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Abstract: ξ -Submanifolds in the Euclidean spaces are a natural extension of self-shrinkers and a generalization of
λ -hypersurfaces. Moreover, ξ -submanifolds are expected to take the place of submanifolds with parallel mean curvature
vector. In this paper, we establish a Bernstein-type theorem for ξ -submanifolds in the Euclidean spaces. More precisely,
we prove that an n -dimensional smooth graphic ξ -submanifold with flat normal bundle in Rn+p is an affine n -plane.
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1. Introduction
In this paper, we are concerned with ξ -submanifolds in the Euclidean spaces. This concept was introduced by
Li and Chang [9] in 2016. Its precise definition is as follows. Let X : Mn → Rn+p be an n -dimensional smooth
immersed hypersurface in the (n + p) -dimensional Euclidean space Rn+p . Then X is called a ξ -submanifold
if there is a parallel normal vector field ξ such that the mean curvature vector field H satisfies

H +X⊥ = ξ, (1.1)

where X⊥ is the orthogonal projection of the position vector X to the normal space T⊥Mn of X in Rn+p .
ξ -Submanifolds in Rn+p are a natural extension of self-shrinkers to the mean curvature flow in Rn+p .

In fact, when ξ ≡ 0 , equation (1.1) becomes

H +X⊥ = 0, (1.2)

which is the equation of a self-shrinker. It is known that self-shrinkers play an important role in the study of
the mean curvature flow because they describe all possible blow-ups at a given type I singularity of the mean
curvature flow. Moreover, ξ -submanifolds in Rn+p are a generalization of λ -hypersurfaces in Rn+1 to arbitrary
codimensions. When the codimension p = 1 , a nonzero normal vector field ξ is parallel in the normal bundle
if and only if |ξ| is constant. In that case, there is a constant λ such that ξ = λN , where N is unit normal
vector of Mn . Then equation (1.1) becomes

|H|+ ⟨X,N⟩ = λ, (1.3)
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which was called a λ -hypersurface by Cheng and Wei [3] in 2014. There have been some interesting results
for self-shrinkers and λ -hypersurfaces. Equation (1.3) was first studied by McGonagle and Ross [12]. Denote

by µ(Σ) the weighted area functional defined by µ(Σ) =
∫
Σ
e−

|X|2
4 dA for any n -dimensional hypersurface Σ

of Rn+1 . They investigated the Gaussian isoperimetric problem as follows: which one has the least weighted
boundary area among all Σ enclosing regions with the same weighted volume? They proved that critical points
of the Gaussian isoperimetric problem are λ -hypersurfaces and the only smooth stable ones are hyperplanes.
Cheng and Wei [3] proved that λ -hypersurfaces are critical points of the weighted area functional for the weighted
volume-preserving variations. Moreover, they extended a result of Colding and Minicozzi[5] by defining a F -
functional of λ -hypersurfaces and studying their F -stability.

It is known that self-shrinkers can be characterized as minimal hypersurfaces in Gaussian metric space

(Rn+p, gAB) where gAB = e−
|X|2

n δAB . The λ -hypersurfaces can be characterized as having constant weighted

mean curvature H̃ = e−
|X|2
2n H̄ , where H̄ is the mean curvature of Mn in Gaussian metric space. As Li and Li[10]

pointed out, if self-shrinkers and λ -hypersurfaces take the places of minimal submanifolds and hypersurfaces
with constant mean curvature, respectively, then ξ -submanifolds are expected to take the place of submanifolds
with parallel mean curvature vector. Therefore, the research of ξ -submanifolds is interesting and significant.

In the last few years, a few results about the rigidity and characterization of ξ -submanifolds have been
obtained. In 2016, Li and Chang [9] derived a rigidity theorem for Lagrangian ξ -submanifolds in the complex
2-plane C2 . Li and Li [10] gave some characterizations for ξ -submanifolds. They showed that a submanifold in

Rm+p is a ξ -submanifold if and only if its modified mean curvature H̃ = e−
|X|2
2n H̄ is parallel when it is viewed

as a submanifold in the Gaussian space (Rn+p, e−
|x|2
n δAB) . In [10], the authors also proved that any complete

and properly immersed ξ -submanifold with a normal bundle must be an n -plane if it is W-stable.
As we know, the Bernstein theorem for minimal surface in R3 states that if it is a graph defined on R2 ,

then it is a plane (cf. [1]). In the theory of minimal surfaces, the Bernstein theorem for entire minimal graphs
plays a fundamental role. Some researchers have derived some Bernstein-type results (see [7, 13–16] and the
reference therein). According to the counter-example given by Lawson and Osserman [8], we know that minimal
submanifolds of higher codimension in the Euclidean spaces are more complicated. In 2006, Smoczyk et al. [15]
considered minimal n -submanifolds in Rn+p with flat normal bundle. They obtained some Bernstein-type
theorems. In 2011, Wang [16] proved that smooth self-shrinkers in Rn+1 that are entire graphs are hyperplanes.
In 2012, Luo [11] proved that if M is an n -dimensional graphic self-shrinker in Rn+m with flat normal bundle,
then M is a linear subspace.

In this paper, we establish the following Bernstein-type theorem for ξ -submanifolds in Euclidean spaces.

Theorem 1.1 If Mn is an n-dimensional graphic ξ -submanifold in Rn+p with flat normal bundle, then Mn

is an affine n-plane.

This paper is organized as follows. In Section 2, we give some preliminaries. In Section 3, we first discuss
the volume growth for proper ξ -submanifolds and then establish Theorem 3.1. Then we use Theorem 3.1 to
give the proof of Theorem 1.1.
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2. Preliminaries
In this section, we give some notations and formulas for ξ -submanifolds in the Euclidean space. Let X :

Mn → Rn+p be an isometric immersion. Denote by ∇ and ∇̄ the Levi-Civita connections on Mn and Rn+p ,
respectively. The induced connections on the tangent bundle TM and the normal bundle NM are defined by

∇V W = (∇̄V W )T and ∇⊥
V ν = (∇̄V ν)

N

for V,W ∈ Γ(TM), ν ∈ Γ(NM) , where (· · · )T and (· · · )N are the projections onto the tangent bundle TM

and the normal bundle NM , respectively. The second fundamental form B is defined by

B(V,W ) = (∇̄V W )N = ∇̄V W −∇V W,

and taking the trace of B gives the mean curvature vector H of Mn in Rn+p .
Let {e1, · · · , en} be a local tangent orthonormal frame field on Mn with respect to the induced metric,

{θ1, · · · , θn} be their dual 1-forms, and {ν1, · · · , νp} be a local normal orthonormal frame field on Mn . From
now on, we use the following convention on the range of indices:

i, j, k, l = 1, · · · , n; α, β = 1, · · · , p.

Denote by B =
∑

i,j,α hα
ijθi ⊗ θj ⊗ να the second fundamental form of Mn . The Gauss equations are

given by

Rijkl =
∑
α

(hα
ikh

α
jl − hα

ilh
α
jk). (2.1)

The Codazzi equations are given by
hα
ijk = hα

ikj . (2.2)

where hα
ijk are the covariant derivatives of hα

ij . The Ricci equations are given by

Rαβkl =
∑
i

(hα
ilh

β
ik − hβ

ilh
α
ik), (2.3)

where Rαβkl are the components of the normal curvature tensor R⊥ . If R⊥ = 0 , we say that Mn is a
submanifold with flat normal bundle. Then the Ricci equation becomes∑

i

(hα
ilh

β
ik − hβ

ilh
α
ik) = 0. (2.4)

Typical examples of ξ -submanifolds include the ξ -curves, the standard spheres centered at the origin,
submanifolds in a sphere with parallel mean curvature vector, and so on (cf. [10]). For convenience, here we give
the details of the n -planes not necessarily passing through the origin. As subplanes of the Euclidean spaces,
they are important examples of ξ -submanifolds. An n -plane x : Pn → Rn+p (p ≥ 0) is the inclusion map
of a n -dimensional connected, complete, and totally geodesic submanifold of Rn+p . Let p0 be the orthogonal
projection of the origin 0 onto Pn and ξ be the position vector of p0 , which is constant and is parallel along
Pn . Then it is clear that Pn is a ξ -submanifold because H ≡ 0 and the tangential part x⊤ of x is precisely
x− ξ .

Let U, V be two Hausdoff topological spaces. We say that a continuous mapping f : U → V is proper if
f−1(K) is compact in U for any compact subset K in V .
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3. The volume growth for proper ξ -submanifolds and the proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1. For this goal, we first study the volume growth for complete
and noncompact properly immersed ξ -submanifolds.

For n -dimensional complete and noncompact self-shrinkers, Ding and Xin [6] proved that any complete
noncompact properly immersed self-shrinker in the Euclidean space has polynomial area growth. Cheng and
Zhou [4] showed that any complete immersed self-shrinker with polynomial volume growth in the Euclidean
space is proper. Hence, we can know that a complete immersed self-shrinker is proper if and only if it has
polynomial area growth. Cheng and Wei[3] proved some similar results for λ -hypersurfaces.

The definition of the volume growth for complete submanifolds can be given as follows: Let X : Mn →
Rn+p be an n -dimensional complete submanifold in Rn+p . We say that Mn has polynomial volume growth if
there exist two constants C and d such that for all r ≥ 1 , the inequality

Vol (Br(0) ∩X(Mn)) ≤ Crd (3.1)

holds, where Br(0) is a ball centered at the origin with radius r .
In the proof of Theorem 3.1, we need the result derived by Cheng and Zhou [4].

Lemma 3.1 Let M be a complete and noncompact Riemannian manifold. If f is a proper C∞ function on
M satisfying |∇f |2 ≤ f on the level set Dr = {x ∈ M : 2

√
f < r} of 2

√
f for all r , and ∆ff + f ≤ k for

some constant k , then

Vf (M) =

∫
M

e−fdv < +∞

and

V (r) = V ol(Dr) =

∫
Dr

dv ≤ Cr2k

for r ≥ 1 , where C is a constant depending only on
∫
M

e−fdv .

Now we give the following result about the volume growth for proper ξ -submanifolds in Euclidean spaces.

Theorem 3.1 Let X : Mn → Rn+p be an n-dimensional complete and noncompact properly immersed ξ -
submanifold in the (n+ p)-dimensional Euclidean space Rn+p . Then Mn has polynomial volume growth.

Proof Set f = |X|2
4 and β = 1

4 inf |ξ −H|2 ≥ 0 . Since ξ is parallel in the normal bundle, we know that |ξ| is

constant. Because the immersion X is proper, we know that f̃ = f − β is proper. Noticing that

∇|X|2 = (∇̄|X|2)⊤ = 2X⊤,

we have

f − |∇f |2 =
|X|2

4
− |X⊤|2

4
=

|X⊥|2

4

=
1

4
|ξ −H|2 ≥ β.

(3.2)
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It implies

|∇f̃ |2 = |∇(f − β)|2 = |∇f |2 ≤ f − β = f̃ . (3.3)

On the other side, we deduce

1

4
|ξ|2 − 1

4
|H|2 − f + |∇f |2 =

1

4
|ξ|2 − 1

4
|H|2 − 1

4
|ξ −H|2

=
1

2
⟨H, ξ −H⟩

=
1

2
⟨H,X⊥⟩.

(3.4)

Hence, using (3.4), we get

∆f =
1

2
⟨∆X,X⟩+ 1

2
|∇X|2

=
1

2
⟨H,X⊥⟩+ 1

2
n

=
1

2
n+

1

4
|ξ|2 − 1

4
|H|2 − f + |∇f |2.

(3.5)

Therefore, it is from (3.2) and (3.5) that

∆f̃ − |∇f̃ |2 + f̃ =∆(f − β)− |∇(f − β)|2 + (f − β)

≤1

2
n+

1

4
|ξ|2 − β − 1

4
inf |H|2.

(3.6)

Denote by D̃r the level set of 2

√
f̃ as follows:

D̃r = {x ∈ Mn : 2

√
f̃ < r}.

That is to say,
D̃r = {x ∈ Mn : |x| <

√
r2 + 4β} = B√

r2+4β
(0) ∩Mn.

Applying Lemma 3.1 to f̃ = f − β with the constant κ = 1
2n+ 1

4 |ξ|
2 − β − 1

4 inf |H|2 , we get

Vol(B√
r2+4β

(0) ∩Mn) < Cr2κ.

Hence, we have
Vol(Br(0) ∩Mn) < Cr2κ,

where C is a constant. In other words, Mn has polynomial volume growth. This completes the proof of
Theorem 3.1. 2

Now we can give the proof of Theorem 1.1.

Proof of theorem 1.1 Let Mn be an n -dimensional complete submanifold in Rn+p . Denote by ∇ and
∇̄ Levi-Civita connections on Mn and Rn+p , respectively. Let {e1, · · · , en} be a local tangent orthonormal
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frame field on Mn with respect to the induced metric and {ν1, · · · , νp} be a local normal orthonormal frame
field on Mn . Let

ζ = a1 ∧ · · · ∧ an

be any fixed n -vector on Mn . Set

ω = ⟨e1 ∧ · · · ∧ en, ζ⟩ = det(⟨ei, aj⟩).

Now we want to calculate the Laplacian of ω . One can find similar computations in some references (see [2] by
Chen and Piccinni). For the convenience of the reader, we give these computations here. We have

ei(ω) =
∑
k

⟨e1 ∧ · · · ∧ ∇̄eiek ∧ · · · ∧ en, ζ⟩

=
∑
k,α

hα
ik⟨e1 ∧ · · · ∧ ek−1 ∧ να ∧ ek+1 ∧ · · · ∧ en, ζ⟩.

(3.7)

Using (3.7), and noticing that

e1 ∧ · · · ∧ ek−1 ∧∇ejνα ∧ ek+1 ∧ · · · ∧ en =−
∑
l,α

e1 ∧ · · · ∧ ek−1 ∧ hα
jlel ∧ ek+1 ∧ · · · ∧ en

=− hα
jke1 ∧ · · · ∧ en,

we obtain

∇ej∇eiω =
∑
k,α

(∇ejh
α
ik)⟨e1 ∧ · · · ∧ ek−1 ∧ να ∧ ek+1 ∧ · · · ∧ en, ζ⟩

+
∑
k,α

hα
ik⟨e1 ∧ · · · ∧ ek−1 ∧∇ejνα ∧ ek+1 ∧ · · · ∧ en, ζ⟩

+
∑
k,α
l̸=k

hα
ik⟨e1 ∧ · · · ∧ ∇ejel ∧ · · · ∧ ek−1 ∧ να ∧ ek+1 ∧ · · · ∧ en, ζ⟩

=
∑
k,α

hα
ijk⟨e1 ∧ · · · ∧ ek−1 ∧ να ∧ ek+1 ∧ · · · ∧ en, ζ⟩ −

∑
k,α

hα
ikh

α
jk⟨e1 ∧ · · · ∧ en, ζ⟩

+
∑
k,l ̸=k
α,β ̸=α

hα
ikh

β
jl⟨e1 ∧ · · · ∧ el−1 ∧ νβ ∧ el+1 ∧ · · · ∧ ek−1 ∧ να ∧ ek+1 ∧ · · · ∧ en, ζ⟩.

(3.8)

It implies

∆ω =− |B|2ω +
∑
i,k,α

hα
iik⟨e1 ∧ · · · ∧ ek−1 ∧ να ∧ ek+1 ∧ · · · ∧ en, ζ⟩

+
∑
i,k,l
β<α

(hα
ikh

β
il − hβ

ikh
α
il)⟨e1 ∧ · · · ∧ el−1 ∧ νβ ∧ el+1 ∧ · · · ∧ ek−1 ∧ να ∧ ek+1 ∧ · · · ∧ en, ζ⟩.

(3.9)

According to the definition of the ξ -submanifold, normal vector field ξ is parallel. Hence, it holds that
∇⊥

ek
ξ = 0 . Thus, we have ∑

i,α

hα
iikνα = ∇⊥

ek
H = ∇⊥

ek
ξ −∇⊥

ek
X⊥ =

∑
i,α

hα
ik⟨X, ei⟩να, (3.10)
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where we use ∇⊥ξ = 0 . Hence, it follows from (3.10) that∑
i,k,α

hα
iik⟨e1 ∧ · · · ∧ ek−1 ∧ να ∧ ek+1 ∧ · · · ∧ en, ζ⟩

=
∑
i,k,α

hα
ik⟨X, ei⟩⟨e1 ∧ · · · ∧ ek−1 ∧ να ∧ ek+1 ∧ · · · ∧ en, ζ⟩

=
∑
i

⟨X, ei⟩∇eiω

=⟨X,∇ω⟩.

(3.11)

Moreover, since Mn is a submanifold in Rn+p with flat normal bundle, (2.4) holds. Therefore, substituting
(2.4) and (3.11) into (3.9), we know that for ξ -submanifold with flat normal bundle, ω satisfies the following
equation:

∆ω − ⟨X,∇ω⟩+ |B|2ω = 0. (3.12)

Note that Mn is an entire graphic submanifold of Rn+p . Without loss of generality, we can find an

n -vector ζ such that ω is positive on Mn . Set ρ = e−
|X|2

2 . Let η be a smooth function with a compact
support on Mn . Multiplying equation (3.12) by ω−1η2ρ , and integrating on Mn , we derive

0 =

∫
Mn

η2

ω
(∆ω − ⟨X,∇ω⟩) ρdv +

∫
Mn

η2|B|2ρdv

=

∫
Mn

η2

ω
div(ρ∇ω)dv +

∫
Mn

η2|B|2ρdv

=−
∫
Mn

⟨∇(
η2

ω
),∇ω⟩ρdv +

∫
Mn

η2|B|2ρdv

=− 2

∫
Mn

η

ω
⟨∇η,∇ω⟩ρdv +

∫
Mn

η2

ω2
|∇ω|2ρdv +

∫
Mn

η2|B|2ρdv.

(3.13)

Using the Cauchy–Schwarz inequality, we deduce

0 ≥−
∫
Mn

|∇η|2ρ−
∫
Mn

η2

ω2
|∇ω|2ρ+

∫
Mn

η2

ω2
|∇ω|2ρ+

∫
Mn

η2|B|2ρ

=−
∫
Mn

|∇η|2ρ+
∫
Mn

η2|B|2ρ.
(3.14)

Namely, we get the following stability inequality:∫
Mn

η2|B|2ρ ≤
∫
Mn

|∇η|2ρ, for η ∈ C∞
0 (Mn). (3.15)

Now we can choose 0 ≤ η ≤ 1 to be a function defined on Mn , which equals 1 on Br(0) ∩ Mn and
equals 0 outside B2r(0) ∩Mn , with first derivatives bounded by 2/r . Then we have∫

Mn

η2|B|2ρdv =

∫
Br(0)∩Mn

η2|B|2ρdv +
∫
Mn\(Br(0)∩Mn)

η2|B|2ρdv

≥
∫
Mn∩Br(0)

|B|2ρdv.
(3.16)
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Combining (3.15) with (3.16), we obtain∫
Br(0)∩Mn

|B|2ρ ≤
∫
Mn

|∇η|2ρdv ≤ 4

r2

∫(
B2r(0)\Br(0)

)
∩Mn

ρdv

≤ 4

r2
e−

r2

2 Vol (B2r(0) ∩Mn) .

(3.17)

Noticing that Mn is a graph in Rn+p , it is proper. According to Theorem 3.1, we know that Mn has polynomial
volume growth. Therefore, the following holds:

r−2e−r2/2Vol (B2r(0) ∩Mn) → 0,

when r → ∞. It implies |B| ≡ 0 . Then we know that Mn is an affine n -plane. This concludes the proof of
Theorem 1.1. 2
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