farrell [19] denominated it as the matching polynomial, which is obtained
by gathering k-matching numbers of independent edges in a graph. Some authors have used this polynomial
with different names, such as acyclic [26, 27] and reference [5]. Let Gn be a graph with n vertices and m edges.
It is generally defined by

Mn (Gn, t) =

m∑
k=0

(−1)k p (Gn, k) t
n−2k,
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where p (G, 0) = 1 and p (Gn, k) is the matching number to be obtained by k-matching numbers [19, 26, 27, 29].
Aihara [5] used the reference (matching) polynomial for monocyclic conjugated system. Hosoya [31] established
the mathematical properties and physicochemical interpretations of the matching and some other polynomials
in chemistry. Godsil and Gutman [21] constructed the properties of the matching polynomial. Yan and Yeh [49]
studied the matching polynomial of subdivision graphs. Araujo et al. [6] generalized the matching polynomial
to make a comparison between generalized matching polynomial and hypergeometric functions. Bian et al. [12]
constructed the recurrences of the matching polynomial of ortho-chains and meta-chains.

The matching polynomial of a complete graph is of the following explicit form [26, 27]:

Mn (Kn, t) =

⌊n/2⌋∑
k=0

(−1)k (2k)!

2kk!

(
n
2k

)
tn−2k,

or the recurrence relation

Mn (Kn, t) = tMn (Kn−1, t)− (n− 1)Mn (Kn−2, t) ,

which are equivalent to the modified Hermite polynomials (see [26, 27, 48]). The readers can refer to more
studies on the matching polynomial in [5, 6, 12, 19, 21, 26, 27, 29, 31, 48, 49].

2. Construction of the method
In this section, we introduce new matrix relations to constitute the method. In addition, fractional derivatives
C, CF, RL, and J are separately applied to the method. We construct the matrix relation of the matching
polynomial solution (1.3) of Eq. (1.1):

y (t) ∼= yN (t) = Mr (Kr, t)Y , Mr (Kr, t) = X (t)S ⇒ y (t) = X (t)SY

and
M
t Dn

ay (t) =
MXk,n (t)SY , n ∈ R+, k = 0, 1, . . . ,m, M={C, CF, RL, J}, (2.1)

where
Xk,0 (t) =

[
1 t t2 · · · tN

]
for n = 0,

MXk,n (t) =
[

M
t Dn

a (1) M
t Dn

a (t) · · · M
t Dn

a

(
tN
) ]

for n ̸= 0,

Y =
[
y0 y1 · · · yN

]T
,

and (Ne,o represents even or odd number of N )

ST =



1 0 0 · · · 0

0

(
1
0

)
0 · · · 0

(−1)1 2!
211!

(
2
2

)
0

(
2
0

)
· · · 0

0 (−1)1 2!
211!

(
3
2

)
0 · · · 0

...
...

...
. . .

...

(−1)
N
2 N !

2
N
2 N

2
!

(
N
N

)
0 (−1)

N
2
−1 (N−1)!

2
N
2

−1(N
2
−1)!

(
N

N − 2

)
· · ·

(
N
0

)}
Ne

0 (−1)⌊
N
2 ⌋ (2⌊N

2 ⌋)!
2⌊N

2 ⌋⌊N
2 ⌋!

(
N

2
⌊
N
2

⌋ )
0 · · ·

(
N
0

)}
No



.
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Now, taking t→ λk,nt+ µk,n into the form (2.1), we write

M
t Dn

ay (λk,nt+ µk,n) =
MXk,n (λk,nt+ µk,n)SY , (2.2)

where
MXk,n (λk,nt+ µk,n) =

[
M
t Dn

a (1) M
t Dn

a (λk,nt+ µk,n) · · · M
t Dn

a (λk,nt+ µk,n)
N
]
,

and similarly, we obtain the following form for n = 0 :

Xk,0 (λk,0t+ µk,0) =
[
1 (λk,0t+ µk,0) · · · (λk,0t+ µk,0)

N
]
.

It is crucial to state from (2.2) that the derivative of a constant is different from zero when M=RL. For example,
RL
t D

1/2
0 (1) = 1/

√
tπ . This leads to obtaining infinity when the initial point is c=0. In some model problems,

we therefore take c = 10−16 , which is very close to zero.
The fundamental matrix equation of Eq. (1.1) is obtained by substituting Eqs. (1.4) and (2.2) into Eq.

(1.1) as

W =

m∑
k=0

Pk,nXk,nS ⇒WY = F, (2.3)

where

W =


W (t0)
W (t1)

...
W (tN )

 , Pk,n =


Pk,n (t0) 0 · · · 0

0 Pk,n (t1) · · · 0
...

... . . . ...
0 0 · · · Pk,n (tN )

 ,

Xk,n =


MXk,n (λk,nt0 + µk,n)
MXk,n (λk,nt1 + µk,n)

...
MXk,n (λk,ntN + µk,n)

 =


M
t Dn

a (1) M
t Dn

a (λk,nt0 + µk,n) · · · M
t Dn

a (λk,nt0 + µk,n)
N

M
t Dn

a (1) M
t Dn

a (λk,nt1 + µk,n) · · · M
t Dn

a (λk,nt1 + µk,n)
N

...
... . . . ...

M
t Dn

a (1) M
t Dn

a (λk,ntN + µk,n) · · · M
t Dn

a (λk,ntN + µk,n)
N

 ,

and

F =
[
f (t0) f (t1) · · · f (tN )

]T
.

Eq. (2.3) can be written as

W Y = F or [W ; F] . (2.4)

The matrix relation of the conditions (1.2) is

U jY = τj ⇒ [U j ; τj ] , j = 0, 1, . . . , ⌈n⌉ − 1, (2.5)

where

U j =
[
uj0 uj1 . . . ujN

]
=

⌈n⌉−1∑
k=0

[ck,nXk,n (c) + dk,nXk,n (d)]S Y .
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By removing m rows of (2.4), the rows of the condition matrix (2.5) are then written into (2.4). Thus, it follows
that

[
W̃ ; F̃

]
=



w00 w01 · · · w0N ; f (t0)
w10 w11 · · · w1N ; f (t1)

...
...

...
...

...;
...

wN−⌈n⌉+1,0 wN−⌈n⌉+1,1 · · · wN−⌈n⌉+1,N ; f
(
tN−⌈n⌉+1

)
u00 u01 · · · u0N ; τ0
u10 u11 · · · u1N ; τ1

...
...

...
...

...;
...

u⌈n⌉−1,0 u⌈n⌉−1,1 · · · u⌈n⌉−1,N ; τ⌈n⌉−1


,

which is the augmented matrix system. There is rankW̃= rank
[
W̃ ; F̃

]
= N + 1 . After solving the system,

the coefficients matrix Y can be easily determined as

Y =
(

W̃
)−1

F̃.

Inserting these coefficients into the matching polynomial solution (1.3), we thereby obtain the matching poly-
nomial solution of Eq. (1.1).

3. Residual error analysis based on fractional derivative

Kürkçü et al. [34, 35, 37] recently applied residual error analysis to ordinary integro-differential-(difference)
equations and they established the residual function-based convergence analysis for model problems [36]. Our
aim is to improve the obtained approximate solutions by employing the residual error analysis based on the
fractional derivative. In order to apply it, an algorithm is formed as follows:

Step 1: RN (t)←
m∑

k=0

Pk,n (t)
M
t Dn

ay (λk,nt+ µk,n)−f (t) , where M={C, CF, RL, J} and RN (t) is the

residual function;
Step 2: L [eN (t)]← L [y (t)]− L [yN (t)] = −RN (t) , where eN (t) = y (t)− yN (t) ;

Step 3:
⌈n⌉−1∑
j=0

[
cj,nD

jeN (c) + dj,nD
jeN (d)

]
← 0 ;

Step 4: eN,M (t)←
M∑
n=0

y∗nMn (Kn, t) , where eN,M (t) is the estimated error function;

Step 5: yN,M (t)← yN (t) + eN,M (t) , where yN,M (t) is the corrected matching polynomial solution;
Step 6: EN,M (t)← y (t)− yN,M (t) , where EN,M (t) is the corrected error.
It follows from the above algorithm that

|y (t)− yN (t)| < εN
|y (t)− yN,M (t)| < εN,M

}
⇒ εN,M < εN , ∀t ∈ [c, d] , (3.1)

where positive integers εN and εN,M are very close to zero. That is, we can state that the distance between
εN,M and εN increases as N and M are increased. Thereby, we can estimate the behavior of the improved
matching polynomial solution of Eq. (1.1).
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4. Fractional model problems
Let us solve some fractional model problems using the present method based on C, CF, RL, and J. The numerical
results are tabulated in tables in order to compare them. The behaviors and displacements of the matching
polynomial solutions are illustrated in figures for different values of n. All computations are performed with a
general computer program developed by the authors. The program enables us to obtain consistent results. The
CPU time of the method is provided by a personal computer equipped with 8 GB RAM and 3.30 GHz CPU.
ML∞ , MXk,n , MyN (t) , MeN (t) , and MEN,M (t) mean that the results of model problems are obtained by
fractional derivatives M={C, CF, RL, J} .

Model 4.1. [30] Consider the fractional delay differential equation with antiperiodic condition

M
t D

1/5
0 y (t) + y (t− 1) = f (t) , 0 ≤ t ≤ 2,

subject to the conditions y (0) = −y (2) . Here, P0,0 (t) = P1,0.2 (t) = 1 , λ0,0 = 1 , µ0,0 = −1 , λ1,0.2 = 1 ,
µ1,0.2 = 0, and, by using the Caputo derivative, f (t) is calculated as

f (t) =
Γ (3) t1.8

Γ (2.8)
− Γ (2) t0.8

Γ (1.8)
+ t2 − 3t+ 1.

We apply our method to solve the problem by using N=3 and different fractional derivative types. By Eq.
(2.3), the fundamental matrix equation is{

P0,0X0,0 + P1,0.2
MX1,0.2

}
S︸ ︷︷ ︸

W

Y = F, (4.1)

where

P0,0 = P1,0.2 =

 1 0 0
0 1 0
0 0 1

 ,X0,0 =

 1 −1 1
1 0 0
1 1 1

 , CX1,0.2 = JX1,0.2 =

 0 0 0
0 1.0737 1.1930
0 1.8694 4.1542

 ,

CF X1,0.2 =

 0 0 0
0 1.1060 1.1520
0 1.9673 4.2612

 , S =

 1 0 −1
0 1 0
0 0 1

 ,

and if the interval of the problem is taken as 10−16 ≤ t ≤ 2 , then we obtain

RLX1,0.2 =

 1361.32 1.70e− 13 1.89e− 29
0.85894 1.07367 1.19297
0.74775 1.86937 4.15416

 .

We calculate Eq. (4.1) including CX0.2 , CF X0.2 , RLX0.2, and JX0.2 . By using CX0.2 in Eq. (4.1), the
augmented matrix is of the form

[
W̃ ; F̃

]
=

 1 −1 0 ; 1
1 1.07370 0.1930 ; −0.8807
1 0 −1 ; −1

 .

380



KÜRKÇÜ et al./Turk J Math

It is noticed that the above matrix is a numerically different form when CF X0.2 , RLX0.2, and JX0.2 are
used. When we solve the augmented matrix, we obtain

Y =
[
0 −1 1

]T
.

Then the solution is obtained as

y2 (t) =
2∑

n=0
ynMn (Kn, t) = y0M0 (K0, t) + y1M1 (K1, t) + y2M2 (K2, t)

= (0) · 1 + (−1) · t+ 1 ·
(
t2 − 1

)
= t2 − t− 1,

which is the exact solution. Note that the same solution is obtained when CF X0.2 , RLX0.2, and JX0.2 are
used. Heris and Javidi [30] obtained the best approximate value of y(1) as 7.2526e − 05 using the fractional
backward differential formula method with step size h = 0.0001 while the present method directly finds the
exact solution.

Model 4.2. [9, 18, 50] Consider the Bagley–Torvik differential equation estimating a rigid plate in
Newtonian fluid:

D2y (t) + M
t D

3/2
0 y (t) + y (t) = f (t) , 0 < t < 1,

subject to the initial conditions y (0) = 0 and y′ (0) = 1 . When we use the fractional C, CF, RL, J derivatives,
f (t) is obtained respectively as

f (t) =
√
2

(
cos (t)S

(√
2t

π

)
− sin (t)C

(√
2t

π

))
and f (t) = −e−t + cos (t)− sin (t) ,

f (t) =
1√
tπ

+
√
2 cos (t)S

(√
2t

π

)
−
√
2 sin (t)C

(√
2t

π

)
,

and
f (t) = 0.02779t3.51F2

(
3; 3.75, 3.25;−t2/4

)
− 0.687774t1.51F2

(
2; 2.75, 2.25;−t2/4

)
+ 0.56419 1F2

(
1; 1.75, 1.25;−t2/4

)
/
√
t,

where S (t) =
t∫
0

sin(πx2

2 )dx and C (t) =
t∫
0

cos(πx2

2 )dx are Fresnel integrals [4], and 1F2 is a form of the

generalized hypergeometric function pFq [4]. The exact solution is y (t) = sin (t) . We apply our method based
on different fractional derivatives to solve the problem by taking N=4 to 32. We also employ the residual error
analysis to improve the solutions. In Table 1, we compare the L∞ errors and the corrected L∞ errors together
with the shifted Chebyshev tau (SCT) and the Fermat tau operational matrix (FTM) methods [18, 50]. As seen
there, the present results are far better than those in [18, 50]. In addition, we compare CPU time according
to N and the FTM [50]. Although our method includes all fractional derivative types, it has better processing
time than the FTM as seen in Table 2. One notices that when N=32 our method with CF slows down due to
the fact that CF includes compact exponential function. Therefore, we use C, RL, J for the applicability of
the present method. In addition, the behaviors of the obtained solutions are illustrated along with the exact
solution in Figure 2.

381



KÜRKÇÜ et al./Turk J Math

Table 1. Comparison of the L∞ errors and corrected L∞ errors in terms of N, M , fractional C, CF, RL, and J
derivatives for Model 4.2.

N,M CL∞
CFL∞

RLL∞
JL∞ FTM [50] SCT [18]

4 5.1e-04 4.0e-04 5.1e-04 5.1e-04 2.7e-04 3.4e-04
4, 5 2.2e-05 1.9e-05 2.6e-05 2.2e-05 n.a. n.a.
8 6.5e-09 6.1e-09 6.1e-04 6.5e-09 3.5e-07 4.3e-07
8, 9 1.5e-10 1.4e-10 1.5e-10 1.5e-10 n.a. n.a.
16 1.6e-15 7.8e-16 5.6e-14 3.8e-15 4.2e-10 1.8e-08
32 9.9e-16 4.2e-14 4.4e-16 9.9e-16 5.8e-12 7.1e-10

Table 2. Comparison of CPU time in terms of N and fractional C, CF, RL, and J derivatives for Model 4.2.

N Ours with C Ours with CF Ours with RL Ours with J FTM [50]
4

8

16

32

0.9375

2.5156

9.0313

34.391

0.4375

1.4375

32.094

1469.0

1.3125

3.2344

10.063

36.203

0.2344

0.3438

0.6406

1.2188

23.16

110.78

313.27

1023.85

Figure 2. Behavior of the exact solution and matching polynomial solutions with C for Model 4.2.

Model 4.3. [43] Consider the fractional Mathieu differential equation modeled for the parametric
resonance of mechanical, optical, and electrical systems:

M
t Dn

0 y (t) + (1− 0.32 cos (3t)) y (t) = 0, 1 < n ≤ 2, 0 ≤ t ≤ 2,

subject to y (0) = 1 and y′ (0) = 0 . We solve the problem for N=10 and different n and fractional derivative
types and then we apply the residual error analysis for M = 12 . Table 3 illustrates the numerical results of
the present, Runge–Kutta [46], and shifted (first and second kind) Chebyshev polynomial methods (SCP) [46]
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for n=2 and time interval [0,2]. It is easily seen from Table 3 that the present results coincide well with the
mentioned methods. In terms of different fractional derivative types and n, we demonstrate the displacement
of the matching polynomial solution in Figure 3. As seen in Figure 3, the matching polynomial solution shows
different displacements according to fractional derivatives. Thus, we can interpret Figures 3a–3d as follows:

Table 3. Comparison of the present and existing solutions at time [0,2] for n=2 and Model 4.3.

Time ti
Cy10 (ti)

Cy10,12 (ti) SCP (first kind)
m=10 [46]

SCP (second kind)
m=10 [46]

Runge–Kutta
method [46]

0.1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.996591
0.986247
0.943250
0.866936
0.753746
0.603763
0.422373
0.219367
0.006062
−0.207745
−0.415250

0.996590

0.986242

0.943236
0.866915
0.753718
0.603730
0.422336
0.219329
0.006024
−0.207781
−0.415124

0.996589

0.986247

0.943232

0.866922

0.753723

0.603727

0.422343

0.219338

0.006022

−0.207773
−0.415133

0.996582
0.986245
0.943233
0.866917
0.753722
0.603730
0.422342
0.219335
0.006025
−0.207771
−0.415136

0.996589
0.986242
0.943238
0.866917
0.753721
0.603734
0.422340
0.219333
0.006028
−0.207776
−0.415130

• As n approaches 2, the displacement of the solution Cy10 (t) in Figure 3a is more consistent than that of
CF y10 (t) in Figure 3b.

• As n approaches 2, the displacement of the solution Jy10 (t) in Figure 3d is more consistent than that of
RLy10 (t) in Figure 1c.

• Cy10 (t) is the most proper solution for Model 4.3 in comparison to the others.

On the other hand, the 3D plot of absolute errors with respect to N is depicted in Figure 4.

Model 4.4. [11] Consider the generalized fractional differential equation

M
t D

5/2
0 y (t) + y (t) + y (t− 0.5) = f (t) , 0 ≤ t ≤ 1,

subject to the initial conditions y (0) = y′ (0) = y′′ (0) = 0 . The exact solution of this problem is y (t) = t3 .
When our method based on C is applied to the problem it is observed from Table 4 that the obtained results for
N=3 are far better than those obtained by Laguerre–Gauss method (LGM) (N=22) in [11]. The same results
are also obtained when CF, RL, and J are used.

Model 4.5. [1] Consider the linear fractional oscillator equation modeled for the behavior of a physical
pendulum:

M
t Dn

0 y (t) + w2y (t) = 0, 0 ≤ t ≤ L, 1 < n ≤ 2,
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(a) the solution with C (b) the solution with CF

(c) the solution with RL (d) the solution with J

Figure 3. Displacement of the matching polynomial solution in terms of n on [0,2] for Model 4.3.

Table 4. Comparison of the present and existing results at time interval [0,1] for Model 4.4.

Time ti
Cy3 (ti) LGM N=22 [11]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

8.3e− 17

8.3e− 17

8.3e− 17

8.3e− 17

8.3e− 17

8.3e− 17

5.6e− 17

1.1e− 16

1.1e− 16

1.1e− 16

6.3e− 06

3.9e− 05

1.0e− 04

1.9e− 04

2.9e− 04

4.1e− 04

5.3e− 04

6.6e− 04

8.0e− 04

9.5e− 04
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Figure 4. Comparison of the absolute errors with C in terms of N for Model 4.3.

subject to the initial conditions y (0) = 0 and y′ (0) = w . Here, w=1, L = {1, 15} , and the exact solution
of the problem is y (t) = sin t for n=2. After employing the present method and residual error analysis based
on C, CF, RL, and J, Table 5 indicates that we obtain remarkable CPU time (s) and highly accurate results
compared to Lucas and Legendre tau methods (LuTM and LeTM) [1]. Figure 5 shows the displacement of the
solution y10 (t) when L=1 and n is increased. In addition, Figure 6 shows the behavior of the solution y20 (t)

when L = 15 . Thereby, we infer from Figures 5 and 6 that the Caputo derivative provides the most proper
fractional derivative for this model when L = 1 , and similarly, the Caputo–Fabrizio derivative does so when
L = 15 .

Table 5. Comparison of CPU time and L∞ errors in terms of N , M , L = 1 , and n = 2 for Model 4.5.

N,M CL∞
CPU
time

LuTM
L∞ [1]

LuTM
CPU

time [1]

LeTM
L∞ [1]

LeTM
CPU

time [1]
4

4, 6

8

8, 10

16

32

1.3e− 03

5.0e− 06

1.1e− 08

1.6e− 11

1.1e− 16

1.1e− 16

0

0

0

0

0

0.05

1.3e− 04

n.a.
5.4e− 07

n.a.
2.2e− 14

4.4e− 16

12.35

n.a.
33.58

n.a.
67.59

91.27

8.3e− 03

n.a.
2.5e− 06

n.a.
5.4e− 14

9.3e− 15

19.47

n.a.
45.17

n.a.
95.24

174.12

Model 4.6. Consider the multidelay fractional differential equation with variable coefficients:

sin (t)Mt D
8/5
0 y (t− 1) + M

t D
13/10
0 y (0.5t)− t2D1y (t) + ty (2t) = f (t) , 0 ≤ t ≤ 1,
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(a) the solution with C (b) the solution with CF

(c) the solution with RL and J

Figure 5. Displacement of the exact solution and matching polynomial solution in terms of n on [0,1] for Model 4.5.

subject to the initial conditions y (0) = y′ (0) = 1 . The exact solution of the problem is y (t) = et and f (t) is
differently obtained when the fractional derivative types are changed. Let us solve this tough problem by using
the present method based on C, CF, RL, and J. Then we improve the obtained solutions via the residual error
analysis with N = 8 and M = 10 . It is observed from Table 6 that our solution with respect to C, CF, RL, and
J is improved via the residual error analysis for N = 8 and M = 10 . Table 6 clearly indicates that the residual
error analysis is convenient for the present method based on different fractional derivative types. In addition,
we point out that our estimation (3.1) is satisfied in Table 6. The present method based on CF and RL leads
to better results. We indicate CPU times in Table 7. It is noticed from Table 7 that using RL in our method
causes a long processing time. Hence, we can choose a CF-based method for efficiently solving this model.

5. An illustrative algorithm

We describe an algorithm that summarizes the formulation of the method. It can be easily adopted to well-
known computer programs.
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(a) the solution with C and CF

(b) the solution with RL and J

Figure 6. Behavior of the exact solution and matching polynomial solution in terms of n on [0,15] for Model 4.5.

Step 1: Start

Step 2: Input(N, c , d)
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Table 6. Comparison of the corrected absolute and absolute errors in terms of C, CF, RL, and J for Model 4.6.

t i
C e8 (t)

C E 8,10 (t)
CF e8 (t)

CF E 8,10 (t)

0.1

0.2

0.4

0.6

0.8

1.0

2.25e − 06

1.10e − 05

5.79e − 05

1.51e − 04

2.85e − 04

4.37e − 04

3.96e − 10

3.06e − 09

2.34e − 08

7.33e − 08

1.55e − 07

2.61e − 07

6.31e − 08

8.32e − 07

7.79e − 06

2.63e − 05

5.97e − 05

1.10e − 04

1.08e − 09

3.75e − 09

1.03e − 08

1.31e − 08

8.32e − 09

5.00e − 09

t i
RL e8 (t)

RL E 8,10 (t)
J e8 (t)

J E 8,10 (t)

0.1

0.2

0.4

0.6

0.8

1.0

1.28e − 06

5.23e − 06

2.05e − 05

4.17e − 05

6.12e − 05

7.09e − 05

1.12e − 10

4.63e − 10

1.80e − 09

3.55e − 09

4.99e − 09

5.54e − 09

1.34e − 06

5.14e − 06

1.77e − 05

3.03e − 05

3.44e − 05

2.30e − 05

1.32e − 09

5.07e − 09

1.74e − 08

2.98e − 08

3.78e − 08

2.27e − 08

Table 7. Comparison of CPU time in terms of N , C, CF, RL, and J for Model 4.6.

N
The method

with C
The method

with CF
The method

with RL
The method

with J
4

16

2.25

22.1

0.42

5.25

3.53

27.5

0.56

2.78

Step 3: Mr (Kr, t)← p (Kr, 0) , p (Kr, 1) , . . . , p (Kr,m)

Step 4: ST ← takecoeffcients
(
t0, t1, . . . , tn

)
Step 5: Compose(C, CF, RL, J)

Step 6: Recall the collocation points

Step 7: W ←write(P k,n , MXk,n , Y , F)

Step 8: W̃ ← join (W , U j)

Step 9: F̃ ← join (F , τj)

Step 10: Y ← linearsolve
(

W̃ ; F̃
)

Step 11: yN (t)←Mr (Kr, t)Y

Step 12: Stop
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6. Conclusions
The multidelay FDEs under the unique formulation (1.1) have been practically solved by a novel method
consisting of different fractional derivative types. Taking into account Eq. (1.1), we can construct the following:

• Proportional delay FDEs:
m∑

k=0

Pk,n (t)
M
t Dn

ay (λk,nt) = f (t) for µk,n = 0 ,

• Constant delay or difference FDEs:
m∑

k=0

Pk,n (t)
M
t Dn

ay (t+ µk,n) = f (t) for λk,n = 1 .

We have merged well-known fractional derivative types with our method. It is observed from the results
that each fractional derivative type is in good agreement with the method. Even so, we would like to express
the estimation of our method with the fractional Caputo, Riemann–Liouville, Caputo–Fabrizio, and Jumarie
derivative types as follows:

i) As seen in the tables and figures, the fractional Caputo and Caputo–Fabrizio derivatives are more appropriate
than Riemann–Liouville and Jumarie derivatives for our method.

ii) Since the fractional Caputo–Fabrizio derivative includes a compact exponential function, the method based
on it can take a long processing time, as seen in Table 2.

iii) We know that the fractional Jumarie derivative is a modified version of the Riemann–Liouville derivative
[32]. This situation is also observed in Figures 3c and 3d.

iv) In order to use the fractional Jumarie and Riemann–Liouville derivatives in the method, we are required
to take the initial point as c ̸= 0 .

It is worth specifying that the above differences are due to including different kernels of the fractional
derivative types. That is, the Caputo derivative includes a singular kernel and a differentiated function
(see Definition 1.3), while the Caputo–Fabrizio derivative includes a smooth kernel. The Riemann–Liouville
derivative is relatively equivalent to the Caputo type except for derivative of a constant. The Jumarie derivative
type is the fixed formulation of the Riemann–Liouville type, but the Jumarie type holds for n ∈ (0, 1) .

As a result, we demonstrate here that the fractional Caputo derivative is the best selection to employ in
our method. Therefore, the practicability and efficiency of the method depend on determining the fractional
derivative type.

The processing time of the method is very reasonable in comparison with other methods, as seen from
Tables 2 and 5. It is clearly noticed from Figures 2–6 that the matching polynomial solutions coincide well
with the exact solutions as n and N are increased. The durable structure of the complete graph has given rise
to the use of high values of N. New residual error analysis based on the fractional derivative has improved the
obtained solutions, as seen in Tables 1, 3, 5, and 6.

We show that the present method based on a different graph structure can be used for solving delay
fractional integro-differential and (fractional) partial differential equations. All of them are planned as a future
work.
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