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Abstract: In this paper we give constructions of pullback, finite product, finite limit, coproduct, colimit, pushout, etc.
in a special full subcategory XMod/L of the category of Lie–Rinehart crossed modules.
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1. Introduction
Lie–Rinehart algebras are the section spaces of Lie algebroids. In other words, they are the algebraic analogues
of Lie algebroids. The theory has been improved from the early 1950s and today it has a large application area
in differential geometry, physics, and algebra. For a comprehensive investigation, see [6] and [7].

The notion of crossed modules was introduced by Whitehead in [9], as an algebraic model for homotopy
2-types. After that, crossed modules have been one of the fundamental concepts in several areas of mathematics,
namely homotopy theory, (co)homology of groups, algebraic K -theory, and combinatorial group theory.

The Lie–Rinehart algebra version of the crossed module was introduced in [3] and it was shown that the
third-dimensional cohomology of Lie–Rinehart algebras classifies Lie–Rinehart crossed modules. Some extra
results can be found in [2, 4].

The aim of this paper is to investigate the categorical structure of the category of Lie–Rinehart crossed
modules of the same base such as equalizers, products, pullbacks, limits, and dual objects.

Similar works about crossed modules over algebras can be found in the literature [8]. Our case is quite
different, because the category of Lie–Rinehart algebras has no zero objects.

2. Preliminaries
2.1. Categorical background

In this subsection we will give definitions of some well-known categorical notions needed in the sequel. See [1]
for details.

Definition 1 Let C be a category and A,B ∈ C two objects of C . A (Cartesian) product of A and B is, by
definition, a triple (P, pA, pB) where

(i) P ∈ C is an object,
(ii) pA : P −→ A and pB : P −→ B are morphisms,
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and this triple is such that for every other triple (Q, qA, qB) where
(i) Q ∈ C is an object,
(ii) qA : Q −→ A and qB : Q −→ B are morphisms,

there exists a unique morphism r : Q −→ P such that qA = pA ◦ r and qB = pB ◦ r .

Definition 2 Let I be a set and (Ci)i∈I a family of objects in a given category C . A coproduct of that family
is a pair (P, (si)i∈I) where

(i) P is an object of C ,
(ii) for every i ∈ I, si : Ci −→ P is a morphism of C ,

and this pair is such that for every other pair (Q, (ti)i∈I) where
(i) Q is an object of C ,
(ii) for every i ∈ I, ti : Ci −→ Q is a morphism of C ,

there exists a unique morphism r : P −→ Q such that for every index i , ti = r ◦ si .

Definition 3 Consider two arrows f, g : A −→ B in a category C . An equalizer of f, g is a pair (K, k) where
(i) K is an object of C ,
(ii) k : K −→ A is an arrow of C such that f ◦ k = g ◦ k ,

and such that for every pair (M,m) where
(i) M is an object of C ,
(ii) m : M −→ A is an arrow of C such that f ◦m = g ◦m ,

there exists a unique morphism n : M −→ K such that m = k ◦ n .

By duality, one defines the coequalizer of two morphisms when it exists.

Definition 4 Consider two morphisms f : A −→ C, g : B −→ C in a category C . A pullback of (f, g) is a
triple (P, f ′, g′) where

(i) P is an object of C ,
(ii) f ′ : P −→ B , g′ : P −→ A are morphisms of C such that f ◦ g′ = g ◦ f ′ ,

and for every other triple (Q, f ′′, g′′) where
(i) Q is an object of C ,
(ii) f ′′ : Q −→ B , g′′ : Q −→ A are morphisms of C such that f ◦ g′′ = g ◦ f ′′ ,

there exists a unique morphism q : Q −→ P such that f ′′ = f ′ ◦ q and g′′ = g′ ◦ q .

Additionally, one defines the pushout object by duality whenever it exists.

Definition 5 A category C is complete when every functor

F : D −→ C,

with D a small category, has a limit. The category C is finitely complete when every functor

F : D −→ C,

with D a finite category, has a limit.
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Proposition 6 For a category C , the following conditions are equivalent:
(1) C is finitely complete;
(2) C has a terminal object, binary products, and equalizers;
(3) C has a terminal object and pullbacks.

By duality we get the notion of a cocomplete category.

2.2. Lie–Rinehart algebras

From now on, we assume that k is a field, A is a commutative algebra over k , and Der(A) is the set of all
k -derivations. Recall that Der(A) is a Lie k -algebra with the bracket

[D,D′] = D ◦D′ −D′ ◦D

and is an A -module with
a(D(x)) = D(ax),

for all D,D′ ∈ Der(A) , a, x ∈ A .
Lie–Rinehart algebras were introduced by Herz in [5], named as “pseudo-algebra de Lie”.

Definition 7 Let L be a Lie k-algebra and an A-module and α : L −→ Der(A) is an A-module and a Lie
k-algebra homomorphism, which is called the anchor. Then the pair (L ,α) is called a Lie–Rinehart A-algebra
over A if

[l, al′] = a[l, l′] + l(a)l′,

for all l, l′ ∈ L , a ∈ A where l(a) = α(l)(a) . In general this pair is denoted by L if there is no confusion.

In the rest of this paper we accept that all Lie algebras will be over a fixed field k and all Lie–Rinehart
algebras will be over A .

Definition 8 Let (L ,α) and (L′ ,α′) be Lie–Rinehart algebras. Let f : L −→ L′ be a Lie k-algebra
homomorphism and an A-module homomorphism. If α′f = α then f is called a Lie–Rinehart algebra
homomorphism.

Consequently, we get the category LR(A) of Lie–Rinehart algebras. The category L(A) of Lie A -algebras
is a full subcategory of LR(A) .

Examples a) If α = 0 for a Lie–Rinehart algebra L then obviously L is a Lie A -algebra. Also, for a k -algebra
A , Der(A) is a Lie–Rinehart algebra.

b) If L is a Lie–Rinehart algebra over A , then L⋊ A with Lie bracket [(l, a), (l′, b)] = ([l, l′], l(b)− l′(a)) and

anchor map ∼
α : L ⋊ A −→ Der(A),

∼
α(l, a) = α(l), is a Lie–Rinehart algebra, where α : L −→ Der(A) is the

anchor of L .
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Definition 9 Let (L ,α) be a Lie–Rinehart algebra. A Lie–Rinehart subalgebra N of L consists of a Lie
k-subalgebra N , which is an A-module, and A acts on N via the composition

N ↪→ L α−→ Der(A).

It is said that a Lie–Rinehart subalgebra N of L is an ideal if N is an ideal of L as Lie k-algebra and the
composition

N ↪→ L α−→ Der(A)

is trivial.

Now we will recall the below definitions from [3].

Definition 10 Let (L ,α) be a Lie–Rinehart algebra and R be a Lie A-algebra. The action of L on R is a
k-linear map

L ×R −→ R
(l, r) 7−→ lr

that satisfies the following axioms:

Act 1) [l,l′]r =l (l
′
r)− l′(lr),

Act 2) l[r1, r2] = [lr1, r2] + [r1,
l r2],

Act 3) alr = a(lr),

Act 4) l(ar) = a(lr) + (α(l)(a))r,

for all l, l′ ∈ L , r, r1, r2 ∈ R and a ∈ A.

Let L be a Lie–Rinehart algebra, R be a Lie A -algebra, and L act on R. Then R⋊L is a Lie k -algebra
with the Lie bracket

[(r, l), (r′, l′)] = ([r, r′] +l r′ −l′ r, [l, l′]).

Define ∼
α : R⋊ L → Der(A) by ∼

α(r, l) = α(l) , and then the pair (R⋊ L,∼α) is a Lie–Rinehart algebra, where
the underlying set of R⋊ L is R×L .

An abelian Lie A -algebra R with an action of L on it is called an (L, A) -module.

2.3. Lie–Rinehart crossed modules
In this subsection, we will recall the notion of the Lie–Rinehart crossed module, which was introduced by Casas
et al. in [3].

Definition 11 A Lie–Rinehart crossed module ∂ : R −→ L consists of a Lie–Rinehart algebra L and a Lie
A-algebra R together with the action of L on R and the Lie k-algebra homomorphism ∂ such that the following
conditions hold:

CM 1) ∂(lr) = [l, ∂(r)],

CM 2) ∂(r′)r = [r′, r],
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CM 3) ∂(ar) = a∂(r),

CM 4) ∂(r)(a) = 0,

for all r, r′ ∈ R, l ∈ L and a ∈ A.

Such a crossed module will be denoted by (R,L, ∂).
Examples a) Let L be a Lie–Rinehart algebra and I an ideal of L .

i : I −→ L
l 7−→ l

is a crossed module with the action of L on I defined by

L × I −→ I
(l, r) 7−→ [l, r].

b) Let R be an (L, A)-module. Then the zero morphism 0 : R −→ L is a crossed module.

c) For any Lie–Rinehart morphism f : L −→ L′ , ker f ↪→ L is a crossed module.

d) Let θ : R −→ R′ be a homomorphism of (L, A) -modules and R′ ⋊ L be the semidirect product of the
Lie-Rinehart algebra L and the Lie A -algebra R′ . As given before, R′⋊L is a Lie–Rinehart algebra. We have
an action of R′ ⋊ L on R defined by (r′, l) · r = lr for all l ∈ L , r ∈ R , and r′ ∈ R′ . Define

∂ : R −→ R′ ⋊ L
r 7−→ (θ(r), 0),

and then (R,R′ ⋊ L, ∂) is a Lie–Rinehart crossed module.

Proposition 12 Let ∂ : R −→ L be a crossed module and I = ∂(R) . Then

i) Im(∂)� L ,

ii) ker(∂)�R ,

iii) ker(∂) is a L/I -module,

iv) R/R2 and I/I2 are L/I -modules.

Proof Can be checked by direct calculation. 2

In light of this information, we can think of Lie–Rinehart crossed modules as the generalizations of
Lie–Rinehart algebras and ideals.
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2.4. The category of Lie–Rinehart crossed modules

Definition 13 Let (R,L, ∂) and (R′,L′, ∂′) be Lie–Rinehart crossed modules. A homomorphism of crossed
modules from (R,L, ∂) to (R′,L′, ∂′) is a pair (f, ϕ) of a Lie k-algebra homomorphism f : R −→ R′ and a
Lie–Rinehart algebra homomorphism ϕ : L −→ L′ such that

f(lr) = ϕ(l)f(r), ∂′f(r) = ϕ∂(r),

for all l ∈ L , r ∈ R .

Consequently, we have the category of Lie–Rinehart crossed modules, which we will denote by Xmod(LR) .
Now we will give some basic functorial properties of this category. Obviously, we can easily define some

forgetful functors as follows:
U1 : Xmod(LR) −→ LR(A)

(R,L, ∂) 7−→ L

U2 : Xmod(LR) −→ L(A)
(R,L, ∂) 7−→ R

If we denote the category of Lie k -algebras by Xmod(Lie), then we have another forgetful functor:

U3 : Xmod(LR) −→ Xmod(Lie),

which forgets the A -module structure.

3. Categorical structure of Xmod(LR)

In this section we will define the category Xmod/L of Lie–Rinehart crossed modules with fixed base L . Many
of the following notions do not exist in the category of Lie–Rinehart algebras, since the zero object does not
exist in this category.

Let L be a fixed Lie–Rinehart algebra. We define a full subcategory of Xmod(LR) whose objects are
Lie–Rinehart crossed modules with base L . We will denote this category by Xmod/L . An object (R,L, ∂)
of Xmod/L will be called a crossed L -module and denoted by (R, ∂) for short. A morphism between crossed
L -modules (R, ∂) and (R′, ∂′) is a Lie k -algebra homomorphism λ : R → R′ such that the diagram

R

λ

��

∂

  A
AA

AA
AA

AA
A

L

R′
∂′

>>~~~~~~~~~

commutes.

Proposition 14 In Xmod/L , two morphisms between the same crossed modules have an equalizer.
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Proof Let f, g : (B, β) −→ (C,φ) be two morphisms of a crossed L -module. Define

D = {b ∈ B : f(b) = g(b)}

and define ∂ by
β|D = ∂ : D −→ L.

For any a ∈ A , b, b′ ∈ D , we have
f([b, b′]) = [f(b), f(b′)]

= [g(b), g(b′)]

and f(ab) = af(b) = ag(b) = g(ab) , so D is a Lie A -algebra.
Since

f([b, d]) = f(β(b)d)
= β(b)f(d)
= β(b)g(d)
= g(β(b)d)
= g([b, d]),

for all b ∈ B , d ∈ D , the induced bracket of B on D is well-defined. Since

f(ld) = lf(d)
= lg(d)
= g(ld),

for all l ∈ L and d ∈ D, we have ld ∈ D . Thus, (D, ∂) is a crossed L -module, and inclusion

i : (D,α) −→ (C, ∂)

is a morphism in XMod/L . Suppose that there exist a crossed L -module (D′, ∂′) and a morphism

k : (D′, ∂′) −→ (B, β)

of a crossed L -module such that fk = gk. For x ∈ D′ , k(x) ∈ D and hence k(D′) ⊆ D . Thus, there exists a
morphism h : D′ −→ D . It is clear that h is unique and the diagram

D
i // B

f //
g

// C

D′

h

OO�
�
�
�
�

k

AA��������������

commutes, as required. 2

Theorem 15 The category XMod/L has pullbacks.
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Proof Let f : (B, β) −→ (D, δ) and g : (C, ∂) −→ (D, δ) be morphisms of a crossed L -module, and

X = B ×
D
C = {(b, c) : f(b) = g(c)}.

Define the bracket on X by

[(x1, x2), (x3, x4)] = ([x1, x3], [x2, x4]),

for all (x1, x2), (x3, x4) ∈ X , which makes X a Lie A -algebra. Define

λ : X −→ L
(b, c) 7−→ λ(b, c) = β(b) = ∂(c).

A direct calculation shows that (X,λ) is a Lie–Rinehart crossed module where λ(b, c) = β(b) = ∂(c) , for all
(b, c) ∈ X with the action defined by l(b, c) = (lb,l c) , for all l ∈ L and (b, c) ∈ X . We get the commutative
diagram

(X,λ)

π2

��

π1 // (B, β)

f

��
(C, ∂)

g
// (D, δ)

of Lie–Rinehart crossed L -modules. Suppose that the diagram

(X ′, φ′)

π′
2

��

π′
1 // (B, β)

f

��
(C, ∂)

g
// (D, δ)

commutes. In this case, we have (π′
1(x), π

′
2(x)) ∈ X , since

f(π′
1(x)) = g(π′

2(x)),

for all x ∈ X ′ . Define

h : X ′ −→ X
x 7−→ (π′

1(x), π
′
2(x)).

Since π′
1 = π1h and π′

2 = π2h , h is unique, from which we have the commutativity of the diagram
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X ′

h

  A
A

A
A

A

π′
2

��

π′
1

##
X

π1 //

π2

��

B

f

��
C

g
// D

as required. 2

Theorem 16 (kerα, i) is a terminal object in XMod/L , where α is the anchor of L .

Proof Since kerα is an ideal of L and a Lie A -algebra (see [3] for details), (kerα,L, i) is a crossed module
thanks to the Example (a) in Section 1. Let (C, ∂) be a crossed L -module and f, g : C −→ kerα be crossed
L -module morphisms. Since if = ig , we have f = g , as required. In other words, ∂ : C −→ kerα is the unique
crossed L -module morphism. 2

Theorem 17 XMod/L has finite products.

Proof Let (B, β) and (C, ∂) be two objects in XMod/L . The product of these objects is pullback of (B, β)

and (C, ∂) on terminal object (kerα, i) , as required. 2

Corollary 18 XMod/L has all finite limits. In other words, it is finitely complete.

Proof Follows from Theorem 15 and 17. 2

Theorem 19 In the category XMod/L , two morphisms between the same crossed modules have a coequalizer.

Proof Let f, g : (B, β) −→ (C, ∂) be two morphisms of a crossed L -module and I be the ideal generated by
the set {f(b)− g(b) : b ∈ B} . Since the diagram

B

β
��@

@@
@@

@@
@@

f //
g

// C

∂
����
��
��
��
�

L

commutes and
∂(f(b)− g(b)) = 0,

for all b ∈ B , we have I ⊆ ker ∂ . Consider the Lie–Rinehart algebra C := C/I . It is obvious that C/I is a
Lie–Rinehart algebra since I is an ideal of C and C/I is a quotient object in the category of Lie–Rinehart
algebras. Define an action of L on C by

l(c+ I) =l c+ I,
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and the morphism ∂ : C −→ L by
∂(c+ I) = ∂(c),

for all c + I ∈ C and l ∈ L . Obviously, (C, ∂) is a crossed L -module. Consequently, we have the following
commutative diagram.

B

β

��

f //
g

// C
p //

∂

��

C

∂

� �
L L L

Since
p(f(b))− p(g(b)) = p(f(b)− g(b))

= f(b)− g(b) + I
= I,

for all b ∈ B , we have pf = pg . Suppose that the crossed L -module morphism

p′ : C −→ C
′

satisfies p′f = p′g . Define the morphism ϕ : C −→ C
′ by

ϕ(c+ I) = p′(c).

Since
ϕp(c) = ϕ(c+ I)

= p′(c),

for all c ∈ C , we have the commutativity of the diagram

B
f //
g

// C
p //

p′

��:
::

::
::

::
::

::
: C

ϕ

���
�
�
�
�

C
′

and the uniqueness of ϕ , as required. 2

Let (C, ∂) and (B, β) be two crossed L -modules. Consider the action of B on C via ∂ defined as

c · b =∂(c) b,

for all b ∈ B and c ∈ C , which makes B ⋊C a Lie A -algebra. Also, we have the Lie–Rinehart action of L on
B ⋊ C defined by

l(b, c) = (lb,l c),
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for all l ∈ L , (b, c) ∈ B ⋊ C . Consider the map δ′ defined by

δ′(b, c) = ∂(c) + β(b),

for all (b, c) ∈ B ⋊ C , and the ideal I of B ⋊ C generated by the elements of the form (∂(c
′)b,β(b) c′) . Define

δ : (B ⋊ C)/I −→ L
(b, c) + I 7−→ δ′(b, c) = ∂(c) + β(b).

Then ((B ⋊ C)/I, δ) is a crossed L -module. That is,

δ(l(b, c)) = δ(lb,l c))
= ∂(lc) + β(lb)
= l(∂(c)) +l (β(b))
= l(∂(c) + β(b))
= l(δ(b, c))

δ(b′,c′)(b, c) = ∂(c′)+β(b′)(b, c)

= (∂(c′)+β(b′)b,∂(c′)+β(b′) c)

= (∂(c′)b+β(b′) b,∂(c′) c+β(b′) c)

= (∂(c′)b+ [b′, b], [c′, c] +β(b′) c)

= ([b′, b], [c′, c]) + (∂(c′)b+β(b′) c)

= ([b′, b], [c′, c]) + (∂(c
′)b+β(b′) c) + I

= ([b′, b], [c′, c]) + I
= [(b′, c′), (b, c)] + I

= [(b′, c′), (b, c)],

for all (b, c), (b′, c′) ∈ (B⋊C)/I, l ∈ L . Also, by direct checking we have δ(a(b, c)) = aδ(b, c) and δ(b, c)(a) = 0 .

Theorem 20 ((B ⋊ C)/I, i, j) is coproduct of (C, ∂) and (B, β) , where

i : C −→ (B ⋊ C)/I and j : B −→ (B ⋊ C)/I
c 7−→ (0, c) + I b 7−→ (b, 0) + I.

Proof Can be checked by a direct calculation. 2

Theorem 21 The category XMod/L has pushouts.

Proof Let f : (E, ε) −→ (C, ∂) and g : (E, ε) −→ (B, β) be two morphisms of crossed L -modules, and let N

be an ideal generated by all elements of the forms (∂(c)b,β(b) (c)) and (g(e),−f(e)) with the morphism

δ :
B ⋊ C

N
−→ L

(b, c) +N 7−→ ∂(c) + β(b).

(
B ⋊ C

N
, δ) is a crossed L -module. Also, the following functions can be defined:

i : B −→ B ⋊ C

N
b 7−→ (b, 0) +N
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and

j : C −→ B ⋊ C

N
c 7−→ (0, c) +N.

In this case, (g(e),−f(e)) = −(0, f(e)) + (g(e), 0) ∈ N , for all e ∈ E . Consequently, jf = ig since
f(e) + N = g(e) + N . On the other hand, it can be checked easily that δ satisfies the universal property.

2

Corollary 22 The category XMod/L is cocomplete. In other words, it has finite colimits.

Proof Since XMod/L has a coequalizer and coproducts, it has finite colimits. 2
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