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Abstract: Let (M, F) be the product complex Finsler manifold of two strongly pseudoconvex complex Finsler manifolds
(M, Fy) and (Ms, F») with F' = \/f(K,H) and K = F, H = F5. In this paper, we prove that (M, F) is a weakly
Kéhler—Finsler (resp. weakly complex Berwald) manifold if and only if (M, F1) and (Ma, F») are both weakly Kahler—
Finsler (resp. weakly complex Berwald) manifolds, which is independent of the choice of function f. Meanwhile, we
prove that (M, F) is a complex Landsberg manifold if and only if either (Mi, F1) and (Ms, F>) are both complex
Landsberg manifolds and f = ¢1 K + coH with ¢1,c2 positive constants, or (Mi, F1) and (Ma, F») are both Kahler—

Finsler manifolds.

Key words: Product manifold, weakly complex Berwald manifold, weakly Kédhler—Finsler manifold, complex Landsberg

manifold

1. Introduction and main results
Complex Finsler geometry generalizes Hermitian geometry in the same sense that Banach spaces generalize
Hilbert spaces. A complex Finsler manifold is a complex manifold endowed with a complex Finsler metric.
As is well known, complex Finsler metrics have become a very useful tool in geometric function theory of
holomorphic mappings [3]. The first fundamental examples of complex Finsler metrics are undoubtedly the
Kobayashi metrics and Carathéodory metrics. These two classes of holomorphic invariant metrics coincide and
are smooth strongly convex weakly Kédhler—Finsler metrics with constant holomorphic curvature —4 in bounded
strictly convex domains with smooth boundaries in C™ [1, 2, 12, 13]. Hence, the analysis on the manifold is
intimately tied to the geometry [8]. However, in general, we do not have the explicit formulae for the Kobayashi
and Carathéodory metrics. Since 1981, Lempert [12] and Abate and Patrizio [3-5] considered the problem of
existence and uniqueness of complex geodesics, which involves three conditions: the weakly K&hler condition,
the constancy of holomorphic curvature, and a symmetric property of the curvature operator. However, to our
knowledge, there is a lack of concrete examples of (weakly) Kahler—Finsler metrics, as well as complex Finsler
metrics of nonzero constant holomorphic curvature in the literature. Most results are obtained based on abstract
complex Finsler manifolds. Therefore, we need more approaches to construct special complex Finsler metrics.
Recently, the first author and Zhong systematically investigated the unitary invariant complex Finsler
metrics[16, 17, 22], general complex (e, 8) metrics[18], modified complex Finlser metrics arising from unitary

invariant metrics[20], and showed that there exist lots of strongly pseudoconvex (even strongly convex) complex
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Finsler metrics, weakly complex Berwald metrics, complex Berwald metrics, and complex Finsler metrics
with vanishing holomorphic curvature. He and Zhong studied the doubly warped product of complex Finsler
manifolds [11]. However, (weakly) Kéhler-Finsler metrics are still inadequate. One may wonder whether there
are some other ways to construct special complex Finsler metrics.

In [15], Wu and Zhong initiated a study on product complex Finsler manifolds, which are defined as
follows. Let (My,Fy) and (Ms, F») be a pair of complex Finsler manifolds, and f(s,t) be a 1-homogeneous
function on s and t. Denote K = FZ, H = F§, one can define the fundamental function on product manifold
M = M; x My by

F = /f(K, H). (1.1)

Under some necessary conditions of f, one can ensure that the complex Finsler metric (1.1) is strongly
pseudoconvex. It is worth mentioning that for a given product complex manifold M = M; x Ms, the product
complex Finsler metric given by (1.1) is different from the warped product complex Finsler metric considered
by He and Zhong in [11], the latter is defined by

F=\/f3F + [{F3, (12)

where f1 and fy are positive smooth functions on M; and Ms, respectively. These two classes of metrics (1.1)
and (1.2) coincide only when f; and fo are constants, and f is linear in K and H.

Wu and Zhong [15] proved that if both (Mj, Fy) and (Ms, Fy) are Kéhler—Finsler manifolds (resp.
complex Berwald manifolds), then the product complex Finsler manifold (M, F) with F given by (1.1) is a
Kéhler-Finsler manifold (resp. complex Berwald manifold). Inspired by the work of Wu and Zhong, one may
wonder whether the converse is correct or whether similar conclusions for weakly Ké&hler—Finsler manifolds
(resp. weakly complex Berwald manifolds or complex Landsberg manifolds) still hold. This paper focuses on
the invariant property of product method in constructing special complex Finsler manifolds. As our first main

result, we prove the following.

Theorem 1.1 Let (My, Fy) and (Ms, F3) be two strongly pseudoconvex complex: Finsler manifolds, and (M, F)
be the product complex Finsler manifold of (My, Fy) and (Ms, F3) with F given by (1.1). Then

(i) (M,F) is a Kaihler-Finsler manifold if and only if (Mi,F1) and (Ma, Fs) are both Kihler—Finsler

manifolds;

(i) (M, F) is a complex Berwald manifold if and only if (M1, F1) and (Ma, F3) are both complex Berwald

manifolds;

(iii) (M, F) is a weakly Kihler—Finsler manifold if and only if (My, F1) and (M, F2) are both weakly Kihler—

Finsler manifolds;

(iv) (M, F) is a weakly complex Berwald manifold if and only if (My, F1) and (Ma, Fy) are both weakly complex

Berwald manifolds.

Theorem 1.1 shows that the characterization of product complex Finsler manifold (M, F) to be a

(weakly) Kéahler—Finsler manifold or (weakly) Berwald manifold is independent of the choice of function f.
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Note that Hermitian manifolds are trivial complex Berwald manifolds, Kahler manifolds are trivial Kdahler—
Finsler manifolds, thus the product method provides an effective approach to construct nontrivial complex
Berwald manifolds (resp. Kéhler—Finsler manifolds) via Hermitian manifolds (resp. Kéhler manifolds).

As we know, every Kéhler—Finsler manifold is a complex Landsberg manifold, one naturally wonders
whether the converse is true or whether the characterization of product complex Finsler manifold (M, F) to be
a complex Landsberg manifold is independent of the choice of function f? We obtain the following rigid result

as our second main result.

Theorem 1.2 Let (M, Fy) and (Ma, Fy) be two strongly pseudoconvex complex Finsler manifolds, and (M, F)
be the product complex Finsler manifold of (Mi,F1) and (M, Fy) with F given by (1.1). Then (M, F) is a

complex Landsberg manifold if and only if either one of the following two conditions holds:

(i) f(K,H)=c1K+coH, and (M1, F) and (Ms, Fs) are both complex Landsberg manifolds, where ¢ and

co are positive constants;
(i) (My, Fy) and (Ms, F3) are both Kihler—Finsler manifolds.

By Theorems 1.1 and 1.2, we easily obtain the following corollary.

Corollary 1.1 Let (M, Fy) and (Ma, Fy) be two strongly pseudoconvexr complex Finsler manifolds, and (M, F')
be the product complex Finsler manifold of (My, Fy1) and (Ms, Fy) with F given by (1.1) and f not linear in
K and H. Then (M, F) is a complex Landsberg manifold if and only if it is a Kihler—Finsler manifold.

The remainder of this paper is organized as follows. In Section 2, we introduce some necessary definitions and
notions. In Section 3, simplified characterizations for the product complex Finsler metric F' given by (1.1) to be
strongly pseudoconvex and strongly convex are obtained, respectively. In Section 4, we deduce some different
types of connection coefficients, which shall serve the proofs of our main results. In Sections 5 and 6, we present

the proof of Theorems 1.1 and 1.2, respectively.

2. Preliminaries
We refer to [3] to recall some necessary notations and definitions. A complex Finsler manifold is a complex
manifold endowed with a complex Finsler metric. Let (M, Fy) and (Mas, F3) be two complex Finsler manifolds
of complex dimensions m and n, respectively. Denote by M = M; x M, the product complex manifold of
M; and My. Let {z',--- 2™} and {z™T! ... 2™} be a set of local complex coordinates on M; and Mo,
respectively, {z1,--- 2™ ol ... 0™} and {zmF1 ... zmFn gmEl oo ymFnY he the induced local complex
coordinates on the holomorphic tangent bundles TV°M; and THYM,, respectively. Then {z!,---,2™"} are
the local complex coordinates on M, and {z!,--- z™*" ¢l ... ™"} are the naturally induced local complex
coordinates on the holomorphic tangent bundles T*°M of M. Note that there is a natural isomorphism
TYOM 2 TN, @ THOM,.

Below, we denote M as the complement of the zero section in T%°M. And the Einstein summation
convention is assumed throughout this study. For functions defined on M , we denote by lower indices such as

1 and j the derivatives with respect to the z-coordinates or v-coordinates, and use a semicolon to distinguish
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derivatives with respect to z and v, for example,

oG oG 0%G
G; R G FIE i i
For simplicity, we set
0 0 . 0 0
0= 5, O=—=, 0;:=5-, 0=—=
0z Lo ov* Lot

Definition 2.1 ([3]) A complex Finsler metric F on a complex manifold M is a continuous function F :

TYOM — RT that satisfies:
(i) G = F? is smooth on M ;
(ii) F(p,v) >0 for all (p,v) € M;
(iii) F(p,Cv) = [C|F(p,v) for all (p,v) € T*°M and ¢ € C.

Definition 2.2 ([3]) A complex Finsler metric F is called strongly pseudoconvez if the Levi matriz (or complex

0*G >
G-)=
(@) ((%iavj

Hessian matriz)

is positive definite on M .

Below, we denote G7% such that ijGij = 6F. The key point to study complex Finsler geometry

is to linearize the geometry of M by introducing a complex nonlinear connection, which is characterized
by its connection coefficients. There are two complex nonlinear connections associated to a given strongly
pseudoconvex complex Finsler metric F': the Chern—Finsler nonlinear connection and the complex Berwald

nonlinear connection. We denote G? as the complex spray coeflicients associated to F, where

N R
G'=gl!, I =GMGy (2.1)

LK

and Flj are called the Chern—Finsler nonlinear connection coefficients. Gé = 3jGi are called the complex

Berwald nonlinear connection coefficients. The corresponding horizontal frames {0;} and {Z;} associated to

the two nonlinear connections are respectively given by
5 =0; —I%0;, % =0i—Glo;.
In general, §; # Z;; however, for Kéhler Finsler metrics, we have[19]
0; = Z;. (2.2)

We mention here that the horizontal radial vector fields xy = v%d; and 2 = v*2; associated to the two nonlinear

connections coincide[23], i.e.

x=2. (2.3)
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There are several complex Finsler connections associated to a given complex Finsler manifold (M, F'). The most
often used are the Chern-Finsler connection [3] and the complex Berwald connection [14]. These connections
are appropriate for considering different problems in complex Finsler geometry. The horizontal Chern—Finsler

connection coefficients I ;;k and complex Berwald connection coefficients G;k are respectively related to F’k
and G} by

b =0T Gi=0,Gj, iy’ =Tj, G =G (2.4)

In general, I' ;k and Gék are locally functions of (z,v) and they are 0-homogeneous with respect to the

fiber coordinate v. It is clear that G;k = chj. In general, however, F;;k + FZ;J-.

Definition 2.3 ([3, 9]) Let F be a strongly pseudoconvexr complex Finsler metric on a complex manifold M .

F is called a Kihler—Finsler metric if in local coordinates, F;;k —F,fl;j = 0; called a weakly Kdhler Finsler metric

if Gi(I'ly, — I )07 = 0.

For the Chern—Finsler nonlinear connection, the following formulas hold [3]:

For the complex Berwald nonlinear connection, we have

Proposition 2.1 ([23]) Let F be a strongly pseudoconver complex Finsler metric on a complex manifold.
Then

(i) F is a weakly Kihler—Finsler metric if and only if Z;(G) = 0;
(i) F' is a Kihler—Finsler metric if and only if Zi(G5) = 0.

Definition 2.4 ([6, 23]) Let F be a strongly pseudoconvex complex Finsler metric on a complex manifold M .

F is called a complex Berwald metric if locally F]?;k depend only on the base manifold coordinates z; F is called

a weakly complex Berwald metric if locally G?k depend only on z.

A complex Berwald metric is a weakly complex Berwald metric; the converse, however, is not true[23].

Definition 2.5 ([7]) Let F be a strongly pseudoconver complex Finsler metric on a complex manifold M .

F is called a complexr Landsberg metric if the complex Berwald connection coefficients (G;-k coincide with the

horizontal connection coefficients ]Lé-k of the Rund type complex linear connection in the sense of Munteanu[1/],
i.e.
G;‘k = L;‘kv

where

, 1 -
ik = 5G| 25(Gr) + 2i(Gjp) |-

By the above definition and formula (2.2), it is easy to check that every Kéhler—Finsler metric is necessarily a

complex Landsberg metric.
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3. Characterizations of strong pseudoconvexity and strong convexity

Now we introduce the definition of product complex Finsler manifold[15]. Let (M, Fy) and (Ms, Fs) be two
complex Finsler manifolds of complex dimensions m and n, respectively, and M = M; x M, be the product

complex manifold of M7 and Ms. Below and throughout this paper, we assume the following ranges of indices:
1<a,byec,d<m, m+1<a,B,v,0<m+n, 1<ijkil<m+n.

Denote K = F2, H = F3, if one defines F : T*°M — [0, +c0) by

F(z,v) = \/f (K(2%,v%), H(z%,v)), (3.1)

where (z,v) € TVOM, (2%,v%) € TYOM;, (2%,v%) € TYOM,y with z = (2%,2%), v = (v*,v%), and f :

[0, +00) % [0, 4+00) — [0, +00) be a continuous function satisfying
(a) f(s,t) =0 if and only if (s,t) = (0,0);
(b) f(As,At) = Af(s,t) for X € [0, 400);

(¢) f is smooth on (0,400) x (0,400);

() &L +0, 8 +0, LU _ f 2L 20 for (s,t) € (0,400) X (0,400).

It is easy to see that F' given by (3.1) is a complex Finsler metric on the product manifold M. We call (M, F')
a product complex Finsler manifold.

By the 1-homogeneity of f, it is easy to see that

feK+ fulH = f, (3.2)
fexK + feuH = fuxK + fupH =0, fiy = fxxfun, (3.3)
fekk K+ fkxkpH = —fxk, fknxkK + fxkppH = —fxn, funxK + fuanH = —fam (3.4)

for K #0 and H # 0. Here, we denote fx = g—};, frk = % and so on.

In [15], Wu and Zhong showed that F is strongly pseudoconvex on M; x M, if and only if

fx >0, fu>0, fx+Kfxkx >0, fu+Hfug>0, fxfo—ffxg>0.

We mention here that the above characterization of strong pseudoconvexity of F' can be simplified. And we

have the following proposition.

Proposition 3.1 Let (My, Fy) and (M, Fy) be two strongly pseudoconvex complex Finsler manifolds, and
(M, F) be the corresponding product complex Finsler manifold with F defined by (3.1). Then F is strongly

pseudoconvex on My x My C M if and only if

fk>0, fu>0, A:=fxfu—ffxu>0. (3.5)
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Proof We only need to show that (3.5) implies

frk +Kfxkx >0, fa+Hfugg >0.
In fact, if (3.5) holds, by the third inequality in (3.5) and using (3.2) and (3.3), we obtain
0<fxfuH—ffxkuH
= fx(f— fxK) — f(—fxkx K)
= f(fx + Kfxx) — [k K,

which yields that fx + K fxx > 0. Similarly, we obtain fg + H fgg > 0. This completes the proof. O

In the rest of this paper, complex Finsler manifolds that emerged are all assumed to be strongly pseudoconvex.
Roughly speaking, a strongly pseudoconvex complex Finsler metric F' on a complex manifold M is called

strongly convex if F' is also a real Finsler metric. We refer to [3, 19, 21] for more details.

Proposition 3.2 Let (M, F1) and (Ma, F) be two strongly convex complex Finsler manifolds, and (M, F)
be the corresponding product complex Finsler manifold with F defined by (3.1). Then F is strongly convex on

My x My C M if and only if
fk >0, fu>0, fxfu—2ffku>0. (3.6)

Proof Since F; and Fj are strongly convex complex Finsler metrics, they are naturally real Finsler metrics,

by equalities (1.20) and (1.21) in [9, page 14], F is strongly convex if and only if
Jk >0, fu>0, fk+2Kfrkxk >0, fu+2Hfugn >0, [xfog—2ffxkg>0. (3.7)

A similar argument to that in the proof of Proposition 3.1 yields that (3.7) is equivalent to (3.6). This completes
the proof. O

Since Hermitian metrics are naturally strongly convex complex Finsler metrics, Proposition 3.2 provides

an effective approach to construct strongly convex complex Finsler metrics via Hermitian metrics.

Example 3.1 (Szabé metric [10, 19]) Suppose that (M,ea) and (N,B) are two Hermitian manifolds, and Fy

s a product complex Finsler metric on the product manifold M x N with F. defined as follows:

F. = \/a2 + B2 +e(0 + )7,
where real numbers € >0 and p > 0. Then
(i) F. is a strongly pseudoconver complex Finsler metric on M x N for every p € (0,+00);

(ii) F. is a strongly convex complex Finsler metric on M x N for every p € [%, +oo) .

4. Connection coefficients of product complex Finsler manifolds

At the beginning of this section, we list some basic results in [15]. Let (Mj, F1) and (Mas, F3) be two complex
Finsler manifolds, and (M, F') be the corresponding product complex Finsler manifold as defined in Section 3.

We denote K = (K ;) and H = (H,5) the complex Hessian matrices of K and H, respectively, and denote

their inverse matrices by K1 = (K@) and H~! = (HP®), respectively.
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Proposition 4.1 ([15]) The fundamental tensor matriv G and its inverse G™1 associated to the product

complex Finsler metric F are given respectively by
_ _ ba ba
G- ( Gip Gus )’ Gl G G 7
Gap Gap Ghe Ghe

G =K ;+ fxx KoK,
G5 = [knK.Hg,

where

G 3 = fruHo K3,

G, =fuH .5+ funHoHg,

L[ tuls o]
K

1

= 7KfKHUa,Ub7

1 _
Gfe = _— a8,
LA
G = L [ _ Jdun oz
Ju A
Here, A is given by (3.5).
From now on, we use the symbol ‘“ ~ ” to mark the geometric objects associated to the complex Finsler

metric F} or Fy, depending on the different ranges of indices, for instance, f‘é and f?‘y denote the Chern—Finsler

nonlinear connection coefficients associated to F; and F5, respectively.

Proposition 4.2 ([15]) The Chern—Finsler nonlinear connection coefficients I”,c associated to the product
complex Finsler metric F are

re—r ry=rg. I5=ri-o (1)

)

By Proposition 4.2 and the first equality in (2.4), one can easily get the following proposition.
Proposition 4.3 ([15]) The horizontal Chern—Finsler connection coefficients F;;k associated to the product
complex Finsler metric F are

Tye = Thies Iy =I5y Iy = TG = Iy = Ihe = Iy = I = 0.

Proposition 4.4 (i) The complex spray coefficients G' associated to the product complex Finsler metric F
are

Ga:Ga’ Ga:@a;

(ii) the complex Berwald nonlinear connection coefficients Gt associated to the product complex Finsler metric

F are
G:=G: G2=G2, G=G2=0;
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(i@i) the horizontal frame {Z;} associated to the product complex Finsler metric F are
Zo = c%;aa Zo = M@/}od
i) the complex Berwald connection coefficients G, associated to the product complex Finsler metric F are
P i P P
be = Gie, gv = va, gw = Gg"y =Gp, = ?7 =0.
Proof

(i) Tt follows from (2.1) and (4.1) that

a 1 a,.j 1 a a 1 a 1~a ~a
G = 3l = 5 [To" + Do) = S I’ = ST’ =6,

!
)

o, ] 1 a, b « 1 o, B lNa ~No
I =5 [T’ + Dgo’] = 5T’ = SIgo” = G

Ge
(ii) Tt follows form (i) that
G¢ =0.G" =9.G* =G?, G2 =0,G"=09,G"=0.
Similarly, we obtain the rest of the equalities of (ii).
(iii) It follows form (ii) that
Lo = 04— G0, — GLog =0, — GL0, = 0y — GL0, = Za,
Fo =00 —GLO, — GPOs = 0y — GBOs = 00 — GBOs = Za.

(iv) It follows by a similar argument to that in the proof of (ii).

Remark 4.1 The three propositions above indicate that the siz geometric objects G*, Z;, F”k, Gi, F;;k,
and (G;k associated to the product complex Finsler metric F are all independent of the choice of function f,

and coincide with those of Fy and Fy. Hence, in the following computation, we need not to note whether the
mentioned six geometric objects are marked with the symbol *“ ~ 7.

Below, we shall derive the horizontal connection coefficients IL; x of the Rund-type complex linear con-
nection associated to the product complex Finsler metric F'. Note that IL;'-,C is symmetric with respect to the
lower indices j and k, we actually only need to compute six tensors: Ly, Ly, , Lg , Ly, Ly , and L3, . For
simplicity, the derivatives with respect to the horizontal frame {2, 2.} shall be denoted by lower indices
behind the symbol ¢ | 7, for example

KE\C = Zu(K3), Hj= Zu(H).
By Proposition 4.1 and a series of contractions, we obtain the following lemma.
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Lemma 4.1

) 1 1
GUKyg == |0 — < fufrxv Ky, (4.2)
[K A
da 1 o 1 u
GUKg= R (fu — fenK)0® = L (fu + funH)v", (4.3)
= 1
GMHy = —( frrHv", (4.4)
GK, = _ifKHKW = lfHHHW (4.5)
a A A . .

Proposition 4.5 The horizontal connection coefficients ]L;-k of the Rund-type connection associated to the

product complex Finsler metric F are

a T a 1 da fKK a a
be =llape T §fKKGd (KE‘ch + KE‘CKb) + 2fK (5CK“7 + 5b K|c)
1 1 9 a
+3x fofexx + fxkufer — T Tufix | vV (KoK + K. Kp), (4.6)

a 1 7(1
by =§Gd {(fKHKg‘b + e KzK ) Hy + (fea K,z + fKKHKng)HW]

- ifKH(fKH + frpaH)v" (KyH), + K, Hy ), (4.7)

1
gw :ﬂflz[ln(fH)]KHva (HBH\’Y + H’YHIB) ) (4.8)
be :ifiz( [In(fr)] je g0 (Kb K)o + K. Kpp) (4.9)

1
by :iGm [(fkaHzy + fraaHsH\ ) Ky + (fxaHys + fxnn HyHy) K

1
- EfKH(fKH + [k K)v*(KyH |, + K\, Hy ), (4.10)
o _fo i lp G H 4 Hy Hy)+ T (50 H 69 H
br =Ly + 5 fun G (Hop Hy + Hopy Hp) + 5 - (05 Hyp o+ 05 Hiy )
1 1
+ﬁ fxfuoun + frafoe — JTHfoJ%IH v*(HgHp, + HyHyp). (4.11)

i

Proof Firstly, we calculate L{.. According to the definition of L%, we have
1= 3G [43(G) + 22(Gy)]
= 56 [#(Ga) + ZilGpa)] + 367 (%i(Gex) + ZilGir). (1.12)
By Proposition 4.1, we have

1 de  fufKK
_ Kda_
Ir A

Gg=1IkK g+ fkxKKyg, G vl |
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Furthermore

20(G ) = fr 20(K ) + fr K gKpp + (frxKep + frx KeKpp) Kg + frx KKz,

which together with (4.2) and (4.3) yields

G 23(C ) =K 23 (K ) — P 0 () 4 e G K K
+GUE Ky (frxKop + frrx K Kp) + frerGe “Kg,Ke
. . 1
:Kda%(KCE) + <GdaKd — AfHUa> fKKKc|b
+ (fKKGE“KCg + GgaKngKKKc) K, + fKKGaaKEU)KC

. . 1
=K"2,(K5) + fKKGdaKg|ch + EHfHHfKKUaqu

fKK 0o Kp+ |:(fH Kfxn)frkr —

f fH frr | VKK, (4.13)

fx
Again by Proposition 4.1 and using (4.4), we get

G 2(Gey) =G 2y (fxn K Hy) = G Hy 2 (fx n Ke)
1
=- ZfKHHUa(fKKHKcKw + fxaKep)

1 1
- ZfKKHfKHHUaKCKH; - ZHff(Hv“de. (4.14)

(4.13)4(4.14), and using the third equality in (3.3) and first equality in (3.4) implies

G 23(G ) + G 23(Ge)

_ Kﬁa%(Kca) + fKKGEaKE\bKC + %5?[(“,

1
— fufir | VKK, (4.15)

+ % fufxxx + [k fra — »

By plunging (4.15) into (4.12), we obtain (4.6). Similarly, we obtain (4.11).
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Secondly, we calculate L‘bﬂ,- According to the definition of IL; «» we have
a _ L
b= 5G| 2060 + 24(Gy)]
1 da 1 ca
= 3G™ | 24(Gq) + 25(Gyg)| + 5G7 [2(Goz) + 24(Gio)
1 —
- iGd“ (2 (fxnHK7) + 2, (fr Kz + frre K K7)]
1 -
+ §Gaa (25 (fru KyHe) + 24(faHys + fanH, Hy))

1 —
- §Gda {(fKHKE\b + Iexa KK ) Hy + (frn Ky + fKKHKbKE)H”]

1
+ 500@ (fxuHzy + fkanHeH)y ) Ky + (fkaHys + feanHyHz) K| -

A simple calculation yields
— 1
GUGHEW = _ZfKHvaH\'w
- 1
G°"Hz = _ZfKHHUaa
oa 1 a
G HVE = —ZfKH'U H,y.

Plunging (4.17)—(4.19) into (4.16) implies (4.7). Similarly, we get (4.10).
Lastly, we compute H“gv' By the definition of Lé-k, we have

1 -
Ly, = 5G™ | 25(G.) + 25(Gy)|
1 da 1 oa
= 5G™ [25(G0) + 24(G )| + 567 (25(Go) + 25,(Gsa)
By Proposition 4.1 and using (4.3), we have
G 25(G ) = G% Zp(fremH, K7)
= G K3 25(fren Hs)
1
= K(fH + faaH)* (fxkuHys + fxaaHigHy ),
_ 1 _
G7* Zp(Grz) = =1 Frenv®v? 25 (Goz)
1 . _
=~} v 25 (Gozv?)

— —%fKHUa‘%B (fo + Hfun)H,)

- _%fKHUa [(for + Hfuu)Hyp + (fo + Hfow) n Hg H

- _%fKHva [(fur + Hfun)Hyp + (fom — K fxnn)HigH, ]

(4.16)

(4.17)
(4.18)

(4.19)

(4.20)

(4.21)

(4.22)
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where, in the last equality, we used H fyg = —K fxn . Furthermore, (4.21)4(4.22) yields

G 25(G3) + G7* 2(Gryz)

= % (fg + funH)fxnn — feun(fun — Kfxpm)| v"HigH,
= % (fufxan — fxnfumn) v HigH,
1
= S [n(fw)] v Hip Hy. (4.23)

By substituting (4.23) into (4.20), we get (4.8). By a similar calculation, we obtain (4.9). This completes the
proof. O

Proposition 4.6 Let ]L;k be the horizontal connection coefficients of the Rund-type connection associated to

the product complex Finsler metric F'. Then the following two equalities hold:

1

b Ko =— EHf%, (In(fu)] o (KoHy + KpH,y) (4.24)
1

b Ho =— ﬁKf}; [In(fx)] oy (KoHpy + K H,) . (4.25)

Proof
By (4.3), we obtain

— 1 -
GlK, = K(fH + farH)v,

which together with equalities

KE“)’Ud = Klb’ Kba’l)d = Kb, Ka’l}d = K,

—fkuK = fauH, fxo+ fekxkeK =—fxunH

yields

1

e = ox

(frr + FrrHV | (frnKgy + frexn KK Hy + (frn Ky + fKKHKbKE)HIW}

1
- ﬁfKHK(fKH + fearH)(KyH )\, + KipyHy)

1

A (fu + faaH)(fxa + fxkxaK) + funH(fxn + feaaH)| (KyHy, + K Hy)

1
ﬂ[(
— —iH(foKHH — funfrn) (KuHyy + KpH,)

1

fo+ funH)(—feaunH) + fupH (fxn + feanH)| (KoH), + Ky H,)

which is (4.24); we obtain (4.25) similarly. O
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5. Proof of Theorem 1.1
(i) It follows from Proposition 4.3.

(ii) It follows from Proposition 4.3.
(iii) By Definition 2.3, F' is a weakly Kéahler—Finsler metric if and only if
Gi(L}y, — Ii)v’ =0.
By Proposition 4.3, we obtain
Gi(lje = Iy’
:Ga(rl?;c - ca;b)vb + Ga(Fg;c - ca;ﬁ)vﬁ + GO&(FI;);LC - co;éb)vb + GO&(FE;C - CO;CB),UB
:GG«(Fl;I;c - ca;b)vb

=frKo(Ig, — TN, (5.1)

Similarly, we get

Gi(I}, — i = fuHa(Ig, — I ;)0 (5.2)

It follows from (5.1), (5.2), and the fact that fx > 0, fiy > 0 that
Gi(I})y, — Ii)v) =0

if and only if
Ka(féfc - ff;b)vb =0 and Ha(fﬁ,y - fﬁﬂ)vﬁ =0,

v

or equivalently, F' is a weakly Kéhler—Finsler metric if and only if F; and F, are both weakly Ké&hler—
Finsler metrics.

(iv) It follows from the fourth conclusion of Proposition 4.4.

6. Proof of Theorem 1.2

By symmetric property L%, =1i;,

a a a «a @
Lbc’ Lb’y ’ Lﬁ'y ) ]Lbc ) ]Lb'y )

last conclusion in Proposition 4.4, the complex Berwald connection coefficients Gék associated to the product

the horizontal connection coefficients ]L; . are decided by six tensors, namely,

and L3, which are just the objects that shall be considered in this section. By the

complex Finsler metric F' are
6, =G G3,=G3, G =Gl =Gf =G =0.
Hence, (M, F) is a Landsberg manifold, i.e. F is a Landsberg metric if and only if

be = Gie, 5y = Giy by = Ly = L = Ly, = 0. (6.1)
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Proof of the sufficiency
Case 1. Suppose that F; and F5 are both complex Landsberg metrics, and f = c1 K 4 coH with ¢, ¢y
positive constants, which apparently yield

~Zc = ~;)lcv ~g'y = G%fw (62)

Jkx = fxn = fun =[xk = fxkxn = fxan = funn = [I0(fx)] = [I0(fm)] oy =0 (6.3)

By plunging (6.2) and (6.3) into the expressions of ]Lé-k (4.6)—(4.11), we obtain (6.1). Hence, the product
complex Finsler metric F' is a complex Landsberg metric.

Case 2. Suppose that F} and Fy are both Kahler—Finsler metrics, then by conclusion (i) in Theorem 1.1,
the product complex Finsler metric F' is a Kéhler—Finsler metric, which implies that F' is a complex Landsberg
metric.

Proof of the necessity

Suppose that the product complex Finsler metric F' is a complex Landsberg metric, then equalities in
(6.1) hold, and we have
3y =0, e =0, by Ko =0, pyHa = 0. (6.4)

Substituting expressions (4.8), (4.9), (4.24), and (4.25) into the four equalities in (6.4), respectively, yields

[In(fm)]  yy (HaHyy + HyHg) =0, (6.5)
[In(fx)] oy (KbKje + KKp) =0, (6.6)
[In(fu)] gy (KoH )y + KppHy) =0, (6.7)
[I(f5)] gy (KoHyy + KppHy) =0 (6.8)

Now we analyze (6.5)-(6.8), and divide our discussion into two cases.

Case 1. Either one of [In(fy)]xr and [In(fx)|xm does not vanish. Without loss of generality, we
suppose

[In(fu)] cpy #0,
which together with (6.5) and (6.7) implies
HgH, + HyHjs = 0, (6.9)
KyH), + K H, = 0. (6.10)

Noting that by (2.3) and (2.5), we get
Higv® = 2 (H) = x(H) = d3(H)" =0.
Then, contracting (6.9) with v# in both sides yields
H, =0. (6.11)

A similar process on (6.10) implies
Ky =0. (6.12)
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By Proposition 2.1, (6.11) and (6.12) indicate that F; and F5 are both weakly Kédhler—Finsler metrics. Below,
we shall show that F; and F5 are actually both Kédhler—Finsler metrics. Plunging (6.11) and (6.12) into (4.7)
yields

0= 2Ly, = fxnG Ky, H,. (6.13)
It follows from

0 [hl(fH)]KH - (J}(;I)H

that fxy # 0, and note that G492 is an invertible tensor, we deduce from (6.13) that

Ky, = 0. (6.14)
Similarly, by plunging (6.11) and (6.12) into (4.10), we obtain

Hz, =0. (6.15)

It follows from (6.14), (6.15), and Proposition 2.1 that F; and F» are both Ké&hler-Finsler metrics.
Case 2. Both [In(fg)]xky and [In(fx)]xg vanish, i.e.

[I(fm)] o py = O, (6.16)
[I(fx)] oy = 0. (6.17)

Integrating (6.16) yields that

fu = exp(¢(K) + ¢(H))
for some one-variable functions ¢(K) and @(H). Since fg is 0-homogenous, it results that both ¢(K) and
@(H) are 0-homogenous, this implies that ¢(K) = constant and ¢(H) = constant. Hence, we obtain

fu = constant. (6.18)

Similarly, by (6.17), we deduce that
fK = constant. (6.19)

Noting that f is a 1-homogeneous function, it follows from (6.18) and (6.19) that
f =c1 K +cH

for some positive constant ¢; and co. In this case, the higher partial derivatives of f with order greater than

1 all vanish, i.e.
Jkx = fxkn = fan = fxkkx = fann = 0. (6.20)

By a direct substitution of (6.20) into (4.6) and (4.11), respectively, we obtain
be = Lies g'y = ]Lg’y’
which together with the first two equalities in (6.1) yield that
be = Gbe, L3y = Gjy,
or equivalently, F; and F, are both complex Landsberg metrics. This completes the proof.
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