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Abstract: For an odd prime p , we prove that a finite powerful p -group having rank two Frattini quotient has nonzero
essential cohomology. We also provide some examples and applications.
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1. Introduction
Let G be a finite group and k be a field of characteristic p . A cohomology class x in the mod p -cohomology
ring H∗(G, k) is called essential if it is in the intersection of kernels of restrictions to proper subgroups
(x ∈ ∩H<Gker resG

H ). Essential classes in H∗(G, k) generate an ideal called the essential cohomology of
G and it is denoted by Ess∗(G) . For a finite group, the kernel of the restriction to a Sylow p -subgroup is
trivial, so nonzero essential cohomology only exists in the case of p -groups. Essential cohomology plays a
crucial role for calculation methods in [2, 7]. If Ess∗(G) is nonzero, then one cannot use the process in [2].
Finding a group theoretic characterization of finite p -groups having nonzero essential cohomology will be a
valuable step for the methods in [2, 7]. This is an open problem introduced in [1] (see problem 4 on page
438). For groups having Cohen–Macaulay cohomology rings, the characterization is given in [3]. It is rather
difficult to find nonzero essential classes, but when possible, it is also involved in determining the depth of the
cohomology ring H∗(G, k) (see [6]).

It is well known that for a finite p -group G , the Frattini quotient G/Φ(G) (here Φ(G) is the Frattini
subgroup of G) is an elementary abelian p -group. For elementary abelian p -groups, a characterization of
essential cohomology is given completely in [5]. By using this, we define the inflated essential cohomology of
a p -group as the ideal generated by infGG/Φ(G)(Ess∗(G/Φ(G))) and denote it by InfEss∗(G) . For p > 2 , we
consider the inflated essential cohomology of powerful p -groups: groups satisfying the condition [G,G] ≤ Gp

(here G =< xp : x ∈ G > the subgroup generated by all pth powers). For the rest of the paper we assume that
k = Fp , unless otherwise stated. In this paper, we prove the following:

Theorem 1.1 Let p > 2 and G be a finite p-group. If InfEss∗(G) is nonzero, then G is a powerful p-group.

For a restricted family of powerful p -groups, we give a characterization as follows.
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Theorem 1.2 Let p > 2 and G be a p-group such that the Frattini quotient has rank two. InfEss∗(G) is
nonzero if and only if G is a powerful p-group.

Theorem 1.3 If G is a powerful p-group with a rank two Frattini quotient, then Ess∗(G) is nonzero.

There is another distinguishable algebraic structure of essential cohomology of G if G is not an elementary
abelian p -group. By Quillen [15], if G is not an elementary abelian p -group, Ess∗(G) is a nilpotent ideal. By
Mùi (in his unpublished essay: The mod p cohomology algebra of the extra-special group E(p3) 1982) and
Marx [13], it was conjectured that the nilpotency degree is 2 . In [10], Green disproved the conjecture. We
consider the nilpotency degree of InfEss∗(G) and prove the following theorem.

Theorem 1.4 Let G be a finite p-group such that InfEss∗(G) is nonzero. Then the nilpotency degree of
InfEss∗(G) is 2 .

The structure of the paper is as follows. In Section 2 , we introduce the inflated essential cohomology of a finite
p -group and then we give some properties and examples. We briefly explain the characterization of 2 -groups
with nonzero inflated essential classes and investigate the case p > 2 . In Section 3 , we give the proofs of
Theorem 1.1, Theorem 1.2, and Theorem 1.3. In the last section, we prove Theorem 1.4.

2. Inflated essential cohomology

For a finite p -group, the Frattini quotient G/Φ(G) is an elementary abelian p -group and the essential cohomol-
ogy of it is completely determined in [5]. We define the inflated essential cohomology of G as follows. Consider
the ring homomorphism

infGG/Φ(G) : H
∗(G/Φ(G), k) → H∗(G, k).

Definition 2.1 The inflated essential cohomology of a finite p-group is the ideal generated by the image
infGG/Φ(G)(Ess∗(G/Φ(G))) .

We denote this ideal by InfEss∗(G) . The relation between restriction and inflation explain the reason why we
call this ideal inflated essential cohomology.

Lemma 2.2 Let G be a p-group and N be a normal subgroup of G , which is contained in all maximal
subgroups. Then

infGG/N (Ess∗(G/N)) ⊆ Ess(G).

Proof Let x ∈ Ess∗(G/N) and H be a maximal subgroup of G . We have

resGH(infGG/N (x)) = infHH/N (resG/N
H/N (x))

and resG/N
H/N (x) = 0 as x is essential. (For the commutativity of restriction and inflation, see page 70 in [18].)

2

Thus, for a p -group G , we have InfEss∗(G) ⊆ Ess∗(G).
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We consider a particular form of the open problem in [1]. Our main interest is to make a classification of
p -groups with nonzero inflated essential classes.

The classification has different results for odd primes and prime 2 . For p = 2 the classification is
determined completely. For odd primes, the classification is much more difficult. For completeness we include
the case p = 2 , which mainly follows from the results in [19].

2.1. The case p = 2

Let V be an elementary abelian 2 -group. The cohomology ring of V is H∗(V, k) = k[x1, ..., xn] where
xi ∈ H1(V, k) . The essential cohomology of V is given in [5].

Lemma 2.3 ([5], Lemma 2.2) The essential cohomology of V is the principal ideal generated by Ln(V ) =

λ
∏

[x]∈PH1(V,k) x , where λ is a nonzero scalar in k .

For p = 2 , the classification of 2 -groups with nonzero inflated essential cohomology follows from a result
in [19].

Theorem 2.4 ([19]) If G is a non-Abelian 2-group, σG =
∏

x∈H1(G,k)−{0} x = 0 .

Corollary 2.5 If G is a non-Abelian 2-group, then InfEss∗(G) = 0 .

Proof Let V denote the elementary Abelian quotient G/Φ(G) . By Lemma 2.3 Ess∗(V ) is generated by
Ln(V ) . We have infGG/Φ(G)(Ln(V )) = σG , as infGG/Φ(G) : H1(G/Φ(G), k) → H1(G, k) is bijective. Then
InfEss∗(G) = 0 by Theorem 2.4. 2

For some Abelian 2 -groups, we have σG = 0 . For example, G = Z/4Z × Z/8Z . The following theorem
is a characterization of 2 -groups with nonzero σG .

Theorem 2.6 ( [19]) Let G be a 2-group. Then σG ̸= 0 if and only if G ∼= Z/2s × (Z/2)n for some n ≥ 0

and s ≥ 1 .

The characterization of 2 -groups having nonzero inflated essential cohomology easily follows.

Corollary 2.7 Let G be a 2-group. Then InfEss∗(G) ̸= 0 if and only if G ∼= Z/2s × (Z/2)n for some n ≥ 0

and s ≥ 1 .

For p = 2 , the characterization is complete.

2.2. The case p > 2

The classification of p -groups with nonzero inflated essential cohomology is much more complicated for p > 2 .
Let V be an elementary Abelian p -group of rank n . The cohomology ring of V is

H∗(V, k) = k[x1, ..., xn]⊗ ∧(a1, ..., an),

where ai ∈ H1(V, k) , xi = β(ai) , and here β is Bockstein homomorphism. In [5], the essential ideal of V is
characterized by the action of Steenrod algebra.
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Theorem 2.8 ( [5], Theorem 1.1) The essential cohomology Ess∗(V ) is the Steenrod closure of the product
a1 · · · an .

We can easily conclude the following corollary.

Corollary 2.9 Let G be a p-group. The inflated essential cohomology InfEss∗(G) is zero if and only if
infGG/Φ(G)(a1 · · · an) = 0.

Proof This follows from the fact that the essential cohomology of the elementary Abelian p -group is the
Steenrod closure of a1 · · · an and Steenrod operations commute with inflation by naturality. 2

The problem of finding p -groups with nonzero inflated essential classes (i.e. nonzero essential classes) is reduced
to the problem of finding finite p -groups such that infGG/Φ(G)(a1 · · · an) ̸= 0 .

First of all we consider extraspecial p -groups. We will explain later the background motivation for this.

Definition 2.10 A finite p-group G is called extraspecial if the center Z(G) is cyclic of order p and Z(G) =

G′ = Φ(G) . A finite p-group G is called almost extraspecial if the center is cyclic of order p2 and G′ = Φ(G)

is cyclic of order p .

There are two types of extraspecial p -groups of order p3 :

M ∼= ⟨x, y | xp = yp
2

= 1, xyx−1 = yp+1⟩,

E ∼= ⟨x, y, z | xp = yp = zp = [x, z] = [y, z] = 1, [x, y] = z⟩.

An extraspecial p -group of order p2n+1 is isomorphic to one of the following central products:

En = E ∗ · · · ∗ E (n times), Mn = M ∗ En−1.

If we consider the central product Cp2 ∗ Mn or Cp2 ∗ En , we get almost extraspecial p -group of order
p2n+1 . In fact, these groups fit into an extension of the form

1 → Cp → G → V → 1,

where V is an elementary Abelian p -group that is isomorphic to G/Φ(G) and this extension corresponds to a
cohomoloy class α ∈ H2(V,Fp) .

For details about extraspecial p -groups, see [8].
We consider the inflated essential classes of extraspecial p -groups. For notation, let H∗(V,Fp) =

Fp[x1, ..., xs]⊗ ∧(a1, ..., as) where s = 2n if G is extraspecial and s = 2n+ 1 if G is almost extraspecial.

Lemma 2.11 (Lemma 7.6.1 in [8]) The cohomology class of the extension of V by Cp is the class

α =


a1a2 + ...+ a2n−1a2n, if G = En

a1a2 + ...+ a2n−1a2n + x2n, if G = Mn

a1a2 + ...+ a2n−1a2n + x2n+1, if G is almost extraspecial

in H2(V,Fp) . For each case, α is in the kernel of inflation infGV .
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Lemma 2.12 Let G be an extraspecial p-group of exponent p . Then InfEss∗(G) = 0 .

Proof The product αa3 · a4 · · · a2n = a1 · · · a2n is in the kernel of infGG/Φ(G) as α = a1a2 + ...+ a2n−1a2n, in

the kernel of infGG/Φ(G) by Lemma 2.11. Thus, InfEss∗(G) = 0 . 2

Remark 2.13 By Proposition 4 and Proposition 5 in [14], we can conclude InfEss∗(Mn) ̸= 0 and InfEss∗(G) ̸=
0 where G is an almost extraspecial p -group. In [14], there is a question (see question on page 1945) about
extraspecial p -groups that are not isomorphic to E . For G ≇ E , is it true that Ess∗(G) ∩ Im infGV ̸= {0}? We

do not have a complete answer but we can say that Ess∗(G) ∩ infGV (Ess∗(V )) = {0} when G is an extraspecial
p -group of exponent p by Lemma 2.12.

The motivation for considering extraspecial p -groups comes from the following. Many of the theorems
such as Serre’s theorem [16] can be proved by reducing them to the extraspecial case and then by using induction.
In fact, this is because of the following lemma.

Lemma 2.14 Let G be a non-Abelian p-group and let H be a maximal element in the collection of normal
subgroups of G that do not contain the Frattini subgroup of G . Then the quotient Q = G/H is an extraspecial
or almost extraspecial p-group.

Proof For details see [8], page 154 . 2

Lemma 2.15 Let G be a p-group. If InfEss∗(G) ̸= 0 , then InfEss∗(G/N) ̸= 0 for any proper quotient G/N .

Proof We prove that InfEss∗(G/N) = 0 , and then InfEss∗(G) = 0 . By transitivity of inflation, we have a
commutative diagram:

H1(G/N/Φ(G/N), k)
inf−−−−→ H1(G/Φ(G), k)

inf
y inf

y
H1(G/N, k)

inf−−−−→ H1(G, k)

InfEss∗(G/N) = 0 if and only if infG/N
G/N/Φ(G/N)(a1 · · · at) = 0 where a1, ...at are the generators of

H1(G/N/Φ(G/N), k) . Thus, infGG/N infG/N
G/N/Φ(G/N)(a1 · · · at) = 0 . On the other hand, let e1, ..., en be the

generators of H1(G/Φ(G), k) . It is clear that t ≤ n , so we can view ei = infG/Φ(G)
G/N/Φ(G/N)(ai) for 1 ≤ i ≤ k .

By commutativity of the diagram infGG/Φ(G)(e1 · · · ek) = 0 . Then infGG/Φ(G)(e1 · · · en) = 0 , which means
InfEss∗(G) = 0. 2

With the same notation as in Lemma 2.14, we have the following proposition.

Proposition 2.16 Let G be a non-Abelian p-group such that the quotient Q = G/H is extraspecial of exponent
p . Then InfEss∗(G) = 0 .

Proof By Lemma 2.12 InfEss∗(Q) = 0 . Since Q is a proper quotient of G , by Lemma 2.15 InfEss∗(G) = 0.
2
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For non-Abelian p -groups having an extraspecial p -group of exponent p as a quotient, inflated essential classes
are zero.

Contrary to 2 -groups, if G is an Abelian p -group, then InfEss∗(G) is nonzero. This follows from the
fact that the cohomology ring of an Abelian p -group is the tensor product of the cohomology rings of the cyclic
p -groups, and the cohomology ring of a cyclic p -group is k[a, x]/(a2) where deg a = 1 and deg x = 2 .

Proposition 2.17 Let G and H be p-groups such that InfEss∗(G) ̸= 0 and InfEss∗(H) ̸= 0 . Then InfEss∗(G×
H) is nonzero.

Proof Since InfEss∗(G) ̸= 0 and InfEss∗(H) ̸= 0 we have infGG/Φ(G)(a1 · · · ak) ̸= 0 where ai ∈ H1(G/Φ(G), k)

and infHH/Φ(H)(e1 · · · el) ̸= 0 where ei ∈ H1(H/Φ(H), k) . Consider ãi = infGG/Φ(G)(ai) and ẽi = infHH/Φ(H)(ei) .
InfEss∗(G×H) is nonzero, because ã1 · · · ãk · ẽ1 · · · ẽl ̸= 0 in H∗(G×H, k) ∼= H∗(G, k)⊗H∗(H, k) . 2

There is no information on Ess∗(G×H) in general. For a restricted family we have the following result.

Corollary 2.18 Let G be a p-group such that InfEss∗(G) ̸= 0 . If H is an Abelian p-group, then Ess∗(G×H)

is nonzero.

If G is an extraspecial of exponent p2 or an almost extraspecial p -group, then InfEss∗(G) is nonzero (see [14],
Proposition 4 and Proposition 5). Thus, any direct product of G with an Abelian p -group has nonzero essential
classes.

With the same notation as in Lemma 2.14, we have a question:

Question 2.19 If Q = G/H is an extraspecial p-group of exponent p2 or almost extraspecial p-group, then is
it true that InfEss∗(G) ̸= {0}?

This is not true in general.

Example 2.20 By definition of the central product, we can consider Mn in the extension

0 → Cp → En−1 ×M → Mn → 0.

Q = Mn and we know that InfEss∗(Mn) ̸= 0 , but InfEss∗(En−1 ×M) = 0 as InfEss∗(En−1) = 0 .

Example 2.21 Since an almost extraspecial p-group Γn of order p2n+2 is the central product Cp2 ∗ En , we
can consider the extension

0 → Cp → En × Cp2 → Γn → 0.

We know that InfEss∗(Γn) ̸= 0 , but InfEss∗(En × Cp2) = 0 as InfEss∗(En) .

Proposition 2.22 Let G be a non-Abelian p-group of exponent p . Then InfEss∗(G) = 0 .

Proof If G is of exponent p , then any proper quotient is also of exponent p . Thus, the extraspecial quotient
Q is also of exponent p , so by Lemma 2.16, InfEss∗(G) = 0 as InfEss∗(Q) = 0 . 2
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3. Powerful p-groups

Proposition 2.22 leads us to consider powerful p -groups, which are introduced in [11] and are used to study
the structure of the Schur multiplier of a p -group. They are also used for the study of analytic pro-p -groups
[9]. These groups are also important because every finite p -group can be expressed as a section of a powerful
p -group (see [12]). We consider powerful p -groups in the case of odd primes.

Definition 3.1 Let p > 2 . A finite p-group G is said to be powerful if [G,G] ⩽ Gp .

Proof [Proof of Theorem 1.1] If G is an Abelian p -group then there is nothing to do. Assume G is a non-
Abelian p -group. [G,G] ⩽ Gp if and only if Φ(G) = Gp . Now assume that Gp < Φ(G). Then the quotient
G/Gp is a non-Abelian p -group of exponent p . By Proposition 2.22 InfEss∗(G/Gp) = 0 and by Lemma 2.15
InfEss∗(G) = 0 . 2

Proof [Proof of Theorem 1.2] If InfEss∗(G) ̸= 0 then by Theorem 1.1 G is powerful. Assume G is powerful.
As we have dim(G/Φ(G)) = 2 , the cohomology group H1(G/Φ(G), k) has two generators a1, a2 , so we need to
show that infGG/Φ(G)(a1 · a2) ̸= 0 . This follows from the following theorem as every p -group is a pro-p group.
2

Theorem 3.2 ([17], Theorem 5.1.6) Let p be odd prime and let P be a finitely generated pro-p group. The
canonical mapping H1(P,Fp) ∧H1(P,Fp) → H2(P,Fp) is injective if and only if P is powerful.

Theorem 1.3 easily follows as a corollary.

Corollary 3.3 If G is a powerful p-group such that the Frattini quotient has rank 2 , then Ess∗(G) ̸= 0 .

Corollary 3.4 Let P be a powerful p-group such that the Frattini quotient has rank 2 and H be an Abelian
p-group. Then, for G = P ×H , Ess∗(G) ̸= 0

Remark 3.5 All Abelian p -groups are powerful and those for which the minimal number of generators is 2

are the powerful p -groups having rank two Frattini quotient. For the non-Abelian case, the modular p -groups

Modn(p) =< x, y : xpn−1

= yp = 1, xy = x1+pn−2

>

for n ≥ 4 are the example of powerful p -groups having rank 2 Frattini quotient. Note that the family Modn(p)

does not satisfy the pc condition mentioned in [3].

4. Nilpotency degree

In [15], it was proved that Ess∗(G) is nilpotent whenever G is not elementary Abelian. Marx [13] and Mùi
(in his unpublished essay: The mod p cohomology algebra of the extra-special group E(p3) , 1982) conjectured
that the nilpotency degree of Ess∗(G) is two and it was proved that it is not two in [10]. Contrary to essential
cohomology, we prove that the nilpotency degree of inflated essential cohomology is 2 .

Theorem 4.1 Let G be a finite p-group such that InfEss∗(G) is nonzero. Then the nilpotency degree of
InfEss∗(G) is 2 .
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Proof Let V be the Frattini quotient of G of rank n . By definition InfEss∗(G) is generated by infGV (Ess∗(V )) ,
so it is enough to show infGV (Ess∗(V ))2 = 0 .

We know that the essential cohomology of V satisfies Ess∗(V )2 = Ln(V ) · Ess∗(V ) by Lemma 3.2. in
[5]. Applying inflation to the equality we get infGV (Ess∗(V ))2 = infGV (Ln(V )) · infGV (Ess∗(V )) . By Lemma 2.1 in
[5], we have

Ln(V ) = λ
∏

[x]∈PH1(V,k)

β(x).

Inflation commutes with Bockstein homomorphism, so we have

infGV (Ln(V )) = λ
∏

[x]∈PH1(V,k)

β(infGV (x)) = λ
∏

[x̄]∈PH1(G,k)

β(x̄),

where x̄ = infGV (x) . By the following celebrated theorem of Serre, we get infGV (Ln(V )) = 0 . 2

Theorem 4.2 (Theorem 1.3 in [16]) Let S be a subset of H1(G, k) , which does not contain 0 and contains
exactly one point from each line in H1(G, k) . If G is not elementary Abelian then∏

x∈PH1(G,k)

β(x) = 0 in Heven(G, k).
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