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Abstract: In this paper, we study a weaker version of classic slant helices in Euclidean space R3 or Minkowski space R3
1 ,

which will be called general slant helices. We show that any classic slant helix is a general slant helix but the converse
is not true. We also obtain equations involving the curvature and torsion that characterize this family of curves.
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1. Introduction
It is usual practice to extend the concepts defined in Euclidean space to other more general spaces, either
allowing the metric to be indefinite or allowing the curvature to be nonzero. Most of the time, when the
extended concept is applied over the Euclidean space, the original definition is recovered, but other times this
is not the case. In these notes we will discuss one of these cases.

The term “slant helix” was introduced by Izumiya and Takeuchi [7]: slant helices are defined by the
property that their principal normals make a constant angle with a fixed direction. However, examples of this
kind of curves were studied in the past (see, e.g., Salkowski curves [13]). The characterization of slant helices
given in [7] was extended to the Minkowski space R3

1 by Ali and López [1]. In this case, a regular curve in
R3

1 is said to be a slant helix if there exists a nonzero constant vector v ∈ R3
1 such that the function ⟨N, v⟩ is

constant along the curve, N being the principal normal vector of the curve.
More recently, and following an idea used in [3] to define general helices in 3D-Lorentzian backgrounds

(based on a previous work of Barros [2]), the authors defined in [10, 11] slant helices in the three-dimensional
sphere S3 and anti-De Sitter space H3

1 . In [2, 3], the constant vector is replaced by a Killing vector field along
the curve with constant length. Since every Killing vector field along a curve can be uniquely extended to a
Killing vector field in the ambient space [8], one may think that a plausible hypothesis is that this extension
will also be of constant length, which implies (in the case, e.g., of the Euclidean space R3 ) that it must be a
constant vector field. However, it is easy to find Killing vector fields in R3 of nonconstant length that are of
constant length along a curve. In the study of general helices made in [2, 3], the families of general helices are
the same whether or not the extension is of constant length. However, as we will see throughout this work, in
the case of slant helices the sets of solutions are not the same with both hypotheses.

As an intermediate step towards our main results, in Section 3 we study the set M(X, ε) of points p ∈ R3
ν

such that ⟨Xp, Xp⟩ = ε , for a certain constant ε , where X is a nonconstant Killing vector field in R3
ν . We
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show (see Proposition 2) that if M(X, ε) is a nonempty set, then it must be one of the following submanifolds:

1) A straight line.

2) A null plane.

3) A circular cylinder.

4) A hyperbolic cylinder.

5) A parabolic null cylinder.

Moreover, if P is one of the submanifolds of the above list we show that there exists a Killing vector field
X ∈ K(R3

ν) such that P ⊆ M(X, ε) for some ε ∈ R .
In Section 4 we recover the notion of slant helix introduced in [10, 11] for a nonflat space, but without

the condition that the extension of the Killing vector field to the ambient space be of constant length, and we
apply it to the case of R3 or R3

1 . The new curves are called general slant helices because the Killing vector
field is of constant length only along the curve. Obviously every classic slant helix is a general slant helix, but
the converse is not true. It is important to point out that in the Minkowskian ambient space R3

1 the situation
is much richer than in the Euclidean case R3 since a curve γ can be of three types, according to the causal
characters of γ′ and γ′′ : (1) γ′ and γ′′ are nonnull (we say γ is a Frenet curve); (2) γ′ is spacelike and γ′′

is null (we say γ is a pseudo-null curve); (3) γ′ is a null vector (we say γ is a null curve). The following
characterizations of general slant helices in R3

ν are given (see Theorems 3, 4, and 5):

(a) A Frenet curve γ is a general slant helix if and only if the function

κ2√
|ε3κ2 + ε1(τ − λ)2|3

(
τ − λ

κ

)′

is constant (in the open set where ε3κ
2 + ε1(τ − λ)2 does not vanish) and the differentiable function λ is

a solution of the ODE (4.19). In this case, an axis of the general slant helix is given by

V =
µ(τ − λ)√

|ε3κ2 + ε1(τ − λ)2|
T + b N +

µκ√
|ε3κ2 + ε1(τ − λ)2|

B,

where constants b and µ are given by (4.24) and (4.25).

(b) Any pseudo-null curve is a general slant helix.

(c) A null curve γ is a general slant helix if and only if its pseudo-torsion is given by

τ(s) =
−n

(−bs+m)2
, n, b,m ∈ R.

In this case, an axis of the general slant helix is given by

V (s) =
n

−bs+m
T (s) + b N(s) + (−bs+m) B(s).
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2. Preliminaries

The semi-Euclidean space R3
ν , ν ∈ {0, 1} , is defined as the vector space R3 endowed with the semi-Riemannian

metric

⟨·, ·⟩ = δdx2 + dy2 + dz2, δ = (−1)ν ,

where (x, y, z) denotes the usual rectangular coordinates in R3 .
The local geometry of a regular curve γ in R3

ν can be described by using the Frenet apparatus of the
curve. Since there are three families of regular curves in R3

1 , we briefly recall the Frenet apparatus in each one
of the three families [9, 14].

2.1. The Frenet apparatus of a regular curve

Let γ = γ(s) : I ⊂ R → R3
ν be an immersed regular curve. If ∇0 denotes the Levi-Civita connection in R3

ν ,
we will write V ′(s) ≡ ∇0

γ′(s)V for any differentiable vector field V ∈ X(γ) along the curve γ . The parameter
s is the arc length parameter in the case when γ is a nonnull curve, or the pseudo-arc length parameter in the
case when γ is a null curve.

2.1.1. γγγ is a nonnull curve with nonnull acceleration vector

In this case, there exists an orthonormal frame along γ , {T = γ′, N,B} , satisfying the following equations:

T ′ = ε2κN,

N ′ = −ε1κT + ε3τB, (2.1)

B′ = −ε2τN,

where ε1 = ⟨T, T ⟩ , ε2 = ⟨N,N⟩ , and ε3 = ⟨B,B⟩ . The differentiable functions κ and τ denote the curvature
and torsion of γ . A curve of this family will be called a Frenet curve.

2.1.2. γγγ is a spacelike curve with null acceleration vector

In this case, there exists a pseudo-orthonormal frame along γ , {T = γ′, N,B} , satisfying the following equations:

T ′ = N,

N ′ = τN, (2.2)

B′ = T − τB,

where τ stands for the torsion (also called pseudo-torsion) of γ . The matrix of the metric in that pseudo-
orthonormal reference is given by ⟨T, T ⟩ = 1 , ⟨T,N⟩ = ⟨T,B⟩ = 0 , ⟨N,N⟩ = ⟨B,B⟩ = 0 , and ⟨N,B⟩ = −1 . A
curve of this family is called a pseudo-null curve [14] (or 2-degenerate curve [4]).
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2.1.3. γγγ is a null curve

Finally, for a curve of this family there exists a pseudo-orthonormal frame along γ , {T = γ′, N,B} , satisfying
the following equations:

T ′ = N,

N ′ = τT +B, (2.3)

B′ = τN,

where τ stands for the torsion (also called pseudo-torsion) of γ . The metric is given by ⟨T, T ⟩ = ⟨B,B⟩ = 0 ,
⟨T,B⟩ = −1 , ⟨N,N⟩ = 1 , and ⟨T,N⟩ = ⟨N,B⟩ = 0 .

2.2. Killing vector fields along regular curves

Given a regular curve γ = γ(t) : I ⊂ R → R3
ν , we will consider variations Γ = Γ(t, z) : I × (−ε, ε) ⊂ R2 → R3

ν ,
with Γ(t, 0) = γ(t) , such that all the t -curves γz(t) = Γ(t, z) belong to the same family as the curve γ . Let
V (t, z) = ∂Γ

∂z (t, z) and Γ(t, z) = ∂Γ
∂t (t, z) be the tangent vector fields to the z -curves and t -curves, respectively.

In particular, the vector field along γ defined by V (t) = ∂Γ
∂z (t, 0) is called the variational vector field of Γ . We

will write T (s, z) , N(s, z) , B(s, z) , κ(s, z) , τ(s, z) , V (s, z) , etc. for the corresponding elements when s is the
arc length (or pseudo-arc length) parameter of the curve γ .

2.2.1. Killing vector fields along Frenet curves

The vector field V (s) is said to be a Killing vector field along γ if the following conditions are satisfied:

∂v

∂z

∣∣∣∣
z=0

=
∂κ

∂z

∣∣∣∣
z=0

=
∂τ

∂z

∣∣∣∣
z=0

= 0, (2.4)

where v(s, z) stands for the velocity of the s -curves. These conditions are well defined in the sense that they
do not depend on the V -variation of γ one chooses to compute the derivatives involved in (2.4). In fact, by
using [3, Lemma 3.1] and (2.4) it is easy to see that V is a Killing vector field along γ if and only if it satisfies
the following conditions:

a) ⟨V ′, T ⟩ = 0,

b) ⟨V ′′, N⟩κ = 0, (2.5)

c)
⟨ 1

κ
V ′′′ − κ′

κ2
V ′′ + ε1ε2κV

′, B
⟩
τ = 0.

2.2.2. Killing vector fields along pseudo-null curves

The tangent vector to s -curves is given by T (s, z) = v(s, z)T (s, z) , and the acceleration a(s, z) of s -curves is
defined by

a(s, z)2 =
⟨
∇0

T
T ,∇0

T
T
⟩
.

Note that s is the arc length parameter of the curve γ , but this does not imply that it is also the arc length
parameter of the variational curves. In this family of curves the three functions that characterize a curve are
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the velocity, the acceleration, and the torsion. Hence, it is said that the vector field V (s) is a Killing vector
field along γ if the following conditions are satisfied:

∂v

∂z

∣∣∣∣
z=0

=
∂a

∂z

∣∣∣∣
z=0

=
∂τ

∂z

∣∣∣∣
z=0

= 0.

A straightforward computation yields that these equations are equivalent to the following conditions:

a) ⟨V ′, T ⟩ = 0,

b) ⟨V ′′, N⟩ = 0, (2.6)

c) ⟨V ′′′ − τV ′′, B⟩ = 0.

2.2.3. Killing vector fields along null curves

Finally, in the case of null curves, and in a similar way as before, we will say that the vector field V (s) is a
Killing vector field along γ if the following conditions are satisfied [5, 6]:

a) ⟨V ′, T ⟩ = 0,

b) ⟨V ′′, N⟩ = 0, (2.7)

c) ⟨V ′′′ − τV ′, B⟩ = 0.

Bearing in mind that the solutions of (2.5) or (2.6) or (2.7) constitute a six-dimensional linear space,
and that the restriction to γ of a Killing vector field of R3

ν is a Killing vector field along γ , we can state the
following result [8].

Proposition 1 Let γ be a regular curve immersed in R3
ν . A vector field V ∈ X(γ) is a Killing vector field

along γ if and only if it is the restriction to γ of a Killing vector field of R3
ν .

3. Killing vector fields of R3
ν of constant length on a submanifold

Let X ∈ X(R3
ν) be a Killing vector field. Then there exist two constant vectors v and w such that Xp = v+w×p ,

for any point p ∈ R3
ν , where the cross product × is defined as usual: u× v is the only vector in R3

ν such that
⟨u× v, w⟩ = det(u, v, w) for any w ∈ R3

ν . Then a basis of the vector space K(R3
ν) of Killing vector fields is

given by
{∂x, ∂y, ∂z,−δy∂x + x∂y,−δz∂x + x∂z,−z∂y + y∂z},

and so the vector field X can be expressed as a linear combination:

X = (a− δdy − δez) ∂x + (b+ dx− fz) ∂y + (c+ ex+ fy) ∂z,

for certain constants a, b, c, d, e, f . Hence, we can write

Xp = (a, b, c) + (f,−e, d)× p.
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Given a constant ε ∈ R , how is the geometry of the set M(X, ε) of points p ∈ R3
ν such that ⟨Xp, Xp⟩ = ε? If

p = (x, y, z) then ⟨Xp, Xp⟩ = ε if and only if

(d2 + e2)x2 + (δd2 + f2)y2 + (δe2 + f2)z2+

2efxy − 2dfxz + 2δdeyz+

2(bd+ ec)x+ 2(−ad+ cf)y + 2(−ae− bf)z+

δa2 + b2 + c2 − ε = 0. (3.1)

In other words,
⟨Ap, p⟩+ 2 ⟨p, u⟩+ u0 = 0, (3.2)

where A is a self-adjoint matrix, u ∈ R3
ν is a constant vector, and u0 ∈ R . That equation can be rewritten as

pt(AtG)p+ 2ptGu+ u0 = 0, (3.3)

where ()t denotes the transpose and G stands for the matrix of metric, which can be solved in a standard way.
It is easy to show that the eigenvalues of AtG are given by

λ̃1 = 0, associated to the eigenvector u1 = (f,−e, d), (3.4)

λ̃2 = d2 + e2 + f2, (3.5)

λ̃3 = δ(d2 + e2 + δf2). (3.6)

As a consequence, the eigenvalues of self-adjoint matrix A are given by

λ1 = 0, associated to the eigenvector u1 = (f,−e, d), (3.7)

λ2 = λ3 = δ(d2 + e2 + δf2). (3.8)

Now we distinguish three cases.

Case 1: d2 + e2 = 0 . Then M(X, ε) is characterized by the equation

(fy + c)2 + (fz − b)2 + δa2 − ε = 0.

Then depending on whether δa2 − ε is positive, zero, or negative, M(X, ε) will be the empty set, a straight
line, or a circular cylinder with axis (1, 0, 0) and radius

√
ε− δa2 .

Case 2: d2 + e2 ̸= 0 and d2 + e2 + δf2 ̸= 0 . With an appropriate change of coordinates (x, y, z) → (x, y, z) ,
Eq. (3.1) can be rewritten as

(d2 + e2 + δf2)x2 + δ(d2 + e2 + δf2)z2 = R, if δε1 = −1, (3.9)

δ(d2 + e2 + δf2)y2 + δ(d2 + e2 + δf2)z2 = R, if δε1 = 1, (3.10)

where

R = ε− (cd− be+ δaf)2

d2 + e2 + δf2
= ⟨X,X⟩ − ⟨u1, (a, b, c)⟩2

⟨u1, u1⟩
.
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Therefore, if M ̸= ∅ then M must be a straight line, a plane, a circular cylinder, or a hyperbolic cylinder.

Case 3: d2+ e2+ δf2 = 0 . Then δ = −1 and the axis u1 = (f,−e, d) is a null vector. When ⟨u1, (a, b, c)⟩ ̸= 0 ,
we can find a change of coordinates (x, y, z) → (x, y, z) , x being a null coordinate, such that equation (3.1)
yields

x2 − 2R y = 0, R = af + be− cd = −⟨u1, (a, b, c)⟩ ,

which represents a parabolic null cylinder (see [12]). Otherwise, in the case ⟨u1, (a, b, c)⟩ = 0 , there exists a
constant λ0 such that

(x+ λ0)
2 = ε,

which represents a pair of parallel null planes.
In conclusion, we have proved the following characterization of M(X, ε) .

Proposition 2 Let X ∈ K(R3
ν) be a nonconstant Killing vector field and consider ε ∈ R . If M(X, ε) is a

nonempty set, then it must be one of the following submanifolds:

1) A straight line.

2) A null plane.

3) A circular cylinder.

4) A hyperbolic cylinder.

5) A parabolic null cylinder.

Let P be one of the submanifolds listed in this proposition. We are going to show that there exists a
Killing vector field X ∈ K(R3

ν) such that P ⊆ M(X, ε) for some ε ∈ R .

Case 1: P is a straight line. If the line is spanned by the vector (v1, v2, v3) then we can consider the vector
field

X = a∂x + b∂y + c∂z +mv3(−δy∂x + x∂y)−mv2(−δz∂x + x∂z) +mv1(−z∂y + y∂z),

for any constants a, b, c,m . It is easy to show that X|P is constant and so ⟨X,X⟩ is constant along P .

Case 2: P is a null plane. Let us suppose that P is characterized by the equation

d1x+ d2y + d3z + d4 = 0, d21 = d22 + d23.

Let us consider the vector field

X =a∂x + b∂y + c∂z+

λ[−d3(y∂x + x∂y) + d2(z∂x + x∂z) + d1(−z∂y + y∂z)]+

µ[d2(y∂x + x∂y) + d3(z∂x + x∂z)],

with ad1 + bd2 + cd3 = d1d4µ . Then ⟨X,X⟩ is constant along the plane; in fact, we have

⟨X,X⟩ = −a2 +
[
b− d4

d1

(
µd2 − d3λ

)]2
+
[
c− d4

d1

(
µd3 + d2λ

)]2
.
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Cases 3 and 4: P is either a circular cylinder or a hyperbolic cylinder with axis spanned by a nonnull vector
w1 . Then there exists an orthonormal basis {w1, w2, w3} of R3

ν , w3 being a spacelike vector, such that P can
be parametrized as follows:

φ(t, s) = p0 +R
(
f(t)w2 + g(t)w3

)
+ sw1, (3.11)

where f and g are differentiable functions satisfying

f2 + ε2g
2 = 1, f ′ = −ε2g, g′ = f.

It is not difficult to see that a Killing vector field with constant length along N can be written as

Xp = µw1 + λw1 × (p− p0),

for certain constants µ, λ . Note that equation (3.11) implies the following characterization of cylinders:

ε2 ⟨p− p0, w3⟩2 + ⟨p− p0, w2⟩2 = R2.

Case 5: Finally, let us consider P as a parabolic cylinder with axis spanned by a null vector w1 . Then
there exists a pseudo-orthonormal basis {w1, w2, w3} of R3

ν , w3 being a spacelike vector, such that P can be
parametrized as follows:

φ(t, s) = p0 +R
(
tw2 +

t2

2
w3

)
+ sw1,

which leads to the following equation:

⟨w1 × (p− p0), w3⟩2 − 2R ⟨w1 × (p− p0), w2⟩ = 0.

As before, it is easy to see that a Killing vector field with constant length along P can be written as

Xp = µw1 + λRw2 + λw1 × (p− p0),

for certain constants µ, λ .

4. General slant helices
A regular curve γ = γ(s) immersed in R3

ν is said to be a general slant helix if there is a Killing vector field V

along γ with constant length such that the product ⟨V,N⟩ is a constant function along γ . V is called an axis
of the general slant helix γ .

Note that every plane curve is a general slant helix, so in the following reasoning we will consider that
our curves do not live on a plane.

The usual concept of slant helix in R3
ν (see [1, 7]) is more restrictive than the above definition, because

we can find a Killing vector field V along γ with constant length such that its extension to R3
ν (which must be

a Killing vector field X ∈ K(R3
ν)) is not necessarily of constant length. For example, in the Euclidean space R3

we can consider the curve γ(s) = (cos s, sin s, s) and the vector field V (s) = (− sin s, cos s, 0) whose extension
to R3 is X = −y∂x + x∂y . In other words, every classic slant helix is a general slant helix, but the converse is
not true in general, as we shall see below. The family of general slant helices consists of the classic slant helices
(when the axis V is extended to a constant vector) and the local slant helices (when the axis V is extended to
a nonconstant vector field). In view of Proposition 2, every local slant helix lives in a circular, hyperbolic, or
parabolic cylinder.
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4.1. Frenet general slant helices

Let γ(s) be a regular Frenet curve and let us suppose it is a general slant helix with axis V (s) . If {T,N,B} is
the orthonormal Frenet frame of γ in R3

ν , write

V (s) = x(s)T (s) + bN(s) + z(s)B(s), (4.1)

where x, z are differentiable functions and b is a constant. Without loss of generality, we can assume b ̸= 0 ;
otherwise, it is not difficult to see that γ(s) would be a general helix. From the condition ⟨V, V ⟩ = ε it is easy
to get

ε1x
2 + ε2b

2 + ε3z
2 = ε =⇒ ε1xx

′ + ε3zz
′ = 0. (4.2)

From (4.1) and the Frenet equations (2.1) we get

V ′ = (x′ − ε1bκ)T + (ε2xκ− ε2zτ)N + (z′ + ε3bτ)B, (4.3)

and by using the Killing equation (2.5a) we obtain

x′ = ε1bκ, (4.4)

V ′ = λ (T × V ), λ =
ε3
b
(z′ + ε3bτ). (4.5)

From these equations we find
τ − λ

κ
= −ε1ε3

z′

x′ =
x

z
, (4.6)

which jointly with (4.2) yields (
τ − λ

κ

)′

= (ε− ε2b
2)
ε3x

′

z3
. (4.7)

A straightforward computation shows that

κ2√
|ε3κ2 + ε1(τ − λ)2|3

(
τ − λ

κ

)′

= m, (4.8)

for a certain real constant m = ε1ε3b(ε− ε2b
2)−1/2 , everywhere ε3κ

2 + ε1(τ − λ)2 does not vanish. Note that
m ̸= 0 ; otherwise, γ is a general helix. If ε3κ

2 + ε1(τ − λ)2 vanishes everywhere then γ is also a general helix.
What functions λ can appear in Eq. (4.8)? From (4.5) we get

V ′ = λ(−ε2zN + ε3bB), (4.9)

and then bearing (2.5b) in mind we obtain

ε3zλ
′ + bλ2 = 0, (4.10)

and therefore
V ′′ = (ε1ε2zκλ)T + (ε3bλ

′ − ε2ε3zτλ)B. (4.11)
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Since γ is not a plane curve, Eq. (2.5c) is equivalent to

(
1

κ
⟨V ′′, B⟩

)′

+ ε1ε2κ ⟨V ′, B⟩ = 0, (4.12)

which, bearing (4.9)–(4.10) in mind, leads to

λ′′(ε− ε1x
2)κ− λ′(3bxκ2 + (ε− ε1x

2)κ′) = 0. (4.13)

We can assume ε − ε1x
2 ̸= 0 ; otherwise, γ would be a general helix. A trivial solution of (4.13) is obtained

when λ is constant; in this case, from (4.10) we get λ = 0 . This is the solution of classic slant helices. In fact,
if γ is not a straight line, from λ = 0 and by using (4.5) we obtain that V would be a parallel vector field
along γ . If Xp = v + w × p is its extension to R3

ν , then V ′ = ∇0
TX = w × T , and then w must vanish (recall

that γ is not a line), so that X is a constant vector.
In the case when λ′ ̸= 0 , from (4.13) we get

λ′′

λ′ =
3bxκ

ε− ε1x2
+

κ′

κ
(4.14)

and a first integration of this equation is given by

λ′ =
c1κ

(ε− ε1x2)3/2
, (4.15)

for a certain constant c1 . By using (4.4) we can integrate (4.15) to obtain

λ =
c1εε1
b

x√
ε− ε1x2

+ c2, (4.16)

for a certain constant c2 . From here we get

x2 =
εb2(λ− c2)

2

ε1b2(λ− c2)2 + c21
(4.17)

and from (4.2) we obtain

ε3z
2 = ε− ε2b

2 − εε1b
2(λ− c2)

2

ε1b2(λ− c2)2 + c21
. (4.18)

This equation, jointly with (4.10), yields

b2λ4(ε1b
2(λ− c2)

2 + c21) = (λ′)2[εε3c
2
1 − ε2ε3b

2(ε1b
2(λ− c2)

2 + c21)]. (4.19)

This differential equation characterizes the functions λ that can appear in (4.8). If λ is a solution of (4.19),
then from (4.17) and (4.4) we obtain

κ2 =
εb2c41λ

4

F (λ)2(εε3c21 − ε2ε3b2F (λ))
, (4.20)
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where F (λ) = ε1b
2(λ− c2)

2 + c21 . Now from (4.18), (4.10), and (4.19) we get

z2 =
εε3c

2
1 − ε2ε3b

2F (λ)

F (λ)
, (4.21)

and bearing (4.6) and (4.17) in mind we obtain

τ = λ± b2c21λ
2(λ− c2)

F (λ)(εε3c21 − ε2ε3b2F (λ))
. (4.22)

Now we will prove that a regular Frenet curve γ(s) satisfying (4.8), when m is constant and λ is a
solution of (4.19), is a general slant helix. Let

η = sgn(ε3κ2 + ε1(τ − λ)2) = ±1, ε = sgn(η + ε2m
2) ∈ {−1, 0,+1}, (4.23)

where sgn denotes the signum function. Consider V (s) the vector field along γ given by (4.1) where x, b, z are
defined by

x =
µ(τ − λ)√

|ε3κ2 + ε1(τ − λ)2|
, b = ε2δηµm, z =

µκ√
|ε3κ2 + ε1(τ − λ)2|

, (4.24)

with 
µ =

ε2δη√
ε(η + ε2m2)

, if ε ̸= 0,

µ ̸= 0 is an arbitrary constant, if ε = 0.

(4.25)

It is easy to see that ⟨V, V ⟩ and ⟨V,N⟩ are constant. Let us prove that V is a Killing vector field along
γ . A long but straightforward computation yields the following equations:

V ′ = λ(−ε2zN + ε3bB), (4.26)

V ′′ = δλ(ε3zκT − ε1bλN − ε1zτB), (4.27)

V ′′′ = δλ
(
− bκ(τ − 2λ) + ε3zκ

′)T + λ(ε1κ
2 + ε3τ

2)zN+

λ
(
ε2bτ(τ − 2λ)− δε1zτ

′)B. (4.28)

From these equations, it is not difficult to see that V satisfies Killing equations (2.5).
Therefore, we have shown the following result.

Theorem 3 Let γ be an arc length parametrized immersed Frenet curve in R3
ν with nonzero curvature κ and

torsion τ . The curve γ is a general slant helix if and only if the function

κ2√
|ε3κ2 + ε1(τ − λ)2|3

(
τ − λ

κ

)′

(4.29)

is a constant m (in the open set where ε3κ
2 + ε1(τ − λ)2 does not vanish) and the differentiable function λ is

a solution of the ODE (4.19). In this case, an axis of the general slant helix is given by

V =
µ(τ − λ)√

|ε3κ2 + ε1(τ − λ)2|
T + b N +

µκ√
|ε3κ2 + ε1(τ − λ)2|

B,

where constants b, µ are given by (4.24) and (4.25).
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4.2. Pseudo-null general slant helices

We will prove that any pseudo-null curve γ immersed in R3
1 is a general slant helix. The proof is similar to

that given in [1] for classic slant helices.
Take the vector field along γ given by V = yN , where N is the principal normal of γ and y is any

nontrivial solution of the ODE y′ + τy = 0 . Since ⟨V, V ⟩ = ⟨V,N⟩ = 0 , we only need to show that V is a
Killing vector field along γ . An easy calculation from (2.2) gives V ′ = V ′′ = V ′′′ = 0 , and then equations (2.6)
are trivially fulfilled.

Hence, we have shown the following result.

Theorem 4 Let γ be an immersed pseudo-null curve in R3
1 with pseudo-torsion τ . Then γ is a general slant

helix with axis V = yN , where y is any nontrivial solution of the ODE y′ + τy = 0 .

Bearing [1, Theorem 1.3 (c)] in mind, the last result yields that every pseudo-null general slant helix is
also a pseudo-null slant helix.

4.3. Null general slant helices

Let γ(s) be a null general slant helix with axis V (s) and Frenet frame {T,N,B} . Write

V = xT + bN + zB, (4.30)

where x, z are differentiable functions and b ∈ R is constant. Let us assume that γ is not a general helix, so
that τ is not constant and b ̸= 0 . From (4.30) and Frenet equations (2.3) we have

V ′ = (x′ + bτ)T + (x+ zτ)N + (z′ + b)B. (4.31)

From the Killing equation (2.7a) we obtain

z(s) = −bs+m, m ∈ R. (4.32)

Putting ⟨V, V ⟩ = ε , we can write xz = 1
2 (b

2 − ε) ≡ n constant, and then

x(s) =
n

−bs+m
. (4.33)

By taking the covariant derivative in (4.31) and using (2.7b) we get τ ′ = −2x′/z , and then from (2.7c) we
deduce

τ(s) =
−n

(−bs+m)2
. (4.34)

Let us see now that the above equation characterizes null general slant helices. Let γ be a null curve with
torsion satisfying (4.34) for certain real constants n, b,m . Consider the following vector field along γ :

V (s) =
n

−bs+m
T (s) + bN(s) + (−bs+m)B(s). (4.35)

It is an easy task to check equations (2.7), so that V is a Killing vector field along γ , with constant length
⟨V, V ⟩ = b2 − 2n and constant function ⟨V,N⟩ . Then we have shown the following result.

484



LUCAS and ORTEGA-YAGÜES/Turk J Math

Theorem 5 Let γ be a null curve, pseudo-arc length parametrized, with nonconstant torsion τ ̸= 0 . The curve
γ is a null general slant helix if and only if

τ(s) =
−n

(−bs+m)2
, n, b,m ∈ R.

In this case, an axis of the null slant helix is given by

V (s) =
n

−bs+m
T (s) + bN(s) + (−bs+m)B(s).

Bearing [1, Theorem 1.4] in mind, the previous result yields that every null general slant helix is also a
null slant helix.
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