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Abstract: Let (M,F ) be the product complex Finsler manifold of two strongly pseudoconvex complex Finsler manifolds

(M1, F1) and (M2, F2) with F =
√

f(K,H) and K = F 2
1 , H = F 2

2 . In this paper, we prove that (M,F ) is a weakly
Kähler–Finsler (resp. weakly complex Berwald) manifold if and only if (M1, F1) and (M2, F2) are both weakly Kähler–
Finsler (resp. weakly complex Berwald) manifolds, which is independent of the choice of function f . Meanwhile, we
prove that (M,F ) is a complex Landsberg manifold if and only if either (M1, F1) and (M2, F2) are both complex
Landsberg manifolds and f = c1K + c2H with c1, c2 positive constants, or (M1, F1) and (M2, F2) are both Kähler–
Finsler manifolds.

Key words: Product manifold, weakly complex Berwald manifold, weakly Kähler–Finsler manifold, complex Landsberg
manifold

1. Introduction and main results
Complex Finsler geometry generalizes Hermitian geometry in the same sense that Banach spaces generalize
Hilbert spaces. A complex Finsler manifold is a complex manifold endowed with a complex Finsler metric.
As is well known, complex Finsler metrics have become a very useful tool in geometric function theory of
holomorphic mappings [3]. The first fundamental examples of complex Finsler metrics are undoubtedly the
Kobayashi metrics and Carathéodory metrics. These two classes of holomorphic invariant metrics coincide and
are smooth strongly convex weakly Kähler–Finsler metrics with constant holomorphic curvature −4 in bounded
strictly convex domains with smooth boundaries in Cn [1, 2, 12, 13]. Hence, the analysis on the manifold is
intimately tied to the geometry [8]. However, in general, we do not have the explicit formulae for the Kobayashi
and Carathéodory metrics. Since 1981, Lempert [12] and Abate and Patrizio [3–5] considered the problem of
existence and uniqueness of complex geodesics, which involves three conditions: the weakly Kähler condition,
the constancy of holomorphic curvature, and a symmetric property of the curvature operator. However, to our
knowledge, there is a lack of concrete examples of (weakly) Kähler–Finsler metrics, as well as complex Finsler
metrics of nonzero constant holomorphic curvature in the literature. Most results are obtained based on abstract
complex Finsler manifolds. Therefore, we need more approaches to construct special complex Finsler metrics.

Recently, the first author and Zhong systematically investigated the unitary invariant complex Finsler
metrics[16, 17, 22], general complex (ααα,βββ) metrics[18], modified complex Finlser metrics arising from unitary
invariant metrics[20], and showed that there exist lots of strongly pseudoconvex (even strongly convex) complex
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Finsler metrics, weakly complex Berwald metrics, complex Berwald metrics, and complex Finsler metrics
with vanishing holomorphic curvature. He and Zhong studied the doubly warped product of complex Finsler
manifolds [11]. However, (weakly) Kähler–Finsler metrics are still inadequate. One may wonder whether there
are some other ways to construct special complex Finsler metrics.

In [15], Wu and Zhong initiated a study on product complex Finsler manifolds, which are defined as
follows. Let (M1, F1) and (M2, F2) be a pair of complex Finsler manifolds, and f(s, t) be a 1-homogeneous
function on s and t . Denote K = F 2

1 , H = F 2
2 , one can define the fundamental function on product manifold

M = M1 ×M2 by

F =
√
f(K,H). (1.1)

Under some necessary conditions of f , one can ensure that the complex Finsler metric (1.1) is strongly
pseudoconvex. It is worth mentioning that for a given product complex manifold M = M1 ×M2 , the product
complex Finsler metric given by (1.1) is different from the warped product complex Finsler metric considered
by He and Zhong in [11], the latter is defined by

F =
√

f2
2F

2
1 + f2

1F
2
2 , (1.2)

where f1 and f2 are positive smooth functions on M1 and M2 , respectively. These two classes of metrics (1.1)
and (1.2) coincide only when f1 and f2 are constants, and f is linear in K and H .

Wu and Zhong [15] proved that if both (M1, F1) and (M2, F2) are Kähler–Finsler manifolds (resp.
complex Berwald manifolds), then the product complex Finsler manifold (M,F ) with F given by (1.1) is a
Kähler–Finsler manifold (resp. complex Berwald manifold). Inspired by the work of Wu and Zhong, one may
wonder whether the converse is correct or whether similar conclusions for weakly Kähler–Finsler manifolds
(resp. weakly complex Berwald manifolds or complex Landsberg manifolds) still hold. This paper focuses on
the invariant property of product method in constructing special complex Finsler manifolds. As our first main
result, we prove the following.

Theorem 1.1 Let (M1, F1) and (M2, F2) be two strongly pseudoconvex complex Finsler manifolds, and (M,F )

be the product complex Finsler manifold of (M1, F1) and (M2, F2) with F given by (1.1). Then

(i) (M,F ) is a Kähler–Finsler manifold if and only if (M1, F1) and (M2, F2) are both Kähler–Finsler
manifolds;

(ii) (M,F ) is a complex Berwald manifold if and only if (M1, F1) and (M2, F2) are both complex Berwald
manifolds;

(iii) (M,F ) is a weakly Kähler–Finsler manifold if and only if (M1, F1) and (M2, F2) are both weakly Kähler–
Finsler manifolds;

(iv) (M,F ) is a weakly complex Berwald manifold if and only if (M1, F1) and (M2, F2) are both weakly complex
Berwald manifolds.

Theorem 1.1 shows that the characterization of product complex Finsler manifold (M,F ) to be a
(weakly) Kähler–Finsler manifold or (weakly) Berwald manifold is independent of the choice of function f .
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Note that Hermitian manifolds are trivial complex Berwald manifolds, Kähler manifolds are trivial Kähler–
Finsler manifolds, thus the product method provides an effective approach to construct nontrivial complex
Berwald manifolds (resp. Kähler–Finsler manifolds) via Hermitian manifolds (resp. Kähler manifolds).

As we know, every Kähler–Finsler manifold is a complex Landsberg manifold, one naturally wonders
whether the converse is true or whether the characterization of product complex Finsler manifold (M,F ) to be
a complex Landsberg manifold is independent of the choice of function f ? We obtain the following rigid result
as our second main result.

Theorem 1.2 Let (M1, F1) and (M2, F2) be two strongly pseudoconvex complex Finsler manifolds, and (M,F )

be the product complex Finsler manifold of (M1, F1) and (M2, F2) with F given by (1.1). Then (M,F ) is a
complex Landsberg manifold if and only if either one of the following two conditions holds:

(i) f(K,H) = c1K + c2H , and (M1, F1) and (M2, F2) are both complex Landsberg manifolds, where c1 and
c2 are positive constants;

(ii) (M1, F1) and (M2, F2) are both Kähler–Finsler manifolds.

By Theorems 1.1 and 1.2, we easily obtain the following corollary.

Corollary 1.1 Let (M1, F1) and (M2, F2) be two strongly pseudoconvex complex Finsler manifolds, and (M,F )

be the product complex Finsler manifold of (M1, F1) and (M2, F2) with F given by (1.1) and f not linear in
K and H . Then (M,F ) is a complex Landsberg manifold if and only if it is a Kähler–Finsler manifold.

The remainder of this paper is organized as follows. In Section 2, we introduce some necessary definitions and
notions. In Section 3, simplified characterizations for the product complex Finsler metric F given by (1.1) to be
strongly pseudoconvex and strongly convex are obtained, respectively. In Section 4, we deduce some different
types of connection coefficients, which shall serve the proofs of our main results. In Sections 5 and 6, we present
the proof of Theorems 1.1 and 1.2, respectively.

2. Preliminaries
We refer to [3] to recall some necessary notations and definitions. A complex Finsler manifold is a complex
manifold endowed with a complex Finsler metric. Let (M1, F1) and (M2, F2) be two complex Finsler manifolds
of complex dimensions m and n , respectively. Denote by M = M1 × M2 the product complex manifold of
M1 and M2 . Let {z1, · · · , zm} and {zm+1, · · · , zm+n} be a set of local complex coordinates on M1 and M2 ,
respectively, {z1, · · · , zm, v1, · · · , vm} and {zm+1, · · · , zm+n, vm+1, · · · , vm+n} be the induced local complex
coordinates on the holomorphic tangent bundles T 1,0M1 and T 1,0M2 , respectively. Then {z1, · · · , zm+n} are
the local complex coordinates on M , and {z1, · · · , zm+n, v1, · · · , vm+n} are the naturally induced local complex
coordinates on the holomorphic tangent bundles T 1,0M of M . Note that there is a natural isomorphism
T 1,0M ∼= T 1,0M1 ⊕ T 1,0M2 .

Below, we denote M̃ as the complement of the zero section in T 1,0M . And the Einstein summation
convention is assumed throughout this study. For functions defined on M̃ , we denote by lower indices such as
i and j the derivatives with respect to the z -coordinates or v -coordinates, and use a semicolon to distinguish
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derivatives with respect to z and v , for example,

Gi =
∂G

∂vi
, G;i =

∂G

∂zi
, Gi;j =

∂2G

∂vi∂zj
.

For simplicity, we set

∂i :=
∂

∂zi
, ∂i :=

∂

∂zi
, ∂̇i :=

∂

∂vi
, ∂̇i :=

∂

∂vi
.

Definition 2.1 ([3]) A complex Finsler metric F on a complex manifold M is a continuous function F :

T 1,0M → R+ that satisfies:

(i) G = F 2 is smooth on M̃ ;

(ii) F (p, v) > 0 for all (p, v) ∈ M̃ ;

(iii) F (p, ζv) = |ζ|F (p, v) for all (p, v) ∈ T 1,0M and ζ ∈ C .

Definition 2.2 ([3]) A complex Finsler metric F is called strongly pseudoconvex if the Levi matrix (or complex
Hessian matrix)

(Gij) =

(
∂2G

∂vi∂vj

)
is positive definite on M̃ .

Below, we denote Gj̄k such that Gj̄kGij̄ = δki . The key point to study complex Finsler geometry

is to linearize the geometry of M̃ by introducing a complex nonlinear connection, which is characterized
by its connection coefficients. There are two complex nonlinear connections associated to a given strongly
pseudoconvex complex Finsler metric F : the Chern–Finsler nonlinear connection and the complex Berwald
nonlinear connection. We denote Gi as the complex spray coefficients associated to F , where

Gi =
1

2
Γ i
;jv

j , Γ i
;j = GkiGk;j , (2.1)

and Γ i
;j are called the Chern–Finsler nonlinear connection coefficients. Gi

j = ∂̇jGi are called the complex
Berwald nonlinear connection coefficients. The corresponding horizontal frames {δi} and {Xi} associated to
the two nonlinear connections are respectively given by

δi = ∂i − Γ j
;i∂̇j , Xi = ∂i −Gj

i ∂̇j .

In general, δi ̸= Xi ; however, for Kähler Finsler metrics, we have[19]

δi = Xi. (2.2)

We mention here that the horizontal radial vector fields χ = viδi and X = viXi associated to the two nonlinear
connections coincide[23], i.e.

χ = X . (2.3)
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There are several complex Finsler connections associated to a given complex Finsler manifold (M,F ) . The most
often used are the Chern–Finsler connection [3] and the complex Berwald connection [14]. These connections
are appropriate for considering different problems in complex Finsler geometry. The horizontal Chern–Finsler
connection coefficients Γ i

j;k and complex Berwald connection coefficients Gi
jk are respectively related to Γ i

;k

and Gi
k by

Γ i
j;k = ∂̇jΓ

i
;k, Gi

jk = ∂̇jGi
k, Γ i

j;kv
j = Γ i

;k, Gi
jkv

j = Gi
k. (2.4)

In general, Γ i
j;k and Gi

jk are locally functions of (z, v) and they are 0-homogeneous with respect to the

fiber coordinate v . It is clear that Gi
jk = Gi

kj . In general, however, Γ i
j;k ̸= Γ i

k;j .

Definition 2.3 ([3, 9]) Let F be a strongly pseudoconvex complex Finsler metric on a complex manifold M .
F is called a Kähler–Finsler metric if in local coordinates, Γ i

j;k−Γ i
k;j = 0 ; called a weakly Kähler Finsler metric

if Gi(Γ
i
j;k − Γ i

k;j)v
j = 0 .

For the Chern–Finsler nonlinear connection, the following formulas hold [3]:

δi(G) = δi(G) = δi(Gj) = 0. (2.5)

For the complex Berwald nonlinear connection, we have

Proposition 2.1 ([23]) Let F be a strongly pseudoconvex complex Finsler metric on a complex manifold.
Then

(i) F is a weakly Kähler–Finsler metric if and only if Xi(G) = 0;

(ii) F is a Kähler–Finsler metric if and only if Xi(Gj) = 0.

Definition 2.4 ([6, 23]) Let F be a strongly pseudoconvex complex Finsler metric on a complex manifold M .
F is called a complex Berwald metric if locally Γ i

j;k depend only on the base manifold coordinates z ; F is called

a weakly complex Berwald metric if locally Gi
jk depend only on z .

A complex Berwald metric is a weakly complex Berwald metric; the converse, however, is not true[23].

Definition 2.5 ([7]) Let F be a strongly pseudoconvex complex Finsler metric on a complex manifold M .
F is called a complex Landsberg metric if the complex Berwald connection coefficients Gi

jk coincide with the

horizontal connection coefficients Li
jk of the Rund type complex linear connection in the sense of Munteanu[14],

i.e.
Gi

jk = Li
jk,

where

Li
jk =

1

2
Gli
[
Xj(Gkl) + Xk(Gjl)

]
.

By the above definition and formula (2.2), it is easy to check that every Kähler–Finsler metric is necessarily a
complex Landsberg metric.
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3. Characterizations of strong pseudoconvexity and strong convexity

Now we introduce the definition of product complex Finsler manifold[15]. Let (M1, F1) and (M2, F2) be two
complex Finsler manifolds of complex dimensions m and n , respectively, and M = M1 ×M2 be the product
complex manifold of M1 and M2 . Below and throughout this paper, we assume the following ranges of indices:

1 ≤ a, b, c, d ≤ m, m+ 1 ≤ α, β, γ, σ ≤ m+ n, 1 ≤ i, j, k, l ≤ m+ n.

Denote K = F 2
1 , H = F 2

2 , if one defines F : T 1,0M → [0,+∞) by

F (z, v) =
√

f (K(za, va),H(zα, vα)), (3.1)

where (z, v) ∈ T 1,0M , (za, va) ∈ T 1,0M1 , (zα, vα) ∈ T 1,0M2 with z = (za, zα) , v = (va, vα) , and f :

[0,+∞)× [0,+∞) → [0,+∞) be a continuous function satisfying

(a) f(s, t) = 0 if and only if (s, t) = (0, 0) ;

(b) f(λs, λt) = λf(s, t) for λ ∈ [0,+∞) ;

(c) f is smooth on (0,+∞)× (0,+∞) ;

(d) ∂f
∂s ̸= 0 , ∂f

∂t ̸= 0 , ∂f
∂s

∂f
∂t − f ∂2f

∂s∂t ̸= 0 for (s, t) ∈ (0,+∞)× (0,+∞) .

It is easy to see that F given by (3.1) is a complex Finsler metric on the product manifold M . We call (M,F )

a product complex Finsler manifold.
By the 1-homogeneity of f , it is easy to see that

fKK + fHH = f, (3.2)

fKKK + fKHH = fHKK + fHHH = 0, f2
KH = fKKfHH , (3.3)

fKKKK + fKKHH = −fKK , fKHKK + fKHHH = −fKH , fHHKK + fHHHH = −fHH (3.4)

for K ̸= 0 and H ̸= 0 . Here, we denote fK = ∂f
∂K , fKH = ∂2f

∂K∂H and so on.

In [15], Wu and Zhong showed that F is strongly pseudoconvex on M̃1 × M̃2 if and only if

fK > 0, fH > 0, fK +KfKK > 0, fH +HfHH > 0, fKfH − ffKH > 0.

We mention here that the above characterization of strong pseudoconvexity of F can be simplified. And we
have the following proposition.

Proposition 3.1 Let (M1, F1) and (M2, F2) be two strongly pseudoconvex complex Finsler manifolds, and
(M,F ) be the corresponding product complex Finsler manifold with F defined by (3.1). Then F is strongly
pseudoconvex on M̃1 × M̃2 ⊂ M̃ if and only if

fK > 0, fH > 0, ∆ := fKfH − ffKH > 0. (3.5)
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Proof We only need to show that (3.5) implies

fK +KfKK > 0, fH +HfHH > 0.

In fact, if (3.5) holds, by the third inequality in (3.5) and using (3.2) and (3.3), we obtain

0 < fKfHH − ffKHH

= fK(f − fKK)− f(−fKKK)

= f(fK +KfKK)− f2
KK,

which yields that fK +KfKK > 0 . Similarly, we obtain fH +HfHH > 0 . This completes the proof. 2

In the rest of this paper, complex Finsler manifolds that emerged are all assumed to be strongly pseudoconvex.
Roughly speaking, a strongly pseudoconvex complex Finsler metric F on a complex manifold M is called
strongly convex if F is also a real Finsler metric. We refer to [3, 19, 21] for more details.

Proposition 3.2 Let (M1, F1) and (M2, F2) be two strongly convex complex Finsler manifolds, and (M,F )

be the corresponding product complex Finsler manifold with F defined by (3.1). Then F is strongly convex on
M̃1 × M̃2 ⊂ M̃ if and only if

fK > 0, fH > 0, fKfH − 2ffKH > 0. (3.6)

Proof Since F1 and F2 are strongly convex complex Finsler metrics, they are naturally real Finsler metrics,
by equalities (1.20) and (1.21) in [9, page 14], F is strongly convex if and only if

fK > 0, fH > 0, fK + 2KfKK > 0, fH + 2HfHH > 0, fKfH − 2ffKH > 0. (3.7)

A similar argument to that in the proof of Proposition 3.1 yields that (3.7) is equivalent to (3.6). This completes
the proof. 2

Since Hermitian metrics are naturally strongly convex complex Finsler metrics, Proposition 3.2 provides
an effective approach to construct strongly convex complex Finsler metrics via Hermitian metrics.

Example 3.1 (Szab ó metric [10, 19]) Suppose that (M,ααα) and (N,βββ) are two Hermitian manifolds, and Fε

is a product complex Finsler metric on the product manifold M ×N with Fε defined as follows:

Fε =

√
ααα2 + βββ2 + ε(ααα2p + βββ2p)

1
p ,

where real numbers ε > 0 and p > 0 . Then

(i) Fε is a strongly pseudoconvex complex Finsler metric on M ×N for every p ∈ (0,+∞) ;

(ii) Fε is a strongly convex complex Finsler metric on M ×N for every p ∈
[
1
2 ,+∞

)
.

4. Connection coefficients of product complex Finsler manifolds

At the beginning of this section, we list some basic results in [15]. Let (M1, F1) and (M2, F2) be two complex
Finsler manifolds, and (M,F ) be the corresponding product complex Finsler manifold as defined in Section 3.
We denote K = (Kab) and H = (Hαβ) the complex Hessian matrices of K and H , respectively, and denote

their inverse matrices by K−1 = (Kba) and H−1 = (Hβα) , respectively.
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Proposition 4.1 ([15]) The fundamental tensor matrix G and its inverse G−1 associated to the product
complex Finsler metric F are given respectively by

G =

(
Gab Gaβ

Gαb Gαβ

)
, G−1 =

(
Gba Gbα

Gβa Gβα

)
,

where
Gab = fKKab + fKKKaKb,

Gaβ = fKHKaHβ ,

Gαb = fKHHαKb,

Gαβ = fHHαβ + fHHHαHβ ,

Gba =
1

fK

[
Kba − fHfKK

∆
vavb

]
,

Gbα = − 1

∆
fKHvαvb,

Gβa = − 1

∆
fKHvavβ ,

Gβα =
1

fH

[
Hβα − fKfHH

∆
vαvβ

]
.

Here, ∆ is given by (3.5).

From now on, we use the symbol ‘‘ ∼ ” to mark the geometric objects associated to the complex Finsler
metric F1 or F2 , depending on the different ranges of indices, for instance, Γ̃ a

;c and Γ̃α
;γ denote the Chern–Finsler

nonlinear connection coefficients associated to F1 and F2 , respectively.

Proposition 4.2 ([15]) The Chern–Finsler nonlinear connection coefficients Γ i
;k associated to the product

complex Finsler metric F are
Γ a
;c = Γ̃ a

;c, Γα
;γ = Γ̃α

;γ , Γ a
;γ = Γα

;c = 0. (4.1)

By Proposition 4.2 and the first equality in (2.4), one can easily get the following proposition.

Proposition 4.3 ([15]) The horizontal Chern–Finsler connection coefficients Γ i
j;k associated to the product

complex Finsler metric F are

Γ a
b;c = Γ̃ a

b;c, Γα
β;γ = Γ̃α

β;γ , Γ a
b;γ = Γ a

β;c = Γ a
β;γ = Γα

b;c = Γα
b;γ = Γα

β;c = 0.

Proposition 4.4 (i) The complex spray coefficients Gi associated to the product complex Finsler metric F
are

Ga = G̃a, Gα = G̃α;

(ii) the complex Berwald nonlinear connection coefficients Gi
k associated to the product complex Finsler metric

F are
Ga

c = G̃a
c , Gα

γ = G̃α
γ , Ga

γ = Gα
c = 0;
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(iii) the horizontal frame {Xi} associated to the product complex Finsler metric F are

Xa = X̃a, Xα = X̃α;

(iv) the complex Berwald connection coefficients Gi
jk associated to the product complex Finsler metric F are

Ga
bc = G̃a

bc, Gα
βγ = G̃α

βγ , Ga
bγ = Ga

βγ = Gα
bc = Gα

bγ = 0.

Proof

(i) It follows from (2.1) and (4.1) that

Ga =
1

2
Γ a
;jv

j =
1

2

[
Γ a
;bv

b + Γ a
;βv

β
]
=

1

2
Γ a
;bv

b =
1

2
Γ̃ a
;bv

b = G̃a,

Gα =
1

2
Γα
;j v

j =
1

2

[
Γα
;bv

b + Γα
;βv

β
]
=

1

2
Γα
;βv

β =
1

2
Γ̃α
;βv

β = G̃α.

(ii) It follows form (i) that

Ga
c = ∂̇cGa = ∂̇cG̃a = G̃a

c , Ga
γ = ∂̇γGa = ∂̇γG̃a = 0.

Similarly, we obtain the rest of the equalities of (ii).

(iii) It follows form (ii) that

Xa = ∂a −Gb
a∂̇b −Gβ

a ∂̇β = ∂a −Gb
a∂̇b = ∂a − G̃b

a∂̇b = X̃a,

Xα = ∂α −Gb
α∂̇b −Gβ

α∂̇β = ∂α −Gβ
α∂̇β = ∂α − G̃β

α∂̇β = X̃α.

(iv) It follows by a similar argument to that in the proof of (ii).

2

Remark 4.1 The three propositions above indicate that the six geometric objects Gi , Xi , Γ i
;k , Gi

k , Γ i
j;k ,

and Gi
jk associated to the product complex Finsler metric F are all independent of the choice of function f ,

and coincide with those of F1 and F2 . Hence, in the following computation, we need not to note whether the
mentioned six geometric objects are marked with the symbol ‘‘ ∼ ” .

Below, we shall derive the horizontal connection coefficients Li
jk of the Rund-type complex linear con-

nection associated to the product complex Finsler metric F . Note that Li
jk is symmetric with respect to the

lower indices j and k , we actually only need to compute six tensors: La
bc , La

bγ , La
βγ , Lα

bc , Lα
bγ , and Lα

βγ . For
simplicity, the derivatives with respect to the horizontal frame {Xa,Xα} shall be denoted by lower indices
behind the symbol ‘‘ | ”, for example

Kd|c = Xa(Kd), H|α = Xα(H).

By Proposition 4.1 and a series of contractions, we obtain the following lemma.
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Lemma 4.1

GdaKbd =
1

fK

[
δab − 1

∆
fHfKKvaKb

]
, (4.2)

GdaKd =
1

∆
(fH − fKHK)va =

1

∆
(fH + fHHH)va, (4.3)

GγaHγ = − 1

∆
fKHHva, (4.4)

GγaKa = − 1

∆
fKHKvγ =

1

∆
fHHHvγ . (4.5)

Proposition 4.5 The horizontal connection coefficients Li
jk of the Rund-type connection associated to the

product complex Finsler metric F are

La
bc =L̃a

bc +
1

2
fKKGda(Kd|bKc +Kd|cKb) +

fKK

2fK
(δacK|b + δabK|c)

+
1

2∆

[
fHfKKK + fKHfKK − 1

fK
fHf2

KK

]
va(KbK|c +KcK|b), (4.6)

La
bγ =

1

2
Gda

[
(fKHKd|b + fKKHKdK|b)Hγ + (fKHKbd + fKKHKbKd)H|γ

]
− 1

2∆
fKH(fKH + fKHHH)va(KbH|γ +K|bHγ), (4.7)

La
βγ =

1

2∆
f2
H

[
ln(fH)

]
KH

va
(
HβH|γ +HγH|β

)
, (4.8)

Lα
bc =

1

2∆
f2
K

[
ln(fK)

]
KH

vα
(
KbK|c +KcK|b

)
, (4.9)

Lα
bγ =

1

2
Gσα

[
(fKHHσ|γ + fKHHHσH|γ)Kb + (fKHHγσ + fKHHHγHσ)K|b

]
− 1

2∆
fKH(fKH + fKKHK)vα(KbH|γ +K|bHγ), (4.10)

Lα
βγ =L̃α

βγ +
1

2
fHHGσα(Hσ|βHγ +Hσ|γHβ) +

fHH

2fH
(δαγH|β + δαβH|γ)

+
1

2∆

[
fKfHHH + fKHfHH − 1

fH
fKf2

HH

]
vα(HβH|γ +HγH|β). (4.11)

Proof Firstly, we calculate La
bc . According to the definition of Li

jk , we have

La
bc =

1

2
Gla

[
Xb(Gcl) + Xc(Gbl)

]
=

1

2
Gda

[
Xb(Gcd) + Xc(Gbd)

]
+

1

2
Gγa [Xb(Gcγ) + Xc(Gbγ)] . (4.12)

By Proposition 4.1, we have

Gcd = fKKcd + fKKKcKd, Gda =
1

fK

[
Kda − fHfKK

∆
vavd

]
.
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Furthermore

Xb(Gcd) = fKXb(Kcd) + fKKKcdK|b +
(
fKKKc|b + fKKKKcK|b

)
Kd + fKKKcKd|b,

which together with (4.2) and (4.3) yields

GdaXb(Gcd) =KdaXb(Kcd)−
fHfKK

∆
vavdXb(Kcd) + fKKGdaKcdK|b

+GdaKd

(
fKKKc|b + fKKKKcK|b

)
+ fKKGdaKd|bKc

=KdaXb(Kcd) +

(
GdaKd −

1

∆
fHva

)
fKKKc|b

+
(
fKKGdaKcd +GdaKdfKKKKc

)
K|b + fKKGdaKd|bKc

=KdaXb(Kcd) + fKKGdaKd|bKc +
1

∆
HfHHfKKvaKc|b

+
fKK

fK
δacK|b +

1

∆

[
(fH −KfKH)fKKK − 1

fK
fHf2

KK

]
vaKcK|b. (4.13)

Again by Proposition 4.1 and using (4.4), we get

GγaXb(Gcγ) =GγaXb(fKHKcHγ) = GγaHγXb(fKHKc)

=− 1

∆
fKHHva(fKKHKcK|b + fKHKc|b)

=− 1

∆
fKKHfKHHvaKcK|b −

1

∆
Hf2

KHvaKc|b. (4.14)

(4.13)+(4.14), and using the third equality in (3.3) and first equality in (3.4) implies

GdaXb(Gcd) +GγaXb(Gcγ)

= KdaXb(Kcd) + fKKGdaKd|bKc +
fKK

fK
δacK|b

+
1

∆

[
fHfKKK + fKKfKH − 1

fK
fHf2

KK

]
vaKcK|b. (4.15)

By plunging (4.15) into (4.12), we obtain (4.6). Similarly, we obtain (4.11).
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Secondly, we calculate La
bγ . According to the definition of Li

jk , we have

La
bγ =

1

2
Gla

[
Xb(Gγl) + Xγ(Gbl)

]
=

1

2
Gda

[
Xb(Gγd) + Xγ(Gbd)

]
+

1

2
Gσa [Xb(Gγσ) + Xγ(Gbσ)]

=
1

2
Gda

[
Xb(fKHHγKd) + Xγ(fKKbd + fKKKbKd)

]
+

1

2
Gσa [Xγ(fKHKbHσ) + Xb(fHHγσ + fHHHγHσ)]

=
1

2
Gda

[
(fKHKd|b + fKKHKdK|b)Hγ + (fKHKbd + fKKHKbKd)H|γ

]
+

1

2
Gσa

[
(fKHHσ|γ + fKHHHσH|γ)Kb + (fKHHγσ + fKHHHγHσ)K|b

]
. (4.16)

A simple calculation yields

GσaHσ|γ = − 1

∆
fKHvaH|γ , (4.17)

GσaHσ = − 1

∆
fKHHva, (4.18)

GσaHγσ = − 1

∆
fKHvaHγ . (4.19)

Plunging (4.17)–(4.19) into (4.16) implies (4.7). Similarly, we get (4.10).
Lastly, we compute La

βγ . By the definition of Li
jk , we have

La
βγ =

1

2
Gla

[
Xβ(Gγl) + Xγ(Gβl)

]
=

1

2
Gda

[
Xβ(Gγd) + Xγ(Gβd)

]
+

1

2
Gσa [Xβ(Gγσ) + Xγ(Gβσ)] . (4.20)

By Proposition 4.1 and using (4.3), we have

GdaXβ(Gγd) = GdaXβ(fKHHγKd)

= GdaKdXβ(fKHHγ)

=
1

∆
(fH + fHHH)va

(
fKHHγ|β + fKHHH|βHγ

)
, (4.21)

GσaXβ(Gγσ) = − 1

∆
fKHvavσXβ (Gγσ)

= − 1

∆
fKHvaXβ (Gγσvσ)

= − 1

∆
fKHvaXβ [(fH +HfHH)Hγ ]

= − 1

∆
fKHva

[
(fH +HfHH)Hγ|β + (fH +HfHH)HH|βHγ

]
= − 1

∆
fKHva

[
(fH +HfHH)Hγ|β + (fHH −KfKHH)H|βHγ

]
, (4.22)
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where, in the last equality, we used HfHH = −KfKH . Furthermore, (4.21)+(4.22) yields

GdaXβ(Gγd) +GσaXβ(Gγσ)

=
1

∆
[(fH + fHHH)fKHH − fKH(fHH −KfKHH)] vaH|βHγ

=
1

∆
(fHfKHH − fKHfHH) vaH|βHγ

=
1

∆
f2
H

[
ln(fH)

]
KH

vaH|βHγ . (4.23)

By substituting (4.23) into (4.20), we get (4.8). By a similar calculation, we obtain (4.9). This completes the
proof. 2

Proposition 4.6 Let Li
jk be the horizontal connection coefficients of the Rund-type connection associated to

the product complex Finsler metric F . Then the following two equalities hold:

La
bγKa =− 1

2∆
Hf2

H

[
ln(fH)

]
KH

(
KbH|γ +K|bHγ

)
, (4.24)

Lα
bγHα =− 1

2∆
Kf2

K

[
ln(fK)

]
KH

(
KbH|γ +K|bHγ

)
. (4.25)

Proof
By (4.3), we obtain

GdaKa =
1

∆
(fH + fHHH)vd,

which together with equalities

Kd|bv
d = K|b, Kbdv

d = Kb, Kdv
d = K,

− fKHK = fHHH, fKH + fKKHK = −fKHHH

yields

La
bγKa =

1

2∆
(fH + fHHH)vd

[
(fKHKd|b + fKKHKdK|b)Hγ + (fKHKbd + fKKHKbKd)H|γ

]
− 1

2∆
fKHK(fKH + fKHHH)(KbH|γ +K|bHγ)

=
1

2∆

[
(fH + fHHH)(fKH + fKKHK) + fHHH(fKH + fKHHH)

] (
KbH|γ +K|bHγ

)
=

1

2∆

[
(fH + fHHH)(−fKHHH) + fHHH(fKH + fKHHH)

] (
KbH|γ +K|bHγ

)
= − 1

2∆
H
(
fHfKHH − fHHfKH

) (
KbH|γ +K|bHγ

)
= − 1

2∆
Hf2

H

[
ln(fH)

]
KH

(
KbH|γ +K|bHγ

)
,

which is (4.24); we obtain (4.25) similarly. 2
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5. Proof of Theorem 1.1
(i) It follows from Proposition 4.3.

(ii) It follows from Proposition 4.3.

(iii) By Definition 2.3, F is a weakly Kähler–Finsler metric if and only if

Gi(Γ
i
j;k − Γ i

k;j)v
j = 0.

By Proposition 4.3, we obtain

Gi(Γ
i
j;c − Γ i

c;j)v
j

=Ga(Γ
a
b;c − Γ a

c;b)v
b +Ga(Γ

a
β;c − Γ a

c;β)v
β +Gα(Γ

α
b;c − Γα

c;b)v
b +Gα(Γ

α
β;c − Γα

c;β)v
β

=Ga(Γ
a
b;c − Γ a

c;b)v
b

=fKKa(Γ̃
a
b;c − Γ̃ a

c;b)v
b. (5.1)

Similarly, we get

Gi(Γ
i
j;γ − Γ i

γ;j)v
j = fHHα(Γ̃

α
β;γ − Γ̃ β

γ;β)v
β . (5.2)

It follows from (5.1), (5.2), and the fact that fK > 0, fH > 0 that

Gi(Γ
i
j;k − Γ i

k;j)v
j = 0

if and only if

Ka(Γ̃
a
b;c − Γ̃ a

c;b)v
b = 0 and Hα(Γ̃

α
β;γ − Γ̃ β

γ;β)v
β = 0,

or equivalently, F is a weakly Kähler–Finsler metric if and only if F1 and F2 are both weakly Kähler–
Finsler metrics.

(iv) It follows from the fourth conclusion of Proposition 4.4.

6. Proof of Theorem 1.2
By symmetric property Li

jk = Li
kj , the horizontal connection coefficients Li

jk are decided by six tensors, namely,
La
bc , La

bγ , La
βγ , Lα

bc , Lα
bγ , and Lα

βγ , which are just the objects that shall be considered in this section. By the

last conclusion in Proposition 4.4, the complex Berwald connection coefficients Gi
jk associated to the product

complex Finsler metric F are

Ga
bc = G̃a

bc, Gα
βγ = G̃α

βγ , Ga
bγ = Ga

βγ = Gα
bc = Gα

bγ = 0.

Hence, (M,F ) is a Landsberg manifold, i.e. F is a Landsberg metric if and only if

La
bc = G̃a

bc, Lα
βγ = G̃α

βγ , La
bγ = La

βγ = Lα
bc = Lα

bγ = 0. (6.1)
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Proof of the sufficiency
Case 1. Suppose that F1 and F2 are both complex Landsberg metrics, and f = c1K + c2H with c1, c2

positive constants, which apparently yield

L̃a
bc = G̃a

bc, L̃α
βγ = G̃α

βγ , (6.2)

fKK = fKH = fHH = fKKK = fKKH = fKHH = fHHH =
[

ln(fK)
]
KH

=
[

ln(fH)
]
KH

= 0. (6.3)

By plunging (6.2) and (6.3) into the expressions of Li
jk (4.6)–(4.11), we obtain (6.1). Hence, the product

complex Finsler metric F is a complex Landsberg metric.
Case 2. Suppose that F1 and F2 are both Kähler–Finsler metrics, then by conclusion (i) in Theorem 1.1,

the product complex Finsler metric F is a Kähler–Finsler metric, which implies that F is a complex Landsberg
metric.

Proof of the necessity
Suppose that the product complex Finsler metric F is a complex Landsberg metric, then equalities in

(6.1) hold, and we have
La
βγ = 0, Lα

bc = 0, La
bγKa = 0, Lα

bγHα = 0. (6.4)

Substituting expressions (4.8), (4.9), (4.24), and (4.25) into the four equalities in (6.4), respectively, yields[
ln(fH)

]
KH

(
HβH|γ +HγH|β

)
= 0, (6.5)[

ln(fK)
]
KH

(
KbK|c +KcK|b

)
= 0, (6.6)[

ln(fH)
]
KH

(
KbH|γ +K|bHγ

)
= 0, (6.7)[

ln(fK)
]
KH

(
KbH|γ +K|bHγ

)
= 0. (6.8)

Now we analyze (6.5)-(6.8), and divide our discussion into two cases.
Case 1. Either one of [ln(fH)]KH and [ln(fK)]KH does not vanish. Without loss of generality, we

suppose [
ln(fH)

]
KH

̸= 0,

which together with (6.5) and (6.7) implies

HβH|γ +HγH|β = 0, (6.9)

KbH|γ +K|bHγ = 0. (6.10)

Noting that by (2.3) and (2.5), we get

H|βv
β = X (H) = χ(H) = δβ(H)vβ = 0.

Then, contracting (6.9) with vβ in both sides yields

H|γ = 0. (6.11)

A similar process on (6.10) implies
K|b = 0. (6.12)
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By Proposition 2.1, (6.11) and (6.12) indicate that F1 and F2 are both weakly Kähler–Finsler metrics. Below,
we shall show that F1 and F2 are actually both Kähler–Finsler metrics. Plunging (6.11) and (6.12) into (4.7)
yields

0 = 2La
bγ = fKHGdaKd|bHγ . (6.13)

It follows from

0 ̸=
[

ln(fH)
]
KH

=

(
fKH

fH

)
H

that fKH ̸= 0 , and note that Gda is an invertible tensor, we deduce from (6.13) that

Kd|b = 0. (6.14)

Similarly, by plunging (6.11) and (6.12) into (4.10), we obtain

Hσ|γ = 0. (6.15)

It follows from (6.14), (6.15), and Proposition 2.1 that F1 and F2 are both Kähler–Finsler metrics.
Case 2. Both [ln(fH)]KH and [ln(fK)]KH vanish, i.e.[

ln(fH)
]
KH

= 0, (6.16)[
ln(fK)

]
KH

= 0. (6.17)

Integrating (6.16) yields that
fH = exp(ϕ(K) + φ(H))

for some one-variable functions ϕ(K) and φ(H) . Since fH is 0 -homogenous, it results that both ϕ(K) and
φ(H) are 0 -homogenous, this implies that ϕ(K) = constant and φ(H) = constant. Hence, we obtain

fH = constant. (6.18)

Similarly, by (6.17), we deduce that
fK = constant. (6.19)

Noting that f is a 1-homogeneous function, it follows from (6.18) and (6.19) that

f = c1K + c2H

for some positive constant c1 and c2 . In this case, the higher partial derivatives of f with order greater than
1 all vanish, i.e.

fKK = fKH = fHH = fKKK = fHHH = 0. (6.20)

By a direct substitution of (6.20) into (4.6) and (4.11), respectively, we obtain

La
bc = L̃a

bc, Lα
βγ = L̃α

βγ ,

which together with the first two equalities in (6.1) yield that

L̃a
bc = G̃a

bc, L̃α
βγ = G̃α

βγ ,

or equivalently, F1 and F2 are both complex Landsberg metrics. This completes the proof.
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