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Abstract: We prove analogs of certain operator inequalities, including Hölder–McCarthy inequality, Kantorovich in-
equality, and Heinz–Kato inequality, for positive operators on the Hilbert space in terms of the Berezin symbols and the
Berezin number of operators on the reproducing kernel Hilbert space.
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1. Introduction
We study operator inequalities associated mainly with Kantorovich inequality and Hölder–McCarthy inequality.
In this paper, we give analogies of these inequalities for the Berezin symbols of operators and give their
applications in proving some direct and inverse power inequalities for Berezin number of some concrete classes of
operators on the reproducing kernel Hilbert space. Recall that an operator on a Hilbert space is called positive,
if ⟨Ax, x⟩ ≥ 0 for all x ∈ H. Shortly, the positive operator will be denoted as A ≥ 0.

The famous Kantorovich inequality is the following [6].

Theorem 1 (Kantorovich inequality) Let A be a positive operator on a Hilbert space H such that M ≥
A ≥ m > 0. Then the following inequalities hold for every unit vector x in H :

(i) ⟨Ax, x⟩
⟨
A−1x, x

⟩
≤ (m+M)2

4mM .

(ii)
⟨
A2x, x

⟩
≤ (m+M)2

4mM ⟨Ax, x⟩2 .

Notice that the constant (m+M)2

4mM in Theorem 1 can be expressed as follows: (m+M)2

4mM =
[ m+M

2√
mM

]2
, that

is, inside the bracket [ ] , the numerator is the arithmetic mean and the denominator is the geometric mean of

m and M, respectively. This constant (m+M)2

4mM is called the Kantorovich constant (see Furuta [6]).
In the present article, we will use a weak variant of the Kantorovich inequality by using normalized

reproducing kernels of reproducing kernel Hilbert spaces and use the obtained new inequalities in estimating
the Berezin number of operators.
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Recall that a reproducing kernel Hilbert space (RKHS) is the Hilbert space H = H(Ω) of complex-valued
functions on some set Ω such that:

(a) the evaluation functional f → f (λ) is continuous for each λ ∈ Ω ;
(b) for every λ ∈ Ω there exists fλ ∈ H such that fλ (λ) ̸= 0.

Then by the Riesz theorem for each λ ∈ Ω there exists a unique function kλ ∈ H such that

f(λ) = ⟨f, kλ⟩

for all f ∈ H . The function kλ is called the reproducing kernel of the space H. It is well-known that (see [2])

kλ (z) =

∞∑
n=0

en (λ)en (z)

for any orthonormal basis {en (z)}n≥0 of the space H (Ω) . Let k̂λ denote the normalized reproducing kernel:

k̂λ := kλ

∥kλ∥H
(note that by (b), we surely have kλ ̸= 0). For a bounded linear operator A on the RKHS H

(i.e. for A ∈ B(H) , the Banach algebra of all bounded linear operators on H), its so-called Berezin symbol Ã

is defined by (see Berezin [3, 4], Nordgren and Rosenthal [15], Engliš [5], and Zhu [17])

Ã(λ) :=
⟨
Ak̂λ, k̂λ

⟩
H

(λ ∈ Ω) .

It follows from the Cauchy-Scwartz inequality that Ã is a bounded function and

sup
λ∈Ω

∣∣∣Ã (λ)
∣∣∣ ≤ ∥A∥ .

The Berezin set of A is the range of the Berezin symbol Ã :

Ber (A) = Range
(
Ã
)
=
{
Ã (λ) : λ ∈ Ω

}
=
{⟨

Ak̂λ, k̂λ

⟩
: λ ∈ Ω

}
.

The Berezin number of operator A is defined by

ber (A) := sup
λ∈Ω

∣∣∣Ã (λ)
∣∣∣ .

The numerical range and the numerical radius of operator A on a Hilbert space H are, respectively,

W (A) := {⟨Ax, x⟩ : x ∈ H and ∥x∥ = 1}

and
w (A) := sup {|⟨Ax, x⟩| : x ∈ H and ∥x∥ = 1} .

It is immediate from the above definitions that Ber (A) ⊆ W (A) and ber (A) ≤ w (A) . So, it is natural to
investigate Ber (A) and ber (A) for operators A ∈ B(H). For more detail informations about the Berezin set,
Berezin number and their relations with the numerical range and numerical radius, the reader can be found in
Karaev [14], Garayev et al. [8], Garayev et al. [9], Garayev et al. [13], Gürdal et al. [11], Gürdal et al. [12],
Yamancı et al. [16], Altwaijry et al. [10], and Garayev [7].
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2. Kantorovich inequality, Hölder–McCarthy inequality, and Berezin symbols
Here, we give some operator inequalities associated with extensions of Kantorovich inequality in Theorem 1 and
Hölder–McCarthy inequality in terms of the Berezin symbols. Namely, we prove the following.

Theorem 2 Let A be a positive operator on a RKHS H = H (Ω) satisfying

0 < m ≤ Ã ≤ M,

where Ã is the Berezin symbol of operator A. Also let f (t) be a real-valued continuous convex function on
[m,M ] . Then

f̃ (A) (λ) ≤ (mf (M)−Mf (m))

(q − 1) (M −m)

(
(q − 1) (f (M)− f (m))

q (mf (M)−Mf (m))

)q

Ã (λ)
q (1)

under any one of the following conditions (2) and (3) , respectively:

f (M) > f (m) ,
f (M)

M
>

f (m)

m
and f (m)

m
q ≤ f (M)− f (m)

M −m
≤ f (M)

M
q (2)

holds for any real number q > 1,

f (M) < f (m) ,
f (M)

M
<

f (m)

m
and f (m)

m
q ≤ f (M)− f (m)

M −m
≤ f (M)

M
q (3)

holds for any real number q < 0.

The proof of the theorem uses the following lemma (see Furuta [6]).

Lemma 1 Let h (t) be defined on [m,M ] (M > m > 0) by the following formula

h (t) =
1

tq

(
k +

K − k

M −m
(t−m)

)
, (4)

where q is any real number such that q ̸= 0, 1 and K and k are any real numbers.
Then h (t) has the following upper bound on [m,M ] :

(mK −Mk)

(q − 1) (M −m)

(
(q − 1) (K − k)

q (mK −Mk)

)q

, (5)

where m,M, k,K , and q in (5) satisfy any one of the following conditions (i) and (ii), respectively:

(i) K > k, K
M > k

m and k
mq ≤ K−k

M−m ≤ K
M q holds for any real number q > 1;

(ii) K < k, K
M < k

m and k
mq ≤ K−k

M−m ≤ K
M q holds for any real number q < 0.

Proof For the sake of completeness, we give a sketch of the proof. Indeed, by an easy differential calculus, we
have h′ (t1) = 0 when t1 = q

(q−1)
(mK−Mk)

(K−k) , and it turns out that t1 satisfies the required condition t1 ∈ [m,M ] .

Also t1 gives the upper bound (5) of h (t) on the segment [m,M ] under any one of the conditions (i) and (ii),
respectively. 2
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Proof [Proof of Theorem 2]Since f (t) is a real-valued continuous convex function on [m,M ] , we obtain that

f (t) ≤ f (m) +
f (M)− f (m)

M −m
(t−m) for any [m,M ] . (6)

By applying the standard operational calculus of positive operator A to (6) since M ≥ Ã (λ) ≥ m, we obtain
that

f̃ (A) (λ) ≤ f (m) +
f (M)− f (m)

M −m

(⟨
Ak̂λ, k̂λ

⟩
−m

)
. (7)

Multiplying Ã (λ)
−q on both sides of (7) , we get

Ã (λ)
−q

f̃ (A) (λ) ≤ h (t) , (8)

where h (t) = Ã (λ)
−q
[
f (m) + f(M)−f(m)

M−m

(
Ã (λ)−m

)]
for all λ ∈ Ω. Then we obtain

f̃ (A) (λ) ≤
[

max
m≤t≤M

h (t)

]
Ã (λ)

q (9)

for all λ ∈ Ω. Putting K = f (M) and k = f (m) in Theorem 2, we see that (i) and (ii) in Theorem 2 just
correspond to (i) and (ii) in Lemma 1 so the proof is completed by (9) and Lemma 1. 2

Corollary 1 Let A be an invertible self-adjoint operator on a RKHS H = H (Ω) satisfying M ≥ Ã ≥ m > 0.

Then

ber (Ap) ≤ (mMp −Mmp)

(q − 1) (M −m)

(
(q − 1) (Mp −mp)

q (mMp −Mmp)

)q

ber (A)
q (10)

under any of the following conditions (i) and (ii), respectively:

(i) mp−1q ≤ Mp−mp

M−m ≤ Mp−1q holds for real numbers p > 1 and q > 1;

(ii) mp−1q ≤ Mp−mp

M−m ≤ Mp−1q holds for real numbers p < 0 and q < 0.

Proof The proof is similar to the proof in [6]. Put f (t) = tp for p /∈ [0, 1] in Theorem 2. As f (t) is a
real valued continuous convex function on [m,M ] , Mp > mp and Mp−1 > mp−1 hold for any p > 1, that is,

f (M) > f (m) and f(M)
M > f(m)

m for any p > 1. Also, Mp < mp and Mp−1 < mp−1 hold for any p < 0, that

is, f (M) < f (m) and f(M)
M < f(m)

m for any p < 0, respectively. So by Theorem 2, we have for any λ ∈ Ω that

⟨
Apk̂λ, k̂λ

⟩
≤ (mMp −Mmp)

(q − 1) (M −m)

(
(q − 1) (Mp −mp)

q (mMp −Mmp)

)q ⟨
Ak̂λ, k̂λ

⟩q
,

which gives us inequality (10) , as desired. 2

3. Hölder–McCarthy, Kantorovich, and Berezin number inequalities

Now we give our next result associated with Hölder–McCarthy and Kantorovich inequalities.
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Theorem 3 Let A be a positive operator on a RKHS H = H (Ω) satisfying M ≥ Ã ≥ m > 0. Then for every
p > 1 we have :

ber (A)
p ≤ ber (Ap) ≤ K+ (m,M, p) ber (A)

p
, (11)

where K+ (m,M, p) = (p−1)p−1

pp

(Mp−mp)p

(M−m)(mMp−Mmp)p−1 .

Proof As f (t) = tp is a convex function for p /∈ [0, 1] , (i) in Corollary 1 holds in the case where p /∈ [0, 1]

and q = p so that the second inequality in (11) holds by Corollary 1. The first inequality in (11) follows by
Hölder–McCarthy inequality. 2

Corollary 2 Let A be a positive operator on a RKHS H = H (Ω) such that M ≥ A ≥ m > 0. Then

ber (A)
p
ber
(
A−1

)
≤ pp

(p+ 1)
p+1

(m+M)
p+1

mM
(12)

and

ber
(
A2
)
≤ pp

(p+ 1)
p+1

(m+M)
p+1

(mM)
p ber (A)

p+1 (13)

for any p such that m
M ≤ p ≤ M

m .

Proof In (ii) of Corollary 1, we only have to put p = −1 , and replacing q by −p for p > 0, we get (12) .

In (i) of Corollary 1, we only have to put p = 2 and replace q by p+ 1 for p > 0 to get (13) .

When p = 1, Corollary 2 becomes the following Kantorovich type inequality :

ber (A) ber
(
A−1

)
≤ 1

2

(m+M)
2

mM
.

It is easy to see that 0 < B ≤ A ensures ber (Bp) ≤ ber (Ap) for any p ∈ [0, 1] (by well known Löwner-Heinz
theorem). However, 0 < B ≤ A does not always ensure ber (Bp) ≤ ber (Ap) for any p > 1. 2

For such consideration, we prove the following theorem.

Theorem 4 Let A and B be positive operators on a RKHS H = H (Ω) such that

M1 ≥ A ≥ m1 > 0

M2 ≥ B ≥ m2 > 0

A ≥ B > 0.

Then

ber (Bp) ⩾ K2,pber (A
p) ≤

(
M2

m2

)p−1

ber (Ap) (13)

and

ber (Bp) ⩾ K1,pber (A
p) ≤

(
M1

m1

)p−1

ber (Ap) (14)

527



BAŞARAN et al./Turk J Math

hold for any p ≥ 1, where K1,p and K2,p are defined by the following:

K1,p =
(p− 1)

p−1

pp (M1 −m1)

(Mp
1 −mp

1)
p

(m1M
p
1 −M1m

p
1)

p−1

and

K2,p =
(p− 1)

p−1

pp (M2 −m2)

(Mp
2 −mp

2)
p

(m2M
p
2 −M2m

p
2)

p−1 .

For the proof, we need the following lemma (see Furuta [6, Proposition 2, p. 194]).

Lemma 2 If x ≥ 1, then

(p− 1)
p−1

(xp − 1)
p

pp (x− 1) (xp − x)
p−1 ≤ xp−1 for 1 < p < ∞,

and the equality holds if and only if x ↓ 1.

Proof [Proof of Theorem 4]For p = 1, the result is trivial. So, we consider only p > 1. First of all, whenever
M ≥ m > 0 , we recall the following inequality by putting x = M

m (≥ 1) in Lemma 2 :

(p− 1)
p−1

pp
(Mp −mp)

p

(M −m) (mMp −Mmp)
p−1 ≤

(
M

m

)p−1

(15)

for p > 1. For p > 1, by using Hölder–McCarthy inequality and inequality (15) , we have

B̃p (λ) =
⟨
Bpk̂λ, k̂λ

⟩
≤ K2,p

⟨
Bk̂λ, k̂λ

⟩p
(by (11) of Theorem 3)

≤ K2,p

⟨
Ak̂λ, k̂λ

⟩p
(by 0 < B ≤ A)

≤ K2,p

⟨
Apk̂λ, k̂λ

⟩
≤
(
M2

m2

)p−1 ⟨
Apk̂λ, k̂λ

⟩

for all λ ∈ Ω. Taking supremum from both sides of these inequalities, we have the desired inequalities (13) .
Now let us prove (14) . Indeed, as 0 < A−1 ≤ B−1 and M−1

1 ≤ A−1 ≤ m−1
1 , then by applying (13) , we have
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for all λ ∈ Ω that

Ã−p (λ) =
⟨
A−pk̂λ, k̂λ

⟩
≤ (p− 1)

p−1

pp
(
m−1

1 −M−1
1

) (
mp

1 −M−p
1

)p(
M−1

1 m−p
1 −m−1

1 M−p
1

)p−1

⟨
B−pk̂λ, k̂λ

⟩

≤ (p− 1)
p−1

pp (M1 −m1)

(Mp
1 −mp

1)
p

(m1M
p
1 −M1m

p
1)

p−1

⟨
B−pk̂λ, k̂λ

⟩

≤ K1,p

⟨
B−pk̂λ, k̂λ

⟩
≤
(
M1

m1

)p−1 ⟨
B−pk̂λ, k̂λ

⟩
≤
(
M1

m1

)p−1

B̃−p (λ) ,

which implies (14) by taking inverses in both sides of the inequality above and taking supremum over λ in Ω,

so the proof is finished. 2

Corollary 3 If 0 < B ≤ A and 0 < m ≤ B ≤ M, then

ber (Bp) ≤
(
M

m

)p

ber (Ap) for p ≥ 1. (16)

We remark that (13) and (14) of Theorem 4 are more precise estimations than (16) since Kj,p ≤(
Mj

mj

)p−1

≤
(

Mj

mj

)p
holds for j = 1, 2 and p ≥ 1.

Proposition 1 Let A be a positive operator such that M ≥ A ≥ m > 0 and B be a positive contraction. Then

ber (BAB) ≤ (M +m)
2

4mM
ber (A) . (17)

Proof Since A−1 exists, by the Kantorovich inequality, we have

⟨ABx,Bx⟩
⟨
A−1Bx,Bx

⟩
≤ K ∥Bx∥4

for every x ∈ H, where K := (M+m)2

4mM . In particular,⟨
ABk̂λ, Bk̂λ

⟩⟨
A−1Bk̂λ, Bk̂λ

⟩
≤ K

⟨
B2k̂λ, k̂λ

⟩2
≤ K

⟨
Bk̂λ, k̂λ

⟩2
(by I ≥ B ≥ 0)

= K
⟨
A−1/2Bk̂λ, A

1/2k̂λ

⟩2
≤ K

⟨
A−1Bk̂λ, Bk̂λ

⟩⟨
Ak̂λ, k̂λ

⟩
for all λ ∈ Ω. From this by standard arguments, we get (17) . 2
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4. Selberg inequality, an extension of the Heinz-Kato inequality and Berezin number inequalities

The celebrated Selberg inequality (see Furuta [6]) is very useful in the prime number theory, which is an
extension of the classical Bessel’s inequality. Namely, if x1, x2, ..., xn ∈ H\ {0} , then

n∑
i=1

|⟨x, xi⟩|2
n∑

j=1

|⟨xi, xj⟩|
≤ ∥x∥2 . (18)

The equality in (18) holds if and only if x =

n∑
i=1

aixi for some complex scalars a1, a2, ..., an such that for

arbitrary i ̸= j, ⟨xi, xj⟩ = 0 or |ai| = |aj | with ⟨aixi, ajxj⟩ ≥ 0.

Proposition 2 Let A be a bounded linear operator on the Hardy–Hilbert space H2 = H2 (D) of analytic

functions f (z) =

∞∑
n=0

anz
n on the unit disc D = {z ∈ C : |z| < 1} such that ∥f∥H2 :=

( ∞∑
n=0

|an|2
)1/2

< +∞.

If Ak̂λ ̸= 0 for all λ ∈ D, then

ber
(
|A|2

)
≥ sup

λ,n

n∑
i=1

∣∣∣⟨Ak̂λ, k̂λi

⟩∣∣∣
n∑

j=1

(1−|λi|2)
1/2

(1−|λj |2)
|1−λiλj|

,

where |A| := (A∗A)
1
2 is the module of A.

Proof For the proof, it is enough to put in Selberg inequality (18) x = Ak̂λ and xi = k̂λi
(i = 1, 2, ..., n) ;

we omit the details. 2

Theorem 5 Let T ∈ B (H (Ω)) be any operator and A and B be two positive operators such that∥∥∥T k̂λ∥∥∥ ≤
∥∥∥Ak̂λ

∥∥∥ and
∥∥∥T ∗k̂µ

∥∥∥ ≤
∥∥∥Bk̂µ

∥∥∥
for all λ ∈ Ω. Then

sup
λ,µ∈Ω

∣∣∣⟨T |T |α+β−1
k̂λ, k̂µ

⟩∣∣∣ ≤ ber
(
|Aα|2

)
ber
(∣∣Bβ

∣∣2) (19)

for any α and β such that α, β ∈ [0, 1] and α+ β ≥ 1.

Proof It is a consequence of the Löwner–Heinz inequality [6] that if

Ã ≥ B̃ ≥ 0, then Ãα ≥ B̃α (20)

for each α ∈ [0, 1] . On the other hand, the hypothesis
∥∥∥T k̂λ∥∥∥ ≤

∥∥∥Ak̂λ

∥∥∥ for all λ ∈ Ω is equivalent to

|̃T |2 ≤ |̃A|2, (21)
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and also the hypothesis
∥∥∥T ∗k̂µ

∥∥∥ ≤
∥∥∥Bk̂µ

∥∥∥ for all µ ∈ Ω is equivalent to

|̃T ∗|2 ≤ |̃B|2. (22)

Hence, applying (20) to (21) and (22) , for any λ, µ ∈ Ω, we obtain :⟨
|T |2α k̂λ, k̂λ

⟩
≤
⟨
A2αk̂λ, k̂λ

⟩
(23)

for each α ∈ [0, 1] ; ⟨
|T ∗|2β k̂µ, k̂µ

⟩
≤
⟨
B2β k̂µ, k̂µ

⟩
(24)

for each β ∈ [0, 1] .

Let T = U |T | be the polar decomposition of an operator T, where U is a partial isometric operator

and |T | := (T ∗T )
1/2

=
√
T ∗T and ker (U) = ker (|T |) . In the case where α, β ∈ [0, 1] such that β > 0 and

α+ β ≥ 1, we recall the following important relation shown in [6] :

|T ∗|2β = U |T |2β U∗ holds for any β > 0. (25)

Then, we have for all λ, µ ∈ Ω that∣∣∣⟨T |T |α+β−1
k̂λ, k̂µ

⟩∣∣∣2 =
∣∣∣⟨U |T |α+β

k̂λ, k̂µ

⟩∣∣∣2
=
∣∣∣⟨|T |α k̂λ, |T |β U∗k̂µ

⟩∣∣∣2
≤
∥∥∥|T |α k̂λ

∥∥∥2 ∥∥∥|T |β U∗k̂µ

∥∥∥2
=
⟨
|T |2α k̂λ, k̂λ

⟩⟨
U |T |2β U∗k̂µ, k̂µ

⟩
=
⟨
|T |2α k̂λ, k̂λ

⟩⟨
|T ∗|2β k̂µ, k̂µ

⟩
(by (25) )

≤
⟨
A2αk̂λ, k̂λ

⟩⟨
B2β k̂µ, k̂µ

⟩
(by (23) and (24) )

for any α and β such that α, β ∈ [0, 1] and α + β ≥ 1; that is, (19) holds because the result is trivial in the
case where β = 0. Whence by taking suprema over λ and n the proof of Theorem 5 is complete. 2

Let α+ β = 1 in Theorem 5 in particular. Then, we obtain the following Heinz–Kato-type inequality.

Proposition 3 Let T be any operator on a RKHS H = H (Ω) . If A and B are positive operators such that∥∥∥T k̂λ∥∥∥ ≤
∥∥∥Ak̂λ

∥∥∥ and
∥∥∥T ∗k̂µ

∥∥∥ ≤
∥∥∥Bk̂µ

∥∥∥ for all λ, µ ∈ Ω, then

sup
λ,µ∈Ω

∣∣∣⟨T k̂λ, k̂µ⟩∣∣∣ ≤ ber
(
|Aα|2

)
ber
(∣∣B1−α

∣∣2) (26)

for any α ∈ [0, 1] .

Since supλ∈Ω

∣∣∣⟨T k̂λ, k̂λ⟩∣∣∣ ≤ supλ,µ∈Ω

∣∣∣⟨T k̂λ, k̂µ⟩∣∣∣ , inequality (26) implies that

ber (T ) ≤ ber
(
|Aα|2

)
ber
(∣∣B1−α

∣∣2) , ∀α ∈ [0, 1] .
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