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Abstract: The aim of this paper is to show that using some natural curve arrangements in algebraic surfaces and
Hirzebruch–Kummer covers, one cannot construct new examples of ball-quotients, i.e. minimal smooth complex projec-
tive surfaces of general type satisfying equality in the Bogomolov–Miyaoka–Yau inequality.
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1. Introduction
In his pioneering papers [4, 7], Hirzebruch constructed some new examples of algebraic surfaces which are ball-
quotients, i.e. algebraic surfaces for which the universal cover is the 2 -dimensional unit ball. Alternatively,
these are minimal smooth complex projective surfaces of general type satisfying equality in the Bogomolov–
Miyaoka–Yau inequality [9]:

K2
X ⩽ 3e(X),

where KX denotes the canonical divisor and e(X) is the topological Euler characteristic. The key idea of
Hirzebruch, which enabled constructing new examples of ball-quotients, is that one can consider abelian covers of
the complex projective plane branched along line arrangements [1]. The same idea was used by the author in [11],
where the main result tells us that for d -configurations of curves (configurations of smooth irreducible curves in
the complex projective plane, each irreducible component has the same degree d ⩾ 2 , and all intersection points
are transversal), the associated Hirzebruch–Kummer construction in most cases does not provide new examples
of ball-quotients. On the other hand, it is worth pointing out that Hirzebruch’s idea can also be investigated
from a different point of view focusing on H -indices, and we refer to [13, section 4] for details. Looking at
Hirzebruch’s construction, one might hope that if suitably adapted, it can yield new examples of ball-quotients
coming from certain curve arrangements in algebraic surfaces. That was the hope of Hirzebruch and his research
group in the 1980s when several PhD theses were written. For instance, a nice project was conducted by Bruce
Hunt [8], where he considered a 3-dimensional analog of Hirzebruch’s construction. However, it turned out that
using hyperplane arrangements in the three dimensional complex projective space, one cannot construct new
examples of ball-quotients using the so-called Fermat covers. It is worth pointing out that in [1, chapter 5], the
authors provided a list of the so-called weighted line arrangements leading to ball-quotients via good abelian
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covers, for an outline in English we refer to [6]. Our idea is to extend investigations of Hirzebruch’s school to a
larger class of surfaces and curve arrangements hoping that this would lead to new examples of ball-quotients.
In the first part of the paper, we apply Hirzebruch’s construction to rational section arrangements in Hirzebruch
surfaces and we show that it is not possible to construct new examples of ball-quotients. Let us point out here
that by Hirzebruch surfaces, we mean classical ones and these surfaces have nothing to do with the resulting
surfaces in Hirzebruch’s construction. As we will be able to observe, the reason behind the claim is purely
combinatorial, so our problem does not address the question whether a certain section arrangement can be
geometrically realized. In the second part, we present a general result which tells us that smooth algebraic
surfaces W with KW nef and effective and certain curve arrangements coming from ample and effective linear
systems do not provide new examples of ball-quotients. At last, we provide an improved version of theorem 4.2
in [11] which shows that there is in fact no d -configuration such that the associated Hirzebruch–Kummer cover
leads to a new example of ball-quotients.

We briefly present the main construction due to Hirzebruch focusing on the case of rational curves in
Hirzebruch surfaces; this was done in detail, for instance, in the master thesis by S. Eterović [3]. However, since
Hirzebruch’s construction is the Swiss army knife in our toolbox, we decided to present a concise introduction
to this topic. The whole theory which stands behind this paper can be found in the classical textbook [1], a
general construction of abelian covers for algebraic varieties can be found in [10]. It is worth mentioning that
a similar construction to those discovered by Hirzebruch was also performed in [12]. Finally, we would like to
warmly encourage the reader to look at fantastic lecture notes by Catanese [2], where the author presented a
topological side of Hirzebruch–Kummer covers in the case of line arrangements (and more) in section 4.

We work exclusively over the complex numbers.

2. Hirzebruch–Kummer covers and Hirzebruch surfaces
Let us denote by Fe the e -th Hirzebruch surface. The Picard group of Fe is generated by Γ and F with
Γ2 = −e , Γ.F = 1 , and F 2 = 0 . In this and the next section, we will consider only the rational section
arrangements that we are going to define right now.

Definition 2.1 Let C = {C1, ..., Ck} with Ci ∈ |(e+ 1)F + Γ| and k ⩾ 5 . We say that C is a rational section
arrangement if:

• all curves Ci are irreducible and smooth;

• all intersection points are transversal;

• all singular points of C have multiplicities strictly less than k − 2 .

Let us emphasize that the name of these arrangements comes from the fact that all irreducible components are
smooth rational curves. Now we introduce the following combinatorial notion. We denote by tr = tr(C) the
number of r -fold points, i.e. points where exactly r curves from C intersect, and additionally for i ∈ {0, 1, 2} ,
we define

fi = fi(C) =
∑
r⩾2

ritr.

We start with the following combinatorial result in the spirit of [3, lemma 13.1].
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Lemma 2.2 For a rational section arrangement C , one has f0 ⩾ e+ 6 .

Proof Suppose that f0 < e+ 6 . Then by the combinatorial equality

(e+ 2)(k2 − k) =
∑
r⩾2

r(r − 1)tr ⩽ (k − 3)(k − 4)f0 < (k − 3)(k − 4)(e+ 6).

This leads to
(e+ 2)(3k − 6) < 2(k − 3)(k − 4).

Since k ⩽ f0 < e+ 6 , where the first inequality is a consequence of [15, remark 7.4], we obtain

k − 4 ⩽ e+ 2 <
2(k − 3)(k − 4)

3k − 6
.

Thus,

0 <
−k(k − 4)

3k − 6

and since k ⩾ 5 we arrive at a contradiction. 2

Now we are going to provide a short outline of Hirzebruch’s construction. This can be done, of course, in a
general setting, but we believe that it would not lead to confusion once we explain this construction using a
particular example. Given a rational section arrangement C , denote by si the section defining Ci ∈ C , and
consider the following morphisms:

f : Fe ∋ x → (s0(x) : ... : sk−1(x)) ∈ Pk−1;

p : Pk−1 ∋ (x0 : ... : xk−1) → (xn
0 : ... : xn

k−1) ∈ Pk−1 with n ⩾ 2.

Now we define the fiber product X := {(x, y) ∈ Fe × Pk−1 : f(x) = p(y)} which is a normal surface, and we
obtain a morphism π : X → Fe whose branch locus is C . After the resolution of singularities ρ : Y → X , we
obtain a smooth projective surface which is called the Hirzebruch–Kummer cover of order nk−1 and exponent
n ⩾ 2 . Notice that q ∈ X is a singular point if the multiplicity of π(q) is greater than or equal to 3. Let us
denote by τ : Z → Fe the blowing-up along all singular points of C such that their multiplicities are greater
than or equal to 3 , then there exists a morphism σ : Y → Z such that πρ = τσ . Let p = π(q) be a singular
point of C having multiplicity ⩾ 3 , and let us denote by Ep the exceptional curve in Z over p . Now we are
ready to compute the Chern numbers. Since this procedure is well studied (for instance in [1, 11]), we present
this part in a rather sketchy way. It is easy to compute the second Chern number of Y (please notice that
e(Ci) = 2):

e(Y )/nk−3 = n2(4− 2k + f1 − f0) + 2n(k − f1 + f0) + f1 − t2.

Now we want to compute the first Chern number of Y , which is equal to c21(Y ) = nk−1D2 with

D = τ∗
(
KFe

+
n− 1

n
C

)
+

∑
p

(
2n− 1

n
− n− 1

n
rp

)
Ep,

where C = C1 + ...+Ck , rp denotes the multiplicity of a singular point p ∈ Sing(C) , i.e. the number of curves
from C passing through p , and the above sum goes through all essential singularities of C , i.e. those singular
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points which have multiplicity ⩾ 3 . Quite tedious computations, making use of the combinatorial equality
(e+ 2)(k2 − k) = f2 − f1 , lead to

c21(Y )/nk−3 = n2(8− (e+ 6)k + 3f1 − 4f0) + 4n(k − f1 + f0) + (e+ 2)k + f1 − f0 + t2.

Now our aim is to show that for n ⩾ 2 , k ⩾ 5 , and e ⩾ 2 , the Kodaira dimension of Y is nonnegative,
which will allow us to use the Bogomolov–Miyaoka–Yau inequality; this part is also in the spirit of [3]. However,
we need to assume additionally the following property:

(•) in C one can find exactly four sections intersecting only at double and triple points.

First of all, observe that D can be written as

D = (e+ 2)F +
∑
p

apEp +
∑
j

bjC
′

j ,

where C
′

j = τ∗Cj−
∑

p∈EssSing(C)∩Cj
Ep is the strict transform of Cj , and the crucial thing is that the coefficients

ap and bj are nonnegative, namely

ap ⩾ 2n− 1

n
− 3

2
, bj ⩾

n− 1

n
− 1

2
.

Let us emphasize directly that in the case of ap ’s, we rigorously used the fact that we can find four sections
in C not intersecting along quadruple points. The above considerations allow us to conclude that D can be
written as a linear combination of effective divisors with nonnegative coefficients. Additionally, it is easy to see
that D.Ep ⩾ 0 , and we need to show that if n ⩾ 2 and e ⩾ 2 , one has D.C

′

j ⩾ 0 . Observe that

D.C
′

j = −e− 4 +
n− 1

n
k(e+ 2)−

∑
p∈Cj ,rp⩾3

(
n− 1

n
(rp − 1)− 1

)
.

Using the following combinatorial count

(e+ 2)(k − 1) =
∑

p∈Sing(C)∩Cj

(rp − 1)

we obtain ∑
p∈Cj ,rp⩾3

(
n− 1

n
(rp − 1)− 1

)
=

∑
p∈Cj ,rp⩾3

(
n− 1

n
(rp − 1)

)
− #|p ∈ Cj : rp ⩾ 3|

=
n− 1

n
(e+ 2)(k − 1)− #|p ∈ Cj : rp ⩾ 3| − n− 1

n
#|p ∈ Cj : rp = 2|.

This leads to

D.C
′

j ⩾ −2− e+ 2

n
+

n− 1

n
#|p ∈ Cj : rp ⩾ 2|.

Since #|p ∈ Cj : rp ⩾ 2| ⩾ e+ 6 , we get D.C
′

j ⩾ 0 .
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Now we are allowed to use the Bogomolov–Miyaoka–Yau inequality. Let us define the following Hirzebruch
polynomial:

HC(n) =
3e(Y )− c21(Y )

nk−3
= n2(4 + ek + f0) + 2n(k − f1 + f0) + 2f1 − 4t2 + f0 − (e+ 2)k,

and by the previous considerations, if C is a rational section arrangement with k ⩾ 5 satisfying additionally (•) ,
n ⩾ 2 , and e ⩾ 2 , then HC(n) ⩾ 0 . If we can find a section arrangement C′ with (•) such that HC′(n0) = 0

for some n0 ⩾ 2 , then the associated Hirzebruch–Kummer cover is a ball-quotient.

3. Rational section arrangements in Hirzebruch surfaces
In this section, we check whether there exists a rational section arrangement C such that the associated
Hirzebruch–Kummer cover Y is a ball-quotient. It turns out that the answer is negative. In order to observe this
phenomenon, we will use the theory of constantly branched covers which was developed in [1]. Let us recall some
facts from [1, section 1.3]. We know that if Y is a ball-quotient, then all irreducible components of the (reduced)
ramification divisor σ∗(C̄) , where C̄ is the total transform of C in Z , must satisfy prop(E) = 2E2 − e(E) = 0 .
In particular, each irreducible component C of σ∗Ep satisfies C2 = −nrp−2 and

prop(C) = nrp−2((rp − 2)(n− 1)− 4). (1)

The condition prop(C) = 0 leads to
(n− 1)(rp − 2) = 4,

and the following pairs are admissible (we have the following order of listing: (n, rp)):

(5, 3), (3, 4), (2, 6).

It means that Y can be a ball-quotient if one of the following conditions is satisfied:
• tr = 0 for r ̸= 2, 3 and n = 5 ,
• tr = 0 for r ̸= 2, 4 and n = 3 ,
• tr = 0 for r ̸= 2, 6 and n = 2 .

The above considerations suffice to conclude that we cannot construct new examples of ball-quotients for
n ∈ {3, 5} . Let us compute HC(3) and HC(5) . After a moment, we see that:

HC(3) = 36 + 8ek + 4k − 4f1 + 16f0 − 4t2 ⩾ 0,

HC(5) = 100 + 24ek + 8k + 36f0 − 8f1 − 4t2 ⩾ 0.

Consider the case where n = 3 and C has only double and quadruple points. If the associated Hirzebruch–
Kummer cover Y is a ball-quotient, then in particular

0 = HC(3) = 9 + (2e+ 1)k + t2 > 0,

a contradiction. Similarly, if n = 5 and C has only double and triple points, then Y is a ball-quotient if

0 = HC(5) = 25 + (6e+ 2)k + 4t2 + 3t3 > 0,

a contradiction.
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Now we need to consider the case where n = 2 . We have

HC(2) = 16 + 3ek + 2k + 9f0 − 2f1 − 4t2 ⩾ 0.

If there exists a rational section arrangement C′ having only double and sixfold points such that the associated
Hirzebruch–Kummer cover is a ball-quotient, then

16 + (3e+ 2)k + t2 = 3t6.

We need to find some constraints on the number of double and sixfold points of C′ . Here, we can use in fact
a general statement from Section 4 (positivity of the canonical divisor in this place does not play any role). In
order to avoid repetitions, let us briefly conclude that using formulae (6) with a = e + 2 and b = −e − 4 , we
finally obtain

−8 = (e+ 1)k,

a contradiction.

Theorem 3.1 There does not exist any section arrangement C ⊂ Fe with e ⩾ 2 such that the associated
Hirzebruch–Kummer cover is a ball-quotient.

Our choice of curves that we applied in Hirzebruch–Kummer’s construction in Sections 2 and 3 is not accidental.
In the next section, we are going to give some evidence that we should not expect to obtain new examples of
ball-quotients using curves of positive genera.

4. Curve arrangements in surfaces with nef and effective canonical divisor

In this section, we consider only pairs (W, C) , where W is an algebraic surface and C an arrangement of curves,
admitting Hirzebruch–Kummer covers. We assume that our surface W is smooth, complex, and projective such
that KW is nef and effective. We will keep the same notation as that in Section 2.

Definition 4.1 Assume that the linear system |A| is effective for a certain ample line bundle A on W and
denote by C1, ..., Ck ∈ |A| smooth irreducible curves. We say that C = {C1, ..., Ck} is a regular arrangement of
curves if

• all intersection points are transversal;

• there is no point where all curves from C meet.

Let us recall that for such configurations, the following combinatorial identities hold:

a(k2 − k) =
∑
r⩾2

(r2 − r)tr, (2)

a(k − 1) =
∑

p∈Sing(C)∩Cj

(rp − 1), (3)

where a = A2 and Cj ∈ C is fixed. Moreover, we define b := KW .Cj , and obviously b ⩾ 0 . Now we consider the
abelian cover of W branched along a regular arrangement C , which can be viewed, according to the previous
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sections, as the minimal desingularization Y of the fiber product W ×Pk−1 Pk−1 . We can compute the Chern
numbers of Y , namely

c2(Y )/nk−3 = n2(e(W ) + (a+ b)k + f1 − f0) + n(−(a+ b)− 2f1 + 2f0) + f1 − t2;

c21(Y )/nk−3 = n2(K2
W + (a+ 2b)k + 3f1 − 4f0) + 2n(−(a+ b)k − 2f1 + 2f0) + ak + f1 − f0 + t2.

Let us observe that c21(Y ) = nk−1K2 with

K = τ∗(KW ) +
∑

EP +
n− 1

n

(∑
EP + τ∗C −

∑
rPEP

)
,

where C = C1 + ...+Ck , which shows that K is effective. It means that we are allowed to use the Bogomolov–
Miyaoka–Yau inequality for any n ⩾ 2 . Let us define the following Hirzebruch polynomial:

HC(n) =
3c2(Y )− c21(Y )

nk−3
= n2(3e(W )−K2

W + (2a+ b)k + f0) + n(−(a+ b)k − 2f1 + 2f0)

− ak + 2f1 + f0 − 4t2. (4)

Now we would like to check whether there exists a regular arrangement C such that the associated
Hirzebruch–Kummer cover provides a new example of ball-quotients. We need to consider cases for n ∈ {2, 3, 5} .
We can start with n = 3 . For brevity, let us denote by δ(W ) := 3e(W )−K2

W . We see that HC(3) = 0 leads to

9

4
δ(W ) +

(
7

2
a+

3

2
b

)
k + t2 + t3 =

∑
r⩾5

(r − 4)tr,

and if there exists a regular arrangement with double and quadruple points providing a ball-quotient, then

0 =
9

4
δ(W ) +

(
7

2
a+

3

2
b

)
k + t2 > 0,

a contradiction.
Similarly, if n = 5 , then HC(5) = 0 leads to

25

4
δ(W ) + (11a+ 5b)k + 4t2 + 3t3 + t4 =

∑
r⩾5

(2r − 9)tr,

and if there exists a regular configuration with only double and triple points providing a ball-quotient, then

0 =
25

4
δ(W ) + (11a+ 5b)k + 4t2 + 3t3 > 0,

a contradiction.
Now we need to deal with the case n = 2 . The condition HC(2) = 0 leads to

4δ(W ) + (5a+ 2b)k + t2 + 3t3 + t4 =
∑
r⩾5

(2r − 9)tr,

418



POKORA/Turk J Math

and if there exists a regular configuration C having double and sixfold points providing a ball-quotient, then

4δ(W ) + (5a+ 2b)k + t2 = 3t6. (5)

We need to find combinatorial constraints on the number of double and sixfold points for such regular arrange-
ments. This can be done using an extended version of deviations from proportionality—see, for instance, [11]
for details. It means that we need to investigate the condition prop(Dj) = 0 with Dj = σ∗(C ′

j) , where C ′
j is

the strict transform of Cj ∈ C under the blowing-up τ . This gives

0 = prop(Dj) = nk−3(prop(Cj) + (n− 1)(rj − e(Cj))− 2γj),

where rj denotes the number of singular points in Cj , γj denotes the number of essential singular points, i.e.
those with multiplicities ⩾ 3 , and rj,2 denotes the number of double points (altogether rj = γj + rj,2 ).

For n = 2 , we have only double and sixfold points, and we need to use the conditions prop(C) = 0 and
prop(Dj) = 0 simultaneously. These two conditions lead us to

rj,6 + rj,2 =
a(k − 1)− 8a− 4b

3
.

It is worth pointing out that during computations we have used (3). Since∑
j

rj,r = rtr,

we obtain the following formula:

2t2 + 6t6 = f1 = k · a(k − 1)− 8a− 4b

3
.

Combining this with the combinatorial equality (2), we can find constraints on t2 and t6 , namely:

t2 =
ak2 − 21ak − 10bk

12
, t6 =

ak2 + 3ak + 2bk

36
. (6)

Plugging these values to (5) , we obtain

0 < (3a+ b)k = −4δ(W ) ⩽ 0,

a contradiction.
We have shown the following theorem.

Theorem 4.2 Let W be a smooth complex projective surface with KW nef and effective, and C a regular
arrangement of k ⩾ 5 curves. Then the associated Hirzebruch–Kummer cover is never a ball-quotient.

It is natural to wonder whether the assumption for curves being members of effective and ample linear systems
is optimal. Let us recall the following example which can be found in [5].

Example 4.3 We consider A = T × T an abelian surface which is the product of two elliptic curves with
complex multiplication. We consider the arrangement L1 = {F1, F2,△, G} , where F1 and F2 are two fibers,
△ is the diagonal, and G is the graph of complex multiplication. It is easy to observe that these four curves
intersect exactly at one quadruple point, and the Hirzebruch–Kummer cover of A branched along L1 provides
a surface Y for which we have c21(Y ) = 3e(Y ) , so we obtained a ball-quotient.

419



POKORA/Turk J Math

5. Addendum to [11, theorem 4.2]

In this addendum, we would like to improve one of the author’s results from [11]. Before we present the
improvement, we recall one definition from [11] in order to keep the coherence with the mentioned article.

Definition 5.1 An arrangement C = {C1, ..., Ck} ⊂ P2 is called d-configuration if

• all curves Ci are smooth of degree d ⩾ 2 ;

• all intersection points are transversal;

• tk = 0 .

Now our aim is to show the following theorem (cf. [11, theoerm 4.2]).

Theorem 5.2 There does not exist any d-configuration of curves in P2 with d ⩾ 3 such that the associated
Hirzebruch–Kummer cover is a ball-quotient.

Proof In order to prove the theorem, we need to exclude the last remaining combinatorial case from [11],
namely n = 2 and d -configurations with d ⩾ 3 having the following combinatorics:

t2 =
dk(dk − 21d+ 30)

12
, t6 =

dk(dk + 3d− 6)

36
.

Suppose that C as above leads to a ball-quotient Y . Then

0 = 3e(Y )− c21(Y ) = (5d2 − 6d)k + t2 − 3t6.

This gives

(5d2 − 6d)k +
dk(dk − 21d+ 30)

12
= 3 · dk(dk + 3d− 6)

36
,

which leads to
36d(d− 1) = 0,

a contradiction. 2

Remark 5.3 Very recently Professor Fabrizio Catanese informed me that Mara Neusel in her Diplomarbeit
(unpublished) was working on the problem of the existence of ball-quotients constructed via Hirzebruch–Kummer
covers of the complex projective plane branched along arrangements of conics.
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