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Abstract: The spectral problem −u′′(x) + αu′′(−x) = λu(x) , −1 < x < 1 , with nonlocal boundary conditions
u(−1) = βu(1) , u′(−1) = u′(1) , is studied in the spaces Lp(−1, 1) for any α ∈ (−1, 1) and β ̸= ±1 . It is proved that if

r =
√

(1− α)/(1 + α) is irrational then the system of its eigenfunctions is complete and minimal in Lp(−1, 1) for any
p > 1 , but does not form a basis. In the case of a rational value of r , the way of supplying this system with associated
functions is specified to make all the root functions a basis in Lp(−1, 1) .
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1. Introduction
Consider the problem

Lu ≡ −u′′(x) + αu′′(−x) = λu(x), −1 < x < 1,
u(−1) = βu(1), u′(−1) = u′(1),

(1.1)

with the differential expression that contains the involution transformation of the argument x in its highest
derivative, and an arbitrary parameter α ∈ (−1, 1) .

As the periodic case with β = 1 was thoroughly discussed in [28] and the value β = −1 leads to a
degenerate problem, we study the problem (1.1) for any real β ̸= ±1 .

If α = β = 0 then one faces the well-known nonlocal problem of the Samarskii–Ionkin type [10] which
delivers an example of a spectral problem for ODEs with an infinite number of associated functions. Il’in [8]
called these spectral problems essentially nonself-adjoint and pointed out their intrinsic instability with respect
to small perturbations of the differential expression and the choice of the associated functions [9, 12, 21–23].

This paper continues the research of [16] and shows that the considered boundary-value problem (1.1)
encapsulates the same instability but with respect to its parameter α in all spaces Lp(−1, 1) , p > 1 .

Proposition 1.1 ([16]) Denote

r =
√
(1− α)/(1 + α), (1.2)

and let β ̸= ±1 . Then:
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1) for any positive r , the system of root functions of (1.1) is complete and minimal in L2(−1, 1) ;
2) if r is irrational then there are no associated functions while the eigenfunctions of (1.1) do not

constitute a basis in L2(−1, 1) ;
3) if r is rational then there is an infinite number of associated functions that could be chosen to make

the whole system of root functions of (1.1) an unconditional basis in L2(−1, 1) .

In this paper, we obtain an analogous result for any Lebesgue space Lp(−1, 1) , p > 1 .

Theorem 1.2 Let r in (1.2) be a positive irrational number and β ̸= ±1 . Then the system of eigenfunctions
of (1.1) is complete and minimal in Lp(−1, 1) for all p > 1 , but is not uniformly minimal, and therefore does
not constitute a basis in Lp(−1, 1) .

Theorem 1.3 Let r in (1.2) be rational and β ̸= ±1 . Then the system of root functions of (1.1) is complete
and minimal in Lp(−1, 1) for any p > 1 , and the associated functions could be chosen in such a way that the
whole system forms a basis in Lp(−1, 1) .

We note that the case β = 0 was studied in detail in [17, 18].
It is also worth mentioning that, for all Lebesgue spaces Lp(−1, 1) , p > 1 , the problem (1.1) demonstrates

an unexpected stability of its characteristics with respect to the values of β ̸= ±1 . Both the absence of
uniform minimality in Theorem 1.2 and the presence of basis property in Theorem 1.3 stay unchanged when
the parameter α ∈ (−1, 1) is fixed. This is a new effect, which was obscured in [16–18].

Since the 1970s the qualitative theory of differential equations with involution has been cultivated rather
extensively (see, e.g., books by Przeworska-Rolewicz [26], Wiener [36], and Cabada and Tojo [5]). Spectral
topics for first- and second-order operations that have involution in their main terms are discussed in [13–
15, 32, 33]. Applications of the spectral approach for PDEs with involution and/or nonlocal boundary conditions
are discussed in [1, 2, 25, 27, 29–31]. For the spectral properties of conventional differential operators in non-
Hilbert spaces, one could refer to [4, 6, 7, 19, 20, 34].

2. The case of irrational number r

One can easily calculate the spectrum of (1.1):

σ(L) =
{
0; (1± α)π2n2 |n ∈ N

}
, (2.1)

and the corresponding eigenfunctions:

λ0 = 0 : u0(x) = (1− β)x+ (1 + β), λ′
l = (1 + α)π2l2 : u

(1)
l (x) = sin(πlx),

λ′′
k = (1− α)π2k2 : u

(2)
k (x) = cos(πkx) + (1− β) cosπk

(1 + β) sin(πrk) sin(πrkx), l, k ∈ N.
(2.2)

The dual system is formed by eigenfunctions of the adjoint problem

Lv(x) = λv(x), −1 < x < 1,
v(−1) = v(1), (α− β)v′(−1) = (αβ − 1)v′(1),

(2.3)
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namely,

λ0 = 0 : v0(x) = 1/(2 + 2β), λ′′
k = (1− α)π2k2 : v

(2)
k (x) = cos(πkx),

λ′
l = (1 + α)π2l2 : v

(1)
l (x) = sin(πlx) + (1− β) cosπl

(1 + β)r sin(πl/r) cos
(πlx

r

)
, l, k ∈ N.

(2.4)

In order to study the basicity of systems (2.2) and (2.4), we start with the following result.

Lemma 2.1 For any β ̸= ±1 , both systems (2.2) and (2.4) are complete and minimal in Lp(−1, 1) for any
p > 1 .

Proof Recall that the system {en} in a Banach space B is complete in B if it spans B and is minimal if
neither element in this system belongs to the span of others. It is known that the minimality of a system is
provided by existence of a dual system. Therefore, in our case it is sufficient to prove completeness of (2.2) and
(2.4) in Lp(−1, 1) which is equivalent to their totality in Lq(−1, 1) , q−1 + p−1 = 1 .

For instance, consider an element f ∈ Lq(−1, 1) , which is orthogonal to each function in (2.2). Then, as
f(x) is orthogonal to the sine-functions and due to the fact that the trigonometric system forms a basis in Lq

[11, p. 128], the function f(x) a.e. coincides with an even function. Thus, we have

0 =

∫ 1

−1

f(x)u
(2)
k (x) dx =

∫ 1

−1

f(x) cos(πkx) dx,

and therefore f(x) is a.e. constant on [−1, 1] . The relations
∫ 1

−1
f(x)u0(x) dx = 0 and

∫ 1

−1
u0(x) dx = 2+2β ̸= 0

provide that f(x) vanishes a.e. on [−1, 1] . System (2.4) is analyzed similarly. 2

A system {en} ⊂ B is called a basis in B if, for any f ∈ B , there exists a unique convergent to f series:∑∞
n=1 αnen = f . Any basis in B is complete and minimal and thus has a unique dual system {e∗n} ⊂ B∗ .

Moreover, αn = e∗n(f) for any n and the series for f is called biorthogonal.
Let us prove now that, in the case of irrational r , both systems (2.2) and (2.4) do not form bases in

Lp(−1, 1) . It actually follows from the fact [24] that these systems are not uniformly minimal in B = Lp(−1, 1) ,
i.e. the property

sup
n

(
∥en∥ · ∥e∗n∥

)
< ∞ (2.5)

is violated.

Lemma 2.2 For any β ̸= ±1 , neither system (2.2) nor system (2.4) is uniformly minimal in Lp(−1, 1) , p > 1 .

Proof Let us consider the system (2.2) in the space Lp(−1, 1) . The Lq -norms of the functions v
(2)
k (x) in

(2.4) satisfy the estimates

21/q ≥ ∥v(2)k ∥q ≥ 2−1/p∥v(2)k ∥1 ≥ 2−1/p∥v(2)k ∥22 = 2−1/p. (2.6)

We show that there exists a sequence kn of positive integers such that the norms ∥u(2)
kn

∥p tend to infinity.

Indeed, the L1 -norm of the function u
(2)
k (x) satisfies the inequalities∫ 1

−1

|u(2)
k (x)| dx ≥

∣∣∣ 1− β

(1 + β) sin(πrk)

∣∣∣ ∫ 1

−1

| sin(πrkx)| dx− 2 ≥
∣∣∣ 1− β

(1 + β) sin(πrk)

∣∣∣(1− sin(2πkr)
2πkr

)
− 2. (2.7)
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It follows from [11, p.25] that the inequality
∣∣∣∣1r − k

s

∣∣∣∣ < 1

s2
has infinitely many solutions k = kn, s = sn ∈

N . Hence, |πrkn − πsn| <
πr

sn
and | sin(πrkn)| < | sin(πr/sn)| . Therefore, the factor on the right-hand side of

(2.7) tends to infinity as k = kn → ∞ , which means that the norm

∥u(2)
kn

∥p ≥ 2(1−p)/p∥u(2)
kn

∥1

blows up. 2

Lemmas 2.1 and 2.2 yield the result of Theorem 1.2.

3. The case of rational number r

Now let r be equal to some irreducible fraction m1

m2
(m1,m2 ∈ N). Then the spectrum (2.1) contains two

merging subsequences:
λ∗
n ≡ λ′

m1n = λ′′
m2n ∀n ∈ N. (3.1)

The corresponding eigenfunctions are no more linearly independent, all eigenvalues λ∗
n have multiplicity

2 , and each of their root subspaces is the linear span of one eigenfunction and one associated function.
Straightforward calculation shows that the biorthogonal pairs are formed by the functions (compare with (2.2)
and (2.4)):

u0(x), u
(1)
l (x), l ̸≡ 0 (mod m1), u

(2)
k (x), k ̸≡ 0 (mod m2),

u∗
n(x) = sin(πm1nx),

u∗
n,1(x) =

(
2(1 + α)πm1n

)−1[
x cos(πm1nx) +

1 + β

1− β
(−1)(m1+m2)n cos(πm2nx)

]
+ anu

∗
n(x), n ∈ N,

(3.2)

for the direct problem (1.1) and

v0(x), v
(1)
l (x), l ̸≡ 0 (mod m1), v

(2)
k (x), k ̸≡ 0 (mod m2),

v∗n(x) = 2(1 + α)πm1n
1− β

1 + β
(−1)(m1+m2)n cos(πm2nx),

v∗n,1(x) = − 1− β

r(1 + β)
(−1)(m1+m2)nx sin(πm2nx) + sin(πm1nx)− anv

∗
n(x), n ∈ N,

(3.3)

for the adjoint problem (2.3) (the constants an ∈ R could be chosen arbitrarily).

Lemma 3.1 Let β ̸= ±1 . Then systems (3.2) and (3.3) are complete and minimal in Lp(−1, 1) for any p > 1 .

The proof of Lemma 3.1 is similar to the proof of Lemma 2.1.

Lemma 3.2 Let β ̸= ±1 . If an = O(1/n) , n → ∞ , then both systems (3.2) and (3.3) are uniformly minimal
in Lp(−1, 1) , p > 1 . If lim

n→∞
nan = ∞ then these systems are not uniformly minimal and therefore do not

form bases.
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Proof Consider the biorthogonal pair u
(1)
l (x) and v

(1)
l (x) , ∀l ̸≡ 0(mod m1) . It is clear that

∥u(1)
l ∥p ≤ 21/p, ∥v(1)l ∥q ≤ 21/q

(
1 +

∣∣∣ 1− β

(1 + β)r sin(πl/r)

∣∣∣)
and the estimate | sin(πl/r)| ≥ sin(π/m1) holds as the number l/r = lm2/m1 is not an integer. Therefore, the

product ∥u(1)
l ∥p · ∥v(1)l ∥q is bounded for all l ̸≡ 0(mod m1) .

Similarly, one can evaluate the product ∥u(2)
k ∥p · ∥v(2)k ∥q for all k ̸≡ 0(mod m2) .

For the eigenvalues λ = λ∗
n and the related eigenfunctions, the estimates

c1 ≤ ∥u∗
n∥p ≤ c2, c1n ≤ ∥v∗n∥q ≤ c2n

are apparently valid with some positive constants c1, c2 . As for the associated functions, the condition
an = O(1/n) yields the estimates

∥u∗
n,1∥p = O(1/n), ∥v∗n,1∥q = O(1),

and therefore the uniform minimality condition (2.5) is satisfied.
If lim

n→∞
nan = ∞ then the situation alters and we get the estimates

∥u∗
n,1∥p ≥ c3|an| > 0, ∥v∗n,1∥q ≥ c3|an|n,

which show that the condition (2.5) breaks. 2

Further, we consider systems (3.2) and (3.3) only with an ≡ 0 for all n . Gaposhkin’s theorem [24] states
that, for any p > 1 , p ̸= 2 , these systems could form only conditional bases in Lp(−1, 1) . Therefore, we need
to arrange them before studying their basicity. The arrangement naturally corresponds to that of the classical
trigonometric system.

The ordered biorthogonal system starts with the pair
[

u0(x)
v0(x)

]
, which is followed by the juxtaposed

blocks of coupled pairs [
u
(1)
k (x) u

(2)
k (x)

v
(1)
k (x) v

(2)
k (x)

]
, k = 1, 2, . . . . (3.4)

However, if k ≡ 0(mod m1) , then the first column of the block (3.4) should be replaced by the column

[
u∗
n(x)

v∗n,1(x)

]
,

and if k ≡ 0(mod m2) then also the second column is replaced by the column

[
u∗
n,1(x)
v∗n(x)

]
.
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In order to analyze the biorthogonal series, we split its partial sum SN (x, f) in the following way (here
K1 = m1N and K2 = m2N):

SN (x, f) = (f, v0)u0(x) +
∑

1≤k≤N

k ̸∈K1

(
f, v

(1)
k

)
u
(1)
k (x) +

∑
1≤k≤N

k ̸∈K2

(
f, v

(2)
k

)
u
(2)
k (x)

+
∑

1≤k≤N

k∈K1

(
f, v∗n,1

)
u∗
n(x) +

∑
1≤k≤N

k∈K2

(
f, v∗n

)
u∗
n,1(x).

(3.5)

This sum apparently contains the partial sum of Fourier trigonometric series:

S
(0)
N (x, f) = (f(t), 1/2) +

N∑
k=1

{(
f(t), cos(πkt)

)
cos(πkx) +

(
f(t), sin(πkt)

)
sin(πkx)

}
, (3.6)

and the remaining items are

(
f(t),

1− β

2 + 2β

)
x,

S
(1)
N (x, f) =

1− β

(1 + β)r

∑
1≤k≤N

k ̸∈K1

cosπk
sin(πk/r)

(
f(t), cos

(πkt
r

))
sin(πkx),

S
(2)
N (x, f) =

1− β

1 + β

∑
1≤k≤N

k ̸∈K2

cosπk
sin(πkr)

(
f(t), cos(πkt)

)
sin(πkrx),

S
(3)
N (x, f) = − 1− β

(1 + β)r

∑
1≤k≤N

k∈K1

(−1)(1+r)k/r
(
f(t), t sin

(πkt
r

))
sin(πkx),

S
(4)
N (x, f) =

1− β

1 + β
x

∑
1≤k≤N

k∈K2

(−1)(1+r)k
(
f(t), cos(πkt)

)
cos(πkrx).

(3.7)

To analyze these sums for a given f ∈ Lp(−1, 1) , we decompose f(x) into the sum of its even and odd
components, f(x) = f+(x) + f−(x) and note that for the odd component f−(x) all the sums in (3.7) vanish.

In S
(3)
N (x, f+) , we substitute k = m1n and, without loss of generality, suppose that m1 + m2 is even.

Then it takes the form

S
(3)
N (x, f+) = − 2− 2β

(1 + β)r

∑
n: 1≤m1n≤N

∫ 1

0

f+(t)t sin(πm2nt) dt · sin(πm1nx),

which, under the transform τ = m2t, y = m1x , equals

− 2− 2β

(1 + β)rm2
2

∑
n: 1≤m1n≤N

∫ m2

0

f+

( τ

m2

)
τ sin(πnτ) dτ · sin(πny).

The latter sum is clearly a sum of m2 partial sums of Fourier trigonometric series for functions with Lp -norms,
which are O(1)∥f∥p .
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The same reasoning gives a similar representation for S
(4)
N (x, f+) .

The sum S
(2)
N (x, f+) could be split into m2−1 items in accordance with the remainder k1 = k (mod m2) .

Then, for instance, the item S
(2,k1)
N (x, f+) with even k1 and m1 +m2 equals

1− β

(1 + β) sin(πk1r)
∑

1≤k≤N

k=k1+m2n

{∫ 1

0

f(t) cos(πk1t) cos(πm2nt) dt
[
cos(πm1nx) sin(πk1rx) + sin(πm1nx) cos(πk1rx)

]

−
∫ 1

0

f(t) sin(πk1t) sin(πm2nt) dt
[
cos(πm1nx) sin(πk1rx) + sin(πm1nx) cos(πk1rx)

]}
.

This expression consists of four items, which are linear combinations of the partial sums of Fourier
trigonometric series for some functions for which Lp -norms are O(1)∥f∥p , and of the partial sums of conjugate
trigonometric series, which converge in Lp(0, 1) to functions with Lp -norms that are also O(1)∥f∥p due to

Riesz’s theorem [3, p. 566]. The sum S
(1)
N (x, f+) is considered similarly.

It follows from [3, pp. 593–594] that if F (x) ∈ Lp then the partial sums σN (x, F ) of its Fourier
trigonometric series and the partial sums σ∗

N (x, F ) of its conjugate series satisfy the estimates

∥σN (x, F )∥p ≤ c∥F∥p, ∥σ∗
N (x, F )∥p ≤ c∥F∥p

uniformly with respect to N with some positive constant c .
Relations (3.5)–(3.7) and the above reasoning thus prove that

∥SN (x, f)∥p ≤
∥∥∥(f, 1− β

2 + 2β

)
x
∥∥∥
p
+

∥∥∥S(0)
N (x, f)

∥∥∥
p
+

4∑
j=1

∥∥∥S(j)
N (x, f+)

∥∥∥
p
= O(1)∥f∥p (3.8)

uniformly with respect to N .
The system of root functions (3.2) is complete and minimal in Lp(−1, 1) by Lemma 3.1; therefore (see,

e.g., [11, p. 11]), the estimate (3.8) is sufficient for its basicity in Lp(−1, 1) . Theorem 1.3 is proved.
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