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Abstract: Motivated by their importance and potential for applications in certain problems in number theory, combi-
natorics, classical and numerical analysis, and other fields of applied mathematics, a variety of polynomials and numbers
with their variants and extensions have recently been introduced and investigated. In this paper, we aim to introduce
generalized Laguerre–Bernoulli polynomials and investigate some of their properties such as explicit summation formulas,
addition formulas, implicit formulas, and symmetry identities. Relevant connections of the results presented here with
those relatively simple numbers and polynomials are considered.
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1. Introduction and preliminaries

The two variable Laguerre polynomials Ln(x, y) are defined by the following generating function (see, e.g.,
[13, 24]):

1

1− yt
exp

(
−xt

1− yt

)
=

∞∑
n=0

Ln(x, y) t
n (| yt |< 1). (1)

The polynomials Ln(x, y) are also given by the following generating function (see [14]):

eyt C0(xt) =

∞∑
n=0

Ln(x, y)
tn

n!
, (2)

where C0(x) denotes the 0th order Tricomi function and the nth order Tricomi functions Cn(x) are given by
the following generating function:

exp
(
t− x

t

)
=

∞∑
n=−∞

Cn(x) t
n (t ∈ C \ {0}; x ∈ C). (3)

Here and in the following, let C , R+ , Z , and N be the sets of complex numbers, positive real numbers, integers,
and positive integers, respectively, and let N0 := N∪{0} . The nth Tricomi functions Cn(x) are explicitly given
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by

Cn(x) =

∞∑
r=0

(−1)rxr

r!(n+ r)!
(n ∈ N0) . (4)

The Tricomi functions Cn(x) are associated with the Bessel function of the first kind Jn(x) (see, e.g.,
[12, 24]):

Cn(x) = x−n
2 Jn(2

√
x). (5)

It follows from (2) and (4) that

Ln(x, y) = n!

n∑
s=0

(−1)sxsyn−s

(s!)2(n− s)!
= ynLn(x/y), (6)

where Ln(x) are the ordinary Laguerre polynomials (see, e.g., [3, 33]). We have

Ln(x, 0) =
(−1)nxn

n!
, Ln(0, y) = yn, Ln(x, 1) = Ln(x). (7)

Derre and Simsek [16] modified the Milne–Thomson polynomials Φ
(α)
n (x) (see [28]) slightly to give

polynomials Φ
(α)
n (x, ν) of degree n and order α by means of the following generating function (see also [24]):

f(t, α) ext+h(t,ν) =

∞∑
n=0

Φ(α)
n (x, ν)

tn

n!
, (8)

where f(t, α) and h(t, ν) are functions of t and α ∈ Z and t and ν ∈ N0 , respectively, which are analytic in a

neighborhood of t = 0 . Observe that Φ
(α)
n (x, 0) = Φ

(α)
n (x) (see, for details, [28]).

Here, by setting f(t, α) =
(

t
et−1

)α
in (8), we introduce the polynomials B

(α)
n (x, ν) defined by

(
t

et − 1

)α

ext+h(t,ν) :=

∞∑
n=0

B(α)
n (x, ν)

tn

n!
. (9)

We find that the polynomials B
(α)
n (x, ν) in (9) are related to Bernoulli polynomials and Hermite poly-

nomials. For example, setting h(t, 0) = 0 in (9), we obtain

(
t

et − 1

)α

ext :=

∞∑
n=0

B(α)
n (x)

tn

n!
, (10)

where B
(α)
n (x) are generalized Bernoulli polynomials (see, e.g., [35, Section 1.7]). Further, taking x = 0 in (10),

we get (
t

et − 1

)α

:=

∞∑
n=0

B(α)
n

tn

n!
, (11)

where B
(α)
n (x) are generalized Bernoulli numbers (see, e.g., [35, Section 1.7]). For more information about

Bernoulli numbers and Bernoulli polynomials, we refer, for example, to [9, 10, 15, 16, 25, 29, 32, 35].
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Setting h(t, ν) = h(t, y) = yt2 in (8), we have the generalized Hermite–Bernoulli polynomials of two

variables HB
(α)
n (x, y) , which were introduced and investigated by Pathan [29], given by

(
t

et − 1

)α

ext+yt2 =

∞∑
n=0

HB(α)
n (x, y)

tn

n!
. (12)

Obviously, the polynomials HB
(α)
n (x, y) in (12) are generalizations of several known polynomials and

numbers, e.g., Bernoulli numbers, Bernoulli polynomials, Hermite polynomials, and Hermite–Bernoulli polyno-

mials HB
(α)
n (x, y) defined by (see [11, Eq. (1.6)])

t

et − 1
ext+yt2 =

∞∑
n=0

HBn(x, y)
tn

n!
. (13)

We also note that, by setting f(t, α) =
(

2
et+1

)α
in (8), Khan et al. [24] introduced the polynomials

E
(α)
n (x, ν) .

The sum of integer power (or simply power sum)

Sk(n) :=

n∑
r=0

rk (k ∈ N0, n ∈ N) (14)

is generated by
∞∑
k=0

Sn(k)
tn

n!
= 1 + et + e2t + · · ·+ ent =

e(n+1)t − 1

et − 1
. (15)

Guo and Qi [17] (see also [32]) introduced the following generalized Bernoulli numbers Bn(a, b) defined
by

t

at − bt
:=

∞∑
n=0

Bn(a, b)
tn

n!

(
a, b ∈ R+, a ̸= b, |t| < 2π

| ln a− ln b|

)
. (16)

Luo et al. [27] generalized the numbers Bn(a, b) in (16) to introduce and investigate the generalized
Bernoulli polynomials Bn(x; a, b, e) defined by

t ext

at − bt
:=

∞∑
n=0

Bn(x; a, b, e)
tn

n!
(17)

(
x ∈ C, a, b ∈ R+, a ̸= b, |t| < 2π

| ln a− ln b|

)
.

The polynomials Bn(x; a, b, e) in (17) reduce to yield the Bernoulli polynomials Bn(x) and the Bernoulli
numbers Bn (see, e.g., [35, Section 1.7]).
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The 2 -variable Hermite Kampé de Fériet polynomials Hn(x, y) (see [4, 11]) are defined by

Hn(x, y) = n!

[n2 ]∑
r=0

yrxn−2r

r!(n− 2r)!
, (18)

which are generated by

ext+yt2 =

∞∑
n=0

Hn(x, y)
tn

n!
. (19)

We find the ordinary Hermite polynomials Hn(x) = Hn(2x,−1) (see, e.g., [4, 33]).

Motivated by their importance and potential for applications in certain problems in number theory,
combinatorics, classical and numerical analysis, and other fields of applied mathematics, a variety of polynomials
and numbers with their variants and extensions have recently been investigated (see, e.g., the references). In

this paper, we aim to introduce generalized Laguerre–Bernoulli polynomials LB
(α)
n (x, y, z; a, b, e) in (20) and

investigate some of their properties such as explicit summation formulas, addition formulas, implicit formula,
and symmetry identities.

2. Generalized Laguerre–Bernoulli polynomials

In view of (8), we introduce the following so-called generalized Laguerre–Bernoulli polynomials and investigate
their properties.

Definition 2.1 The generalized Laguerre-Bernoulli polynomials LB
(α)
n (x, y, z; a, b, e) are defined by the follow-

ing generating function:

(
t

at − bt

)α

eyt+zt2 C0(xt) :=

∞∑
n=0

LB
(α)
n (x, y, z; a, b, e)

tn

n!
(20)

(
α, x, y, z ∈ C, a, b ∈ R+, a ̸= b, |t| < 2π

| ln a− ln b|

)
.

We consider some special cases of (20) in the following remark.

Remark 1 (i) The special case of (20) when x = 0 reduces to the generalized Hermite–Bernoulli polynomials

HB
(α)
n (y, z; a, b, e) (see [30])

(
t

at − bt

)α

eyt+zt2 :=

∞∑
n=0

HB(α)
n (y, z; a, b, e)

tn

n!
(21)

(
α, y, z ∈ C, a, b ∈ R+, a ̸= b, |t| < 2π

| ln a− ln b|

)
.
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(ii) Setting x = z = 0 in (20), we obtain the generalized Bernoulli polynomials B
(α)
n (y; a, b, e) defined by (see

[27]) (
t

at − bt

)α

eyt :=

∞∑
n=0

B(α)
n (y; a, b, e)

tn

n!
(22)

(
α, y ∈ C, a, b ∈ R+, a ̸= b, |t| < 2π

| ln a− ln b|

)
.

(iii) Setting x = y = z = 0 in (20), we get the generalized Bernoulli numbers B
(α)
n (a, b) defined by (see

[17, 32]) (
t

at − bt

)α

:=

∞∑
n=0

B(α)
n (a, b)

tn

n!
(23)

(
α, a, b ∈ R+, a ̸= b, |t| < 2π

| ln a− ln b|

)
.

For easy reference, we begin by recalling some formal manipulations of double series in the following
lemma (see, e.g., [8, 23, 24, 33, 36]).

Lemma 2.2 The following identities hold:

∞∑
n=0

∞∑
k=0

Ak,n =

∞∑
n=0

[n/p]∑
k=0

Ak,n−pk (p ∈ N) (24)

and
∞∑

N=0

f(N)
(x+ y)N

N !
=

∞∑
n,m=0

f(m+ n)
xn

n!

ym

m!
. (25)

Here, Ak,n and f(N) (k, n, N ∈ N0) are real or complex valued functions indexed by k, n , and N , respectively,
and x and y are real or complex numbers. Also, for possible rearrangements of the involved double series, all
the associated series should be absolutely convergent.

We present several explicit summation formulas of the generalized Laguerre–Bernoulli polynomials

LB
(α)
n (x, y, z; a, b, e) in (20), which are expressed in terms of some known polynomials as in Theorem 2.3.

Theorem 2.3 Let a, b ∈ R+ with a ̸= b , n ∈ N0 , and α, x, y, z ∈ C . Then each of the following identities
holds:

LB
(α)
n (x, y, z; a, b, e) =

n∑
m=0

[m/2]∑
l=0

m!
(
n
m

)
(m− 2l)! l!

B
(α)
n−m(a, b)Lm−2l(x, y) z

l. (26)

LB
(α)
n (x, y, z; a, b, e) =

n∑
m=0

m∑
l=0

(−1)l
(
n
m

) (
m
l

)
l!

B
(α)
n−m(a, b)Hm−l(y, z)x

l. (27)
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LB
(α)
n (x, y, z; a, b, e) =

n∑
m=0

[m/2]∑
l=0

(−1)m m!
(
n
m

)
((m− 2l)!)2 l!

B
(α)
n−m(y; a, b, e)xm−2l zl. (28)

LB
(α)
n (x, y, z; a, b, e) =

n∑
m=0

(−1)m
(
n
m

)
m!

HB
(α)
n−m(y, z; a, b, e)xm. (29)

Proof We will prove only (26). A similar argument will establish the other identities. Let R be the right side
of (20). By using (23) and (2), we have

R =

(
t

at − bt

)α

· eyt C0(xt) · ezt2

=

( ∞∑
n=0

B(α)
n (a, b)

tn

n!

)( ∞∑
m=0

Lm(x, y)
tm

m!

)( ∞∑
l=0

zl t2l

l!

)
.

(30)

Applying (24) with p = 2 to the last two summations of (30), we obtain

R =

( ∞∑
n=0

B(α)
n (a, b)

tn

n!

) ∞∑
m=0

[m/2]∑
l=0

Lm−2l(x, y) z
l

(m− 2l)! l!
tm

 . (31)

Using (24) with p = 1 in the two summations of (31), we get

∞∑
n=0

LB
(α)
n (x, y, z; a, b, e)

tn

n!

=

∞∑
n=0


n∑

m=0

[m/2]∑
l=0

B
(α)
n−m(a, b)Lm−2l(x, y) z

l

(n−m)!(m− 2l)! l!

 tn.

(32)

Finally, equating the coefficients of tn in (32), we obtain the desired identity (26). 2

We give some addition formulas for the generalized Laguerre–Bernoulli polynomials (20) in the following
theorem.

Theorem 2.4 Let a, b ∈ R+ with a ̸= b , n ∈ N0 , and α, β, x, y, y1, y2, z, z1, z2 ∈ C . Then each of the
following identities holds:

LB
(α+β)
n (x, y, z; a, b, e) =

n∑
m=0

(
n

m

)
B(β)

m (a, b) LB
(α)
n−m(x, y, z; a, b, e). (33)

LB
(α)
n (x, y1 + y2, z; a, b, e) =

n∑
m=0

(
n

m

)
ym1 LB

(α)
n−m(x, y2, z; a, b, e)

=

n∑
m=0

(
n

m

)
ym2 LB

(α)
n−m(x, y1, z; a, b, e).

(34)
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LB
(α)
n (x, y, z1 + z2; a, b, e) =

[n/2]∑
m=0

n!

m! (n− 2m)!
zm1 LB

(α)
n−2m(x, y, z2; a, b, e)

=

[n/2]∑
m=0

n!

m! (n− 2m)!
zm2 LB

(α)
n−2m(x, y, z1; a, b, e).

(35)

LB
(α+β)
n (x, y1 + y2, z; a, b, e)

=

n∑
m=0

(
n

m

)
LB

(α)
n−m(x, y1, z; a, b, e)B(β)

m (y2; a, b, e).
(36)

LB
(α+β)
n (x, y1 + y2, z1 + z2; a, b, e)

=

n∑
m=0

(
n

m

)
LB

(α)
n−m(x, y1, z1; a, b, e)HB(β)

m (y2, z2; a, b, e).
(37)

LB
(α)
n (x, y + α, z; a, b, e) = LB

(α)
n

(
x, y, z;

a

e
,
b

e
, e
)
. (38)

Proof Similarly as in the proof of Theorem 2.3, we can establish the identities here, so we omit the details.
2

3. An implicit summation formula involving the generalized Laguerre–Bernoulli polynomials

We give an implicit summation formula for the generalized Laguerre–Bernoulli polynomials (20) in Theorem
3.1.

Theorem 3.1 Let a, b ∈ R+ with a ̸= b , n, m ∈ N0 , and α, v, x, y, z ∈ C . Then the following implicit
formula holds:

LB
(α)
m+n(x, v, z; a, b, e) =

n∑
k=0

m∑
s=0

(
n

k

)(
m

s

)
(v − y)k+s

LB
(α)
m+n−k−s(x, y, z; a, b, e). (39)

Proof Replacing t by t+ u in and using (25), we obtain

(
t+ u

at+u − bt+u

)α

ez(t+u)2C0(x(t+ u))

= e−y(t+u)
∞∑

m,n=0

LB
(α)
m+n(x, y, z; a, b, e)

tn

n!

um

m!
.

(40)

We find that the left side of (40) is independent of the variable y . Substituting any variable v for the variable
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y in the right side of (40) and equating the right sides of (40) and the resulting identity, we get

∞∑
m,n=0

LB
(α)
m+n(x, v, z; a, b, e)

tn

n!

um

m!

= e(v−y)(t+u)
∞∑

m,n=0

LB
(α)
m+n(x, y, z; a, b, e)

tn

n!

um

m!
.

(41)

By using (25), we find

e(v−y)(t+u) =

∞∑
N=0

(v − y)N (t+ u)N

N !
=

∞∑
k,s=0

(v − y)k+s tkus

k!s!
. (42)

Setting the double series of (42) in (41) and applying (24) with p = 1 two times to the resulting quadruple
series, we have

∞∑
m,n=0

LB
(α)
m+n(x, v, z; a, b, e)

tn

n!

um

m!

=

∞∑
m,n=0

n∑
k=0

m∑
s=0

LB
(α)
m+n−k−s(x, y, z; a, b, e)

(v − y)k+s

(n− k)! (m− s)! k! s!
tn um.

(43)

Equating the coefficients of tnum on both sides of (43), we obtain the desired identity (39).
2

It is interesting to see that the left side of (39) is independent of the variable y .

We consider some special cases of (39) in the following corollary.

Corollary 3.2 Let a, b ∈ R+ with a ̸= b , n, m ∈ N0 , and α, v, x, y, z ∈ C . Then each of the following
implicit formulas holds:

LB
(α)
n (x, v, z; a, b, e) =

n∑
k=0

(
n

k

)
(v − y)kLB

(α)
n−k(x, y, z; a, b, e). (44)

B
(α)
m+n(v + y; a, b, e) =

n∑
k=0

m∑
s=0

(
n

k

)(
m

s

)
vk+s B

(α)
m+n−k−s(y; a, b, e). (45)

HB
(α)
m+n(v, z; a, b, e) =

n∑
k=0

m∑
s=0

(
n

k

)(
m

s

)
(v − y)k+s

HB
(α)
m+n−k−s(y, z; a, b, e). (46)

B
(α)
m+n(a, b) =

n∑
k=0

m∑
s=0

(
n

k

)(
m

s

)
(−y)k+s B

(α)
m+n−k−s(y; a, b, e). (47)

Hm+n(v, z) =

n∑
k=0

m∑
s=0

(
n

k

)(
m

s

)
(v − y)k+s Hm+n−k−s(y, z). (48)
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Proof Setting m = 0 in (39), we obtain (44).

Replacing v by v+ y in (39) and setting x = z = 0 in the resulting identity, in view of (22), we get (45).

Setting x = 0 in (39), in view of (22), we get (46).

Setting x = v = z = 0 in (39), in view of (23) and (22), we obtain (47).

Setting α = x = 0 in (39), in view of (19), we get (48).
2

4. Symmetry identities for the generalized Laguerre–Bernoulli polynomials

Khan et al. [18–24], Yang [40], and Zhang and Yang [41] have established some interesting symmetry identities
for various polynomials. Here we present certain symmetry identities for the generalized Laguerre–Bernoulli
polynomials (20) in the following theorem.

Theorem 4.1 Let a, b ∈ R+ with a ̸= b , n ∈ N0 , and α, β, xj , yj , zj ∈ C (j = 1, 2) . Then the following
symmetry identities hold:

n∑
m=0

(
n

m

)
LB

(α)
n−m (x1, y1, z1; a, b, e) LB

(β)
m (x2, y2, z2; a, b, e)

=

n∑
m=0

(
n

m

)
LB

(α)
n−m (x1, y1, z2; a, b, e) LB

(β)
m (x2, y2, z1; a, b, e)

(49)

=

n∑
m=0

(
n

m

)
LB

(α)
n−m (x1, y2, z1; a, b, e) LB

(β)
m (x2, y1, z2; a, b, e)

=

n∑
m=0

(
n

m

)
LB

(α)
n−m (x1, y2, z2; a, b, e) LB

(β)
m (x2, y1, z1; a, b, e)

=

n∑
m=0

(
n

m

)
LB

(α)
n−m (x2, y1, z1; a, b, e) LB

(β)
m (x1, y2, z2; a, b, e)

=

n∑
m=0

(
n

m

)
LB

(α)
n−m (x2, y1, z2; a, b, e) LB

(β)
m (x1, y2, z1; a, b, e)

=

n∑
m=0

(
n

m

)
LB

(α)
n−m (x2, y2, z1; a, b, e) LB

(β)
m (x1, y1, z2; a, b, e)

=

n∑
m=0

(
n

m

)
LB

(α)
n−m (x2, y2, z2; a, b, e) LB

(β)
m (x1, y1, z1; a, b, e) .

Proof Consider the following function:

g(t) :=

(
t

at − bt

)α+β

e(y1+y2)t+(z1+z2)t
2

C0(x1t)C0(x2t). (50)
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Here the involved variable and parameters in (50) are assumed to satisfy the conditions of Theorem 4.1. We
find that the function g(t) is symmetric with respect to the parameters in each of the following pairs: (α, β) ,
(x1, x2) , (y1, y2) , and (z1, z2) . In view of the generalized Laguerre–Bernoulli polynomials (20), we have the
following eight combinations:

(α, x1, y1, z1) ↔ (β, x2, y2, z2) ; (α, x1, y1, z2) ↔ (β, x2, y2, z1) ;
(α, x1, y2, z1) ↔ (β, x2, y1, z2) ; (α, x1, y2, z2) ↔ (β, x2, y1, z1) ;
(α, x2, y1, z1) ↔ (β, x1, y2, z2) ; (α, x2, y1, z2) ↔ (β, x1, y2, z1) ;
(α, x2, y2, z1) ↔ (β, x1, y1, z2) ; (α, x2, y2, z2) ↔ (β, x1, y1, z1) .
Choosing the first two combinations to make the generalized Laguerre–Bernoulli polynomials (20) and

using (24) with p = 1 , we obtain

g(t) =

∞∑
n=0

n∑
m=0

LB
(α)
n−m (x1, y1, z1; a, b, e) LB

(β)
m (x2, y2, z2; a, b, e)

tn

(n−m)!m!
(51)

and

g(t) =

∞∑
n=0

n∑
m=0

LB
(α)
n−m (x1, y1, z2; a, b, e) LB

(β)
m (x2, y2, z1; a, b, e)

tn

(n−m)!m!
. (52)

Equating the coefficients of tn on the right sides of (51) and (52), we obtain the first identity in (49). Similarly,
using the remaining combinations in the order, we can establish the third identity to the seventh in (49). We
omit the details. 2

5. Concluding remarks

In 1929, Lidstone [26] introduced a generalization of Taylors series. It approximates a given function in
the neighborhood of two points instead of one. This series includes the polynomials later called Lidstone
polynomials. These polynomials have been studied in the works of Boas [6, 7], Poritsky [31], Schoenberg [34],
Whittaker [37], Widder [38, 39], and others [1, 2]. Recall that Λn is a Lidstone polynomial of degree (2n+ 1)

defined by the relations
Λ0(t) = t,

Λ
′′

n(t) = Λn−1(t),

Λn(0) = Λn(1) = 0, n ∈ N.

Another explicit representation of Lidstone polynomials is given by

Λn(t) =
1

6

[
6t2n+1

(2n+ 1)!
− t2n−1

(2n− 1)!

]

−
n−2∑
k=0

2(22k+3 − 1)

(2k + 4)!
B2k+4

t2n−2k−3

(2n− 2k − 3)!
, n ∈ N,

Λn(t) =
22n+1 − 1

(2n+ 1)!
B2n+1

(
1 + t

2

)
, n ∈ N,

where B2k+4 is the (2k + 4)th Bernoulli number and B2n+1 (
1+t
2 ) is Bernoulli polynomial.
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Since our result of Laguerre–Bernoulli polynomials given by (20) can be connected to Bernoulli poly-
nomials, Bernoulli numbers, and Bernoulli-Laguerre numbers, we can apply the above connection of Lidstone
polynomials and Bernoulli polynomials to obtain new results and connections of Laguerre–Bernoulli polynomials
and Lidstone polynomials.

Furthermore, the generalized Laguerre–Bernoulli polynomials LB
(α)
n (x, y, z; a, b, e) in (20), being very gen-

eral, can be specialized to yield various known polynomials and numbers, for example, Bernoulli numbers Bn ,

Bernoulli polynomials Bn(x) , generalized Bernoulli polynomials B
(α)
n (x) (see, e.g., [35, Section 1.7]), general-

ized Bernoulli polynomials Bn(x; a, b, e) (see [27]), Hermite–Bernoulli polynomials HBn(x, y) (see [11]), and

HB
(α)
n (x, y) (see [29]). In this regard, the results presented here can be specialized to yield or be closely con-

nected with some known identities and formulas (see, e.g., [5,13,18-24,27-29,40,41], and the references cited
therein). Therefore, the results presented in this article seem to be potentially useful in arising problems of the
aforementioned fields.
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