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Abstract: We translate into double forms formalism the basic Greub and Greub–Vanstone identities that were previously
obtained in mixed exterior algebras. In particular, we introduce a second product in the space of double forms, namely
the composition product, which provides this space with a second associative algebra structure. The composition product
interacts with the exterior product of double forms; we show that the resulting relations provide simple alternative proofs
to some classical linear algebra identities as well as to recent results in the exterior algebra of double forms. We define
and study a refinement of the notion of pure curvature of Maillot, namely p -pure curvature, and we use one of the basic
identities to prove that if a Riemannian n -manifold has k -pure curvature and n ≥ 4k then its Pontryagin class of degree
4k vanishes.
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1. Introduction
Let h be an endomorphism of an Euclidean real vector space (V, g) of dimension n < ∞ . Recall the classical
Girard–Newton identities for 1 ≤ r ≤ n

rsr(h) =

r∑
i=1

(−1)i+1sr−i(h)pi(h) :

where pi(h) is the trace of the endomorphism h
i⃝
= h ◦ ... ◦ h︸ ︷︷ ︸

i -times

obtained using the composition product. The

scalars si(h) are the elementary symmetric functions in the eigenvalues of h . It turns out that the invariants
si(h) are also traces of endomorphisms constructed from h and the metric g using the exterior product; see,
for instance, [7].

Another celebrated classical result that also illustrates the interaction between the composition and
exterior product is the Cayley–Hamilton theorem:

n∑
r=0

(−1)rsn−r(h)h
r⃝
= 0.

Girard–Newton identities are scalar valued identities while the Cayley–Hamilton theorem is an endomorphism
valued identity. Higher double forms valued identities were obtained in [7]. In particular, it is shown that the
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infinitesimal version of the general Gauss–Bonnet theorem is a double forms valued identity of Cayley–Hamilton
type that again involves the two products. Another illustration of the importance of these interactions is the
expression of all Pontryagin numbers of a compact oriented manifold of dimension n = 4k as the integral of the
following 4k -form [8]:

P k11 P k22 · · ·P kmm =
(4k)!

[(2k)!]2(2π)2k

( m∏
i=1

[(2i)!]2

(i!)2ki(4i)!

)
Alt
[
(R ◦R)k1(R2 ◦R2)k2 · · · (Rm ◦Rm)km

]
,

where R is the Riemann curvature tensor seen as a (2, 2) double form; k1, k2, ..., km are nonnegative integers
such that k1 + 2k2 + ...+mkm = k ; Alt is the alternating operator; and all the powers over double forms are
taken with respect to the exterior product of double forms. The circle ◦ denotes the composition product.

In this study, we investigate some other useful relations between these two products. The paper is
organized as follows. Sections 2 and 3 provide definitions and basic facts about the exterior and composition
products of double forms. In Section 4, we introduce and study the interior products of double forms, which
generalize the usual Ricci contractions. Precisely, for a double form ω , the interior product map iω , which maps
a double form to another double form, is the adjoint of the exterior multiplication map by ω . In particular, if
ω = g we recover the usual Ricci contraction map of double forms.

Section 5 is about some natural extensions of endomorphisms of V onto endomorphisms of the exterior
algebra of double forms. We start with an endomorphism h : V → V , and there exists a unique exterior algebra
endomorphism ĥ : ΛV → ΛV that extends h and such that ĥ(1) = 1. Next, the space ΛV ⊗ ΛV can be

regarded in two ways as ΛV -valued exterior vectors, and therefore the endomorphism ĥ operates on the space
ΛV ⊗ ΛV in two natural ways, say ĥR and ĥL . The two obtained endomorphisms are in fact exterior algebra
endomorphisms. We prove that the endomorphisms ĥR and ĥL are nothing but the right and left multiplication
maps in the composition algebra; precisely, we prove that

ĥR(ω) = eh ◦ ω, and ĥL(ω) = ω ◦ e(h
t),

where eh := 1+h+ h2

2! +
h3

3! + ... and the powers are taken with respect to the exterior product of double forms.
As a consequence of this discussion we get easy proofs of classical linear algebra, including Laplace expansions
of the determinant.

In Section 6, we first state and prove Greub’s basic identity relating the exterior and composition products
of double forms:

Proposition. If h, h1, ..., hp are bilinear forms on V and h1...hp is their exterior product, then

ih(h1...hp) =
∑
j

⟨h, hj⟩h1...ĥj ...hp

−
∑
j<k

(hj ◦ ht ◦ hk + hk ◦ ht ◦ hj)h1...ĥj ...ĥk...hp.

Consequently, for a bilinear form k on V , the contraction of ckp of the exterior power kp of k is given
by

ckp = p(ck)kp−1 − p(p− 1)(k ◦ k)kp−2.
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Using the fact that the diagonal subalgebra (the subspace of all (p, p) double forms, p ≥ 0) is spanned by exterior
products of bilinear forms on V , we obtain the following useful formula as a consequence of the previous identity.
This new formula generalizes formula (15) of [5] in Theorem 4.1 to double forms that are not symmetric or do
not satisfy the first Bianchi identity:

∗
( gk−pω

(k − p)!

)
=
∑
r

(−1)r+p
gn−p−k+r

(n− p− k + r)!

cr

r!
(ωt).

where ∗ is the double Hodge star operator on double forms.
Also in Section 6, we state and prove another identity relating the exterior and composition product of

double forms, namely the following Greub–Vanstone basic identity:

Theorem. For 1 ≤ p ≤ n , and for bilinear forms h1, ..., hp and k1, ..., kp , we have

(h1h2...hp) ◦ (k1k2...kp) =
∑
σ∈Sp

(h1 ◦ kσ(1))...(hp ◦ kσ(p)) =
∑
σ∈Sp

(hσ(1) ◦ k1)...(hσ(p) ◦ kp).

In particular, when h = h1 = ... = hp and k = k1 = ... = kp , we have the following nice relation:

hp ◦ kp = p!(h ◦ k)p.

Section 7 is devoted to the study of p -pure Riemannian manifolds. Letting 1 ≤ p ≤ n/2 be a positive
integer, a Riemannian n -manifold is said to have a p -pure curvature tensor if at each point of the manifold
the curvature operator that is associated to the exterior power Rp of the Riemann curvature tensor R has
decomposed eigenvectors. For p = 1 , we recover the usual pure Riemannian manifolds of Maillot. A pure
manifold is always p -pure for p ≥ 1 and we give examples of p -pure Riemannian manifolds that are p -pure for
some p > 1 without being pure. The main result of this section is the following:

Theorem. If a Riemannian n-manifold is k -pure and n ≥ 4k then its Pontryagin class of degree 4k vanishes.

The previous theorem refines a result by Maillot in [9], where he proved that all Pontryagin classes of a
pure Riemannian manifold vanish.

2. The exterior algebra of double forms

Let (V, g) be an Euclidean real vector space of finite dimension n . In the following we shall identify whenever
convenient (via their Euclidean structures) the vector spaces with their duals. Let ΛV ∗ =

⊕
p≥0 Λ

pV ∗ (resp.
ΛV =

⊕
p≥0 Λ

pV ) denote the exterior algebra of the dual space V ∗ (resp. V ). Considering tensor products,
we define the space of double exterior forms of V (resp. double exterior vectors) as

D(V ∗) = ΛV ∗ ⊗ ΛV ∗ =
⊕
p,q≥0

Dp,q(V ∗),

resp. D(V ) = ΛV ⊗ ΛV =
⊕
p,q≥0

Dp,q(V ),
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where Dp,q(V ∗) = ΛpV ∗ ⊗ ΛqV ∗, resp. Dp,q(V ) = ΛpV ⊗ ΛqV. The space D(V ∗) is naturally a bigraded
associative algebra, called the double exterior algebra of V , where for ω1 = θ1 ⊗ θ2 ∈ Dp,q(V ∗) and ω2 =

θ3 ⊗ θ4 ∈ Dr,s(V ∗) , the multiplication is given by

ω1ω2 = (θ1 ⊗ θ2)(θ3 ⊗ θ4) = (θ1 ∧ θ3)⊗ (θ2 ∧ θ4) ∈ Dp+r,q+s(V ), (1)

where ∧ denotes the standard exterior product on the exterior algebra ΛV ∗ . The product in the exterior
algebra of double vectors is defined in the same way.

A double exterior form of degree (p, q) (resp. a double exterior vector of degree (p, q)) is by definition
an element of the tensor product Dp,q(V ∗) = ΛpV ∗⊗ΛqV ∗ (resp. Dp,q(V ) = ΛpV ⊗ΛqV ). It can be identified
canonically with a bilinear form ΛpV × ΛqV → R , which in turn can be seen as a multilinear form that is
skew-symmetric in the first p -arguments and also in the last q -arguments.

The above multiplication in D(V ∗) (resp. D(V )) shall be called the exterior product of double forms
(resp. exterior product of double vectors).

Recall that the (Ricci) contraction map, denoted by c , maps Dp,q(V ∗) into Dp−1,q−1(V ∗) . For a double
form ω ∈ Dp,q(V ∗) with p ≥ 1 and q ≥ 1 , we have

c ω(x1 ∧ ... ∧ xp−1, y1 ∧ ... ∧ yq−1) =

n∑
j=1

ω(ej ∧ x1 ∧ ...xp−1, ej ∧ y1 ∧ ... ∧ yq−1),

where {e1, ..., en} is an arbitrary orthonormal basis of V and ω is seen as a bilinear form as explained above.
If p = 0 or q = 0 , we set c ω = 0 .

It turns out (see [5]) that the contraction map c on D(V ∗) is the adjoint of the multiplication map by
the metric g of V ; precisely, we have for ω1, ω2 ∈ D(V ∗) the following:

< g ω1, ω2 >=< ω1, c ω2 > . (2)

Suppose now that we have fixed an orientation on the vector space V . The classical Hodge star operator
∗ : ΛpV ∗ → Λn−pV ∗ can be extended naturally to operate on double forms as follows. For a (p, q) -double form
ω (seen as a bilinear form), ∗ω is the (n− p, n− q) -double form given by

∗ω(., .) = (−1)(p+q)(n−p−q)ω(∗., ∗.). (3)

Note that ∗ω does not depend on the chosen orientation as the usual Hodge star operator is applied twice. The
obtained operator is still called the Hodge star operator operating on double forms or the double Hodge star
operator. This new operator provides another simple relation between the contraction map c of double forms
and the multiplication map by the metric as follows:

g ω = ∗ c ∗ ω. (4)

Furthermore, the double Hodge star operator generates the inner product of double forms as follows. For any
two double forms ω, θ ∈ Dp,q we have

< ω, θ >= ∗
(
ω(∗θ)

)
= (−1)(p+q)(n−p−q) ∗

(
(∗ω)θ

)
. (5)

The reader is invited to consult the proofs of the above relations in [5].
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Definition 2.1. The subspace

∆V ∗ =
⊕
p≥0

Dp,p(V ∗), (resp. ∆V =
⊕
p≥0

Dp,p(V ))

of D(V ∗) (resp. D(V )) is a commutative subalgebra and shall be called the diagonal subalgebra.

3. The composition algebra of double forms

The space D = ΛV ∗ ⊗ ΛV ∗ is canonically isomorphic to the space of linear endomorphisms L(ΛV,ΛV ) .
Explicitly, we have the following canonical isomorphism:

T : ΛV ∗ ⊗ ΛV ∗ → L(ΛV,ΛV ).

ω1 ⊗ ω2 → T (ω1 ⊗ ω2)
(6)

is given by
T (ω1 ⊗ ω2)(θ) = ⟨ω♯1, θ⟩ω

♯
2,

where ω♯i denotes the exterior vector dual to the exterior form ωi .
Note that if we look at a double form ω as a bilinear form on ΛV , then T (ω) is nothing but the canonical

linear operator associated to the bilinear form ω .

It is easy to see that T maps for each p ≥ 1 the double form gp

p! to the identity map in L(ΛpV,ΛpV ) ;

in particular, T maps the double form 1 + g + g2

2! + ... onto the identity map in L(ΛV,ΛV ) .
The space L(ΛV,ΛV ) is an algebra under the composition product ◦ that is not isomorphic to the algebra

of double forms. Pulling back the operation ◦ to D we obtain a second multiplication in D , which we shall call
the composition product of double forms or Greub’s product of double forms and which will be still denoted
by ◦ .

More explicitly, given two simple double forms ω1 = θ1 ⊗ θ2 ∈ Dp,q and ω2 = θ3 ⊗ θ4 ∈ Dr,s , we have

ω1 ◦ ω2 = (θ1 ⊗ θ2) ◦ (θ3 ⊗ θ4) = ⟨θ1, θ4⟩θ3 ⊗ θ2 ∈ Dr,q. (7)

It is clear that ω1 ◦ ω2 = 0 unless p = s .
Alternatively, if we look at ω1 and ω2 as bilinear forms, then the composition product reads as follows

[7]:

ω1 ◦ ω2(u1, u2) =
∑

i1<i2<...<ip

ω2(u1, ei1 ∧ ... ∧ eip)ω1(ei1 ∧ ... ∧ eip , u2), (8)

where {e1, ..., en} is an arbitrary orthonormal basis of (V, g) , u1 ∈ Λr is an r -vector, and u2 ∈ Λq is a q -vector
in V .

We list below some properties of this product.

3.1. Transposition of double forms

For a double form ω ∈ Dp,q , we denote by ωt ∈ Dq,p the transpose of ω , which is defined by

ωt(u1, u2) = ω(u2, u1). (9)
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Alternatively, if ω = θ1 ⊗ θ2 , then

ωt = (θ1 ⊗ θ2)
t = θ2 ⊗ θ1. (10)

A double form ω is said to be a symmetric double form if ωt = ω .

Proposition 3.1. Letting ω1 , ω2 be two arbitrary elements of D , then:

(1) (ω1 ◦ ω2)
t = ωt2 ◦ ωt1 and (ω1ω2)

t = ωt1ω
t
2 .

(2) T (ωt1) = (T (ω1))
t .

(3) If ω3 is a third double form then ⟨ω1 ◦ ω2, ω3⟩ = ⟨ω2, ω
t
1 ◦ ω3⟩ = ⟨ω1, ω3 ◦ ωt2⟩.

Proof Without loss of generality, we may assume that ω1 = θ1 ⊗ θ2 and ω2 = θ3 ⊗ θ4 , and then

(ω1 ◦ ω2)
t =

(
(θ1 ⊗ θ2) ◦ (θ3 ⊗ θ4)

)t
=< θ1, θ4 > (θ3 ⊗ θ2)

t =< θ1, θ4 > (θ2 ⊗ θ3)

= (θ4 ⊗ θ3) ◦ (θ2 ⊗ θ1) = (θ3 ⊗ θ4)
t ◦ (θ1 ⊗ θ2)

t = ωt2 ◦ ωt1.

Similarly.
(ω1ω2)

t = θ2 ∧ θ4 ⊗ θ1 ∧ θ3 = ωt1ω
t
2.

This proves (1) . Next, we prove prove relation (2) as follows:

< T (ωt1)(u1), u2 > =< T ((θ1 ⊗ θ2)
t)(u1), u2 >=< T (θ2 ⊗ θ1)(u1), u2 >

=< θ♯2, u1 >< θ♯1, u2 >=< u1, < θ♯1, u2 > θ♯2 >=< u1, T (θ1 ⊗ θ2)u2 >

= ⟨
(
T (θ1 ⊗ θ2)

)t
(u1), u2⟩ = ⟨

(
T (ω1)

)t
(u1), u2⟩.

Finally we prove (3). Without loss of generality assume as above that the three double forms are simple. Let
ω3 = θ5 ⊗ θ6 and then a simple computation shows that:

⟨ω1 ◦ ω2, ω3⟩ = ⟨θ1, θ4⟩⟨θ3 ⊗ θ2, θ5 ⊗ θ6⟩ = ⟨θ1, θ4⟩⟨θ3, θ5⟩⟨θ2, θ6⟩.

⟨ω2, ω
t
1 ◦ ω3⟩ = ⟨θ3 ⊗ θ4, ⟨θ2, θ6⟩θ5 ⊗ θ1 = ⟨θ1, θ4⟩⟨θ3, θ5⟩⟨θ2, θ6⟩.

⟨ω1, ω3 ◦ ωt2⟩ = ⟨θ1 ⊗ θ2, ⟨θ5, θ3⟩θ4 ⊗ θ6 = ⟨θ1, θ4⟩⟨θ3, θ5⟩⟨θ2, θ6⟩.

This completes the proof of the proposition.
The composition product provides another useful formula for the inner product of the double forms as

follows:

Proposition 3.2 ([7]). The inner product of two double forms ω1, ω2 ∈ Dp,q is the full contraction of the
composition product ωt1 ◦ ω2 or ωt2 ◦ ω1 . Precisely, we have:

⟨ω1, ω2⟩ =
1

p!
cp(ωt2 ◦ ω1) =

1

p!
cp(ωt1 ◦ ω2.) (11)
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Proof We use the fact that the contraction map c is the adjoint of the exterior multiplication map by g and
the above proposition as follows:

1

p!
cp(ωt2 ◦ ω1) = ⟨ωt2 ◦ ω1,

gp

p!
⟩ = ⟨ω1,

(
ωt2
)t ◦ gp

p!
= ⟨ω1, ω2⟩,

where we use the fact that gp

p! is a unit element in the composition algebra. The proof of the second relation is
similar.

Remark 3.1. The inner product used by Greub and Vanstone in [2,3,12] is the pairing product, which can be
defined by

⟨⟨ω1, ω2⟩⟩ =
1

p!
cp(ω2 ◦ ω1) =

1

p!
cp(ω1 ◦ ω2.)

This is clearly different from the inner product that we are using in this paper. The two products coincide if ω1

or ω2 is a symmetric double form.

4. Interior product for double forms

Recall that for a vector v ∈ V , the interior product map iv : Λ
pV ∗ → Λp−1V ∗ , for p ≥ 1 , is defined by declaring

ivα(x2, ..., xp) = α(v, x2, ..., xp).

There are two natural ways to extend this operation to double forms seen as bilinear maps as above. Precisely we
define the inner product map iv : Dp,q → Dp−1,q for p ≥ 1 and the adjoint inner product map ĩv : Dp,q → Dp,q−1

for q ≥ 1 by declaring

ivω(x2, ..., xp; y1, ..., yq)) = ω(v, x2, ..., xp; y1, ..., yq)

and
ĩv(ω)(x1, ..., xp; y2, ..., yq)) = ω(x1, ..., xp; v, y2, ..., yq).

Note that the first map is nothing but the usual interior product of vector valued p -forms. The second
map can be obtained from the first one via transposition as follows:

ĩv(ω) =
(
iv(ω

t)
)t
.

In particular, the maps iv and ĩv satisfy the same algebraic properties as the usual interior product of usual
forms.

Next, we define a new natural (diagonal) interior product on double forms as follows. Letting v⊗w ∈ V⊗V
be a decomposable (1, 1) double vector, we define iv⊗w : Dp,q → Dp−1,q−1 for p, q ≥ 1 by

iv⊗w = iv ◦ ĩw.

Equivalently,
iv⊗wω(x2, ..., xp; y2, ..., yq)) = ω(v, x2, ..., xp;w, y2, ..., yq).

The previous map is obviously bilinear with respect to v and w and therefore can be extended and defined for
any (1, 1) double vector in V ⊗ V .
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Let h be a (1, 1) double form, i.e. a bilinear form on V . Then in a basis of V we have h =∑
i h(ei, ej)e

∗
i ⊗ e∗j . The dual (1, 1) double vector associated to h via the metric g denoted by h♯ is by

definition
h♯ =

∑
i

h(ei, ej)ei ⊗ ej .

We then define the interior product ih to be the interior product ih♯ .

Proposition 4.1. Letting h be an arbitrary (1, 1) double form, then:

1. for any (1, 1) double form k we have
ihk = ikh = ⟨h, k⟩.

2. For any (2, 2) double form R we have

ihR =
◦
Rh,

where for a (1, 1) double form h ,
◦
Rh denotes the operator defined, for instance, in [1], by

◦
Rh(a, b) =

∑
i,j

h(ei, ej)R(ei, a; ej , b).

3. The exterior multiplication map by h in D(V ∗) is the adjoint of the interior product map ih , that is

⟨ihω1, ω2⟩ = ⟨ω1, hω2⟩.

4. For h = g , we have that ig = c is the contraction map in D(V ∗) as defined in the introduction.

Proof To prove the first assertion, assume that h =
∑
i,j h(ei, ej)e

∗
i ⊗ e∗j and k =

∑
r,s k(er, es)e

∗
r ⊗ e∗s , where

(e∗i ) is an orthonormal basis of V ∗ . Then

ihk =
∑
i,j,r,s

h(ei, ej)k(er, es)iei⊗ej (e
∗
r ⊗ e∗s) =

∑
i,j,r,s

h(ei, ej)k(er, es)⟨ei, er⟩⟨ej , es⟩

=
∑
i,j

h(ei, ej)k(ei, ej) = ⟨h, k⟩.

Next, we have

ihR(a, b) =
∑
i,j

h(ei, ej)iei⊗ejR(a, b) =
∑
i,j

h(ei, ej)R(ei, a; ej , b) =
◦
Rh(a, b).

This proves statement 2. To prove the third one, assume without loss of generality that h = v∗ ⊗ w∗ is
decomposed, and then

⟨ih(ω1), ω2⟩ = ⟨iv ◦ ĩw(ω1), ω2⟩ = ⟨̃iw(ω1), (v
∗ ⊗ 1)ω2⟩

= ⟨ω1, (1⊗ w∗)(v∗ ⊗ 1)ω2⟩ = ⟨ω1, (v
∗ ⊗ w∗)ω2⟩

= ⟨ω1, hω2⟩.
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To prove relation 4, let (e∗i ) be an orthonormal basis of V ∗ , and then g =
∑n
i=1 e

∗
i ⊗ e∗i and

igω(x1, ..., xp−1; y1, ..., yq−1) =

n∑
i=1

iei ◦ ĩeiω(x1, ..., xp−1; y1, ..., yq−1)

=

n∑
i=1

ω(ei, x1, ..., xp−1; ei, y1, ..., yq−1) = cω(x1, ..., xp−1; y1, ..., yq−1).

This completes the proof of the proposition.
More generally, for a fixed double form ψ ∈ D(V ∗) , following Greub we denote by µψ : D(V ∗) → D(V ∗)

the left exterior multiplication map by ψ ; precisely,

µψ(ω) = ψω.

We then define the map iψ : D → D as the adjoint map of µ :

⟨iψ(ω1), ω2⟩ = ⟨ω1, µψ(ω2)⟩.

Note that part (3) of Proposition 4.1 shows that this general interior product iψ coincides with the above one
in the case where ψ is a (1, 1) double form.

Remark 4.1. Let us remark at this stage that the interior product of double forms defined here differs by a
transposition from the inner product of Greub. This is due to the fact that he is using the pairing product as
explained in Remark 3.1. Precisely, an interior product iψω in the sense of Greub will be equal to the interior
product iψtω as defined here in this paper.

It results directly from the definition that for any two double forms ψ,φ we have

µψ ◦ µφ = µ(ψφ).

Consequently, one immediately gets
iψ ◦ iφ = iφψ. (12)

Note that for ω ∈ Dp,q and ψ ∈ Dr,s we have iψ(ω) ∈ Dp−r,q−s if p ≥ r and q ≥ s . Otherwise iψ(ω) = 0 .
Furthermore, it results immediately from formula (12) and statement (4) of Proposition (4.1) that

igk(ω) = ck(ω) (13)

for any ω ∈ D , where c is the contraction map, ck = c ◦ ... ◦ c︸ ︷︷ ︸
k -times

, and gk is the exterior power of the metric g .

In particular, for ω = gp , we get igkgp = ck(gp) . Then by direct computation or by using the general
formula in Lemma 2.1 in [5], one gets the following simple but useful identity:

Proposition 4.2. For 1 ≤ k ≤ p ≤ n = dim(V) we have

igk(
gp

p!
) =

(n+ k − p)!

(p− k)!

gp−k

(n− p)!
. (14)
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We now state and prove some other useful facts about the interior product of double forms.

Proposition 4.3. Let ω ∈ Dp,q(V ∗) , and the double Hodge star operator ∗ is related to the interior product
via the following relation:

∗ω = iω
gn

n!
. (15)

More generally, for any integer k such that 1 ≤ k ≤ n we have

∗ gn−k

(n− k)!
ω = iω

gk

k!
. (16)

Proof Let ω ∈ Dp,q(V ∗) and θ ∈ Dn−p,n−q(V ∗) be arbitrary double forms. To prove the previous proposition,
it is sufficient to prove that

⟨∗ω, θ⟩ = ⟨iω(
gn

n!
), θ⟩.

Using equation (5), we have ⟨∗ω, θ⟩ = (−1)(2n−p−q)(p+q−n) ∗ (∗2ωθ) = ∗(ωθ).
Since ωθ ∈ Dn,n and dim(Dn,n) = 1 , then

ωθ = ⟨ωθ, g
n

n!
⟩g
n

n!
= ⟨iω(

gn

n!
), θ⟩.

This proves the first part of the proposition. The second part results from the first one and equation (14) as
follows:

∗ gn−k

(n− k)!
ω = i gn−k

(n−k)!
ω
(
gn

n!
) = iω ◦ i gn−k

(n−k)!

(
gn

n!

)
= iω

(
gk

k!

)
.

Proposition 4.4. 1. For any two double forms ω1, ω2 ∈ D(V ∗) , we have

∗(ω1 ◦ ω2) = ∗ω1 ◦ ∗ω2.

In other words, ∗ is a composition algebra endomorphism.

2. On the diagonal subalgebra ∆(V ∗) , we have (formulas (11a) and (11b) in [3])

∗ ◦ µω = iω ◦ ∗ and µω ◦ ∗ = ∗ ◦ iω.

In particular, we get the relations
∗µω∗ = iω and ∗ iω∗ = µω, (17)

where µω is the left exterior multiplication map by ω in ∆(V ∗) .

Proof To prove statement 1, we assume that ω1, ω2 ∈ D(V )

∗(ω1 ◦ ω2) = ∗[(θ1 ⊗ θ2) ◦ (θ3 ⊗ θ4)] =< θ1, θ4 > ∗θ3 ⊗ ∗θ2 .
As ∗ is an isometry, we have:

< θ1, θ4 > ∗θ3 ⊗ ∗θ2 =< ∗θ1, ∗θ4 > ∗θ3 ⊗ ∗θ2 = ∗ω1 ◦ ∗ω2.
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To prove statement 2, let ω ∈ Dp,q and φ ∈ Dr,s , and then

∗ ◦ µω(φ) = ∗(ωφ) = iωφ(
gn

n!
) = (−1)pr+qsiφω(

gn

n!
)

= (−1)pr+qsiω ◦ iφ(
gn

n!
) = (−1)pr+qsiω ◦ ∗φ.

If ω, φ ∈ ∆(V ∗) then p = q and r = s and the result follows. To prove the second statement in (2), just apply
to the previous equation the double Hodge star operator twice, once from the left and once from the right, and
then use the fact that on the diagonal subalgebra we have that ∗2 is the identity map.

As a direct consequence of the previous formula (17), applied to ω = g , we recover the following result
(Theorem 3.4 of [5]):

∗c∗ = µg and ∗ µg∗ = c.

5. Exterior extensions of the endomorphisms on V

Let h ∈ D1,1(V ∗) be a (1, 1) double form on V , and let h̄ = T (h) be its associated endomorphism on V via
the metric g .

There exists a unique exterior algebra endomorphism ĥ of ΛV that extends h̄ and such that ĥ(1) = 1 .
Explicitly, for any set of vectors v1, ..., vp in V , the endomorphism is defined by declaring

ĥ(v1 ∧ ... ∧ vp) = h(v1) ∧ ... ∧ h(vp).

Then one can obviously extend the previous definition by linearity.

Proposition 5.1. The double form that is associated to the endomorphism ĥ is eh := 1+h+ h2

2! +
h3

3! + ... . In
other words, we have

T (eh) = T

( ∞∑
i=0

hp

p!

)
= ĥ,

where h0 = 1 and hp = 0 for p > n . In particular, we have TV

(
gp

p!

)
= IdΛpV .

Proof Letting vi and wi be arbitrary vectors in V and 1 ≤ p ≤ n , then

⟨ĥ(v1 ∧ ... ∧ vp),w1 ∧ ... ∧ wp⟩ = ⟨h(v1) ∧ ... ∧ h(vp), w1 ∧ ... ∧ wp⟩

=
1

p!

∑
σ∈Sp

ϵ(σ)⟨h(vσ(1)) ∧ ... ∧ h(vσ(p)), w1 ∧ ... ∧ wp⟩

=
1

p!

∑
σ,ρ∈Sp

ϵ(σ)ϵ(ρ)⟨h(vσ(1)), wρ(1)⟩...⟨h(vσ(p)), wρ(p)⟩

=
1

p!

∑
σ,ρ∈Sp

ϵ(σ)ϵ(ρ)h(vσ(1), wρ(1))...h(vσ(p), wρ(p))

=
hp

p!

(
v1, ..., vp;w1, ..., wp

)
.

This completes the proof of the proposition.
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We can now extend the exterior algebra endomorphism ĥ on ΛV to an exterior algebra endomorphism
on the space D(V ) of double vectors. In the same way as we did for the interior product in the previous
paragraph, we can perform this extension in two natural ways as follows:

We define the right endomorphism

ĥR : D(V ) → D(V ),

for a simple double vector ω = θ1 ⊗ θ2 by

ĥR(ω) = hR(θ1 ⊗ θ2) = θ1 ⊗ ĥ(θ2).

Then one extends the definition using linearity. Similarly, we define the left extension endomorphism

ĥL : D(V ) → D(V )

by:
ĥL(ω) = hL(θ1 ⊗ θ2) = ĥ(θ1)⊗ θ2.

Proposition 5.2. The endomorphisms ĥL and ĥR are double exterior algebra endomorphisms.

Proof

1. Without loss of generality, let ω = θ1 ⊗ θ2 and θ = θ3 ⊗ θ4 be simple double forms, and then

ĥR(ωθ) = ĥR
(
(θ1 ⊗ θ2)(θ3 ⊗ θ4)

)
= ĥR

(
θ1 ∧ θ3 ⊗ θ2 ∧ θ4

)
= (θ1 ∧ θ3)⊗ ĥ(θ2 ∧ θ4) = (θ1 ∧ θ3)⊗ (ĥ(θ2) ∧ ĥ(θ4))

= (θ1 ⊗ ĥ(θ2))(θ3 ⊗ ĥ(θ4)) = ĥR(θ1 ⊗ θ2)ĥR(θ3 ⊗ θ4)

= ĥR(ω)ĥR(θ).

Proposition 5.3. Letting ĥR, ĥL be as above and 1 ≤ p ≤ n , then

ĥR(
gp

p!
) = ĥL(

gp

p!
) =

hp

p!
, (18)

where the metric g is seen here as a (1, 1) double exterior vector.

Proof Letting (ei) be an orthonormal basis for (V, g) , then the double vector g splits to g =
∑n
i=1 ei ⊗ ei

and therefore

ĥR(g) = ĥR(

n∑
i=1

ei ⊗ ei) =

n∑
i=1

ei ⊗ ĥ(ei) =

n∑
i,j=1

h(ei, ej)ei ⊗ ej = h.

Next, Proposition (5.2) shows that

ĥR(g
p) =

(
ĥR(g)

)p
= hp.

The proof for ĥL is similar.
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A special case of the previous proposition deserves more attention; namely, when p = n , we have

ĥR(
gn

n!
) = ĥL(

gn

n!
) =

hn

n!
= deth.g

n

n!
. (19)

The next proposition shows that the endomorphisms ĥR and ĥL are nothing but the the right and left
multiplication maps in the composition algebra.

Proposition 5.4. With the above notations we have

ĥR(ω) = eh ◦ ω, and ĥL(ω) = ω ◦ e(h
t). (20)

Proof As ĥR is linear in ω , we may assume, without loss of any generality, that the double (p, q) vector ω
is simple; that is, ω = ei1 ∧ ... ∧ eip ⊗ ej1 ∧ ... ∧ ejq . Let us use multiindex notation and write ω = eI ⊗ eJ . On
one hand, we have

ĥR(ω) = eI ⊗ ĥ(eJ) =
∑
K

⟨ĥ(eJ), eK⟩eI ⊗ eK =

=
∑
K

hq

q!
(eJ , eK)eI ⊗ eK =

∑
K,L

hq

q!
(eL, eK)⟨eL, eJ⟩eI ⊗ eK

=
∑
K,L

hq

q!
(eL, eK)(eL ⊗ eK) ◦ (eI ⊗ eJ) =

hq

q!
◦ ω.

To prove the second assertion we proceed as follows:

ĥL(ω) =
(
ĥR(ω

t)
)t

= (eh ◦ ωt)t = ω ◦ (eh)t = ω ◦ e(h
t).

The fact that (eh)t = e(h
t) results from Proposition 3.1.

Corollary 5.5. The adjoint endomorphism of ĥR (resp. ĥL ) is (̂ht)R (resp. (̂ht)L ).

Proof Proposition 3.1 shows that (eh)t = e(h
t) and

⟨ĥR(ω1), ω2⟩ = ⟨eh ◦ ω1, ω2⟩ = ⟨ω1, e
(ht) ◦ ω2⟩ = ⟨ω1, ĥtR(ω2)⟩.

The proof for ĥL is similar.

Using the facts that both ĥL and ĥR are exterior algebra homomorphisms and the previous corollary,
we can easily prove the following technical but useful identities.

Corollary 5.6. Let ω ∈ D(V ) and h be an endomorphism of V . Then we have

iω ◦ ĥR = ĥR ◦ i
(̂ht)R(ω)

, and iω ◦ ĥL = ĥL ◦ i
(̂ht)L(ω)

. (21)

Proof Since ĥR is an exterior algebra endomorphism, then for any double vectors ω and θ we have

ĥR(ωθ) = ĥR(ω)ĥR(θ).
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That is,
ĥR ◦ µω = µĥR(ω) ◦ ĥR.

Next, take the adjoint of both sides of the previous equation to get

iω ◦ (̂ht)R = (̂ht)R ◦ iĥR(ω).

The proof of the second identity is similar.
Now we have enough tools to easily prove delicate results of linear algebra, including the general Laplace

expansions of the determinant, as follows.

Proposition 5.7 (Laplace Expansion of the determinant, Proposition 7.2.1 in [2]). For 1 ≤ p ≤ n , we have

(ht)n−p

(n− p)!
◦ (∗h

p

p!
) = deth gn−p

(n− p)!
and

(
∗ (ht)p

(p)!

)
◦ hn−p

(n− p)!
= deth gn−p

(n− p)!
. (22)

Proof Using identities (21) we have

(ht)n−p

(n− p)!
◦ (∗hp) =(̂ht)R ◦ ihp

gn

n!
= (̂ht)R ◦ iĥR(gp)

gn

n!
= igp ◦ (̂ht)R(

gn

n!
)

= igp ◦ (ht)n

n!
= det(ht)igp ◦ g

n

n!
= (deth) p!

(n− p)!
gn−p.

The second identity can be proved in the same way as the first one by using ĥL instead of ĥR , or simply just
by taking the transpose of the first identity.

To see why the previous identity coincides with the classical Laplace expansion of the determinant we
refer the reader to, e.g., [7].

Proposition 5.8 (Proposition 7.2.2, [2]). Letting h be a bilinear form on the vector space V , then

i∗hphq =

(
2n− p− q

n− p

)
p!q!(deth) hp+q−n

(p+ q − n)!
,

(∗hp)(∗hq) =
(
2n− p− q

n− p

)
p!q!(deth)(∗ hp+q−n

(p+ q − n)!
).

Proof We use in succession identities 14, 18, and 20–22 to get

i∗hphq = i∗hp ĥR(g
q) = ĥR ◦ i

(̂ht)R(∗hp)
(gq)

= ĥR ◦ i (ht)n−p

(n−p)!
◦(∗hp)

(gq) =
p!deth
(n− p)!

ĥR ◦ ign−p(gq)

=
p!q!(2n− p− q)!

(n− q)!(n− p)!
ĥR
( gp+q−n

(p+ q − n)!

)
=
p!q!(2n− p− q)!

(n− q)!(n− p)!

hp+q−n

(p+ q − n)!
.

This proves the first identity. The second one results from the first one by using identity 17 as follows:

(∗hp)(∗hq) = ∗i∗hp ∗ (∗hq) = ∗
(
i∗hp(hq)

)
.
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The interior product provides a simple formulation of the Newton (or cofactor) transformations tp(h) of
a bilinear form h and also for its characteristic coefficients sk(h) [7] as follows:

Proposition 5.9. Letting h be a bilinear form on the vector space V , then:

1. For 0 ≤ p ≤ n , the p th invariant of h is given by

sp(h) := ∗ gn−php

(n− p)!p!
= ihp

p!

gp

p!
.

2. For 0 ≤ p ≤ n− 1 , the p th Newton transformation of h is given by

tp(h) := ∗ gn−p−1hp

(n− p− 1)!p!
= ihp

p!

gp+1

(p+ 1)!
.

3. More generally, for 0 ≤ p ≤ n− r , the (r, p) cofactor transformation [7] of h is given by

s(r,p)(h) := ∗ gn−p−rhp

(n− p− r)!p!
= ihp

p!

gp+r

(p+ r)!
.

Proof First we use formula (14) to prove (1) as follows. For 0 ≤ p ≤ n− 1 we have

p!tp(h) = ∗ gn−p−1hp

(n− p− 1)!
= i gn−p−1hp

(n−p−1)!

(
gn

n!
) = ihp ◦ i gn−p−1

(n−p−1)!

(
gn

n!
) = ihp(

gp+1

p+ 1
).

In the same way, we prove together relation (2) and its generalization, relation (3), as follows:

p!s(r,p)(h) = ∗ gn−p−rhp

(n− p− r)!
= i gn−p−rhp

(n−p−r)!

(
gn

n!
) = ihp ◦ i gn−p−r

(n−p−r)!

(
gn

n!
) = ihp(

gp+r

p+ r
).

Remark 5.1. According to [7], for 0 ≤ r ≤ n− pq , the (r, pq) cofactor transformation of a (p, p) double form
ω is defined by

h(r,pq)(ω) := ∗ gn−pq−rωq

(n− pq − r)!
.

Using the same arguments as above, it is easy to see that

h(r,pq)(ω) = iωq

gpq−r

(pq − r)!
.

6. Greub and Greub–Vanstone basic identities
6.1. Greub’s basic identities
We now state and prove Greub’s basic identities relating the exterior and composition products of double forms.

Proposition 6.1 (Proposition 6.5.1 in [2]). If h, h1, ..., hp are (1, 1)-forms, then

ih(h1...hp) =
∑
j

⟨h, hj⟩h1...ĥj ...hp

−
∑
j<k

(hj ◦ ht ◦ hk + hk ◦ ht ◦ hj)h1...ĥj ...ĥk...hp.
(23)
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In particular, if k = h1 = ... = hp , we have

ihk
p = p⟨h, k⟩kp−1 − p(p− 1)(k ◦ ht ◦ k)kp−2.

Proof Assume without loss of generality that h = θ ⊗ ϑ and hi = θi ⊗ ϑi , where θ, ϑ, θi, and ϑi are in V ∗ .
Then

ih(h1...hp) = i(θ⊗ϑ)(θ1 ∧ ... ∧ θp ⊗ ϑ1 ∧ ... ∧ ϑp)

= iθ ◦ ĩϑ(θ1 ∧ ... ∧ θp ⊗ ϑ1 ∧ ... ∧ ϑp)

= iθ

(
θ1 ∧ ... ∧ θp

)
⊗ iϑ

(
ϑ1 ∧ ... ∧ ϑp

)
=
∑
j,k

(−1)j+k⟨ϑ, ϑj⟩⟨θ, θk⟩(θ1 ∧ ... ∧ θ̂k ∧ ... ∧ θp ⊗ ϑ1 ∧ ... ∧ ϑ̂j ∧ ... ∧ ϑp),

where we have used the fact that the ordinary interior product in the exterior algebra Λ(V ∗) is an antiderivation
of degree –1. Next, write the previous sum in three parts for j = k , j < k , and j > k as follows:

ih(h1...hp) =
∑
j

⟨ϑ, ϑj⟩⟨θ, θj⟩(θ1 ∧ ... ∧ θ̂j ∧ ... ∧ θp ⊗ ϑ1 ∧ ... ∧ ϑ̂j ∧ ... ∧ ϑp)

−
∑
j<k

⟨ϑ, ϑj⟩⟨θ, θk⟩(θj ⊗ ϑk)[θ1 ∧ ... ∧ θ̂j ∧ ... ∧ θ̂k ∧ ... ∧ θp]⊗ [ϑ1 ∧ ... ∧ ϑ̂j ∧ ... ∧ ϑ̂k ∧ ... ∧ ϑp]

−
∑
k<j

⟨ϑ, ϑj⟩⟨θ, θk⟩(θj ⊗ ϑk)[θ1 ∧ ... ∧ θ̂j ∧ ... ∧ θ̂k ∧ ... ∧ θp]⊗ [ϑ1 ∧ ... ∧ ϑ̂j ∧ ... ∧ ϑ̂k ∧ ... ∧ ϑp].

Using the definition of the composition product, one can easily check that

⟨ϑ, ϑj⟩⟨θ, θk⟩(θj ⊗ ϑk) = hk ◦ ht ◦ hj .

Consequently, we can write

ih(h1...hp) =
∑
j

⟨h, hj⟩h1...ĥj ...hp

−
∑
j<k

(hk ◦ ht ◦ hj)h1...ĥi...ĥj ...hp

−
∑
k<j

(hk ◦ ht ◦ hj)h1...ĥi...ĥj ...hp.

This completes the proof of the proposition.

Corollary 6.2. If h1...hp are (1, 1) double forms, then

c(h1...hp) =
∑
i

(chi)h1...ĥi....hp −
∑
i<j

(hj ◦ hi + hi ◦ hj)h1...ĥi...ĥj ...hp. (24)

In particular, for a (1, 1) double form k , the contraction of kp is given by

ckp = p(ck)kp−1 − p(p− 1)(k ◦ k)kp−2.
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Proof Recall that h = g is a unit element for the composition product and that the contraction map c is the
adjoint of the exterior multiplication map by g . The corollary follows immediately from the previous.

As a corollary to Greub’s basic identity (23), Vanstone proved the following formula, which is in fact the
main result of his paper [12] (formula (27)):

iωt

gq+2p

(q + 2p)!
= (−1)p

∑
r

(−1)rµ gr+q

(r+q)!

◦ i gr
r!
(ω),

where ω is any (p, p) double form, and p, q are arbitrary integers.
In view of formula (16) of this paper, the previous identity can be reformulated as follows:

∗ gn−q−2pωt

(n− q − 2p)!
=
∑
r

(−1)r+p
gr+q

(r + q)!

cr

r!
(ω).

Letting k = n− q − p , the previous formula then reads

∗
( gk−pω

(k − p)!

)
=
∑
r

(−1)r+p
gn−p−k+r

(n− p− k + r)!

cr

r!
(ωt). (25)

We then recover formula (15) of [5] in Theorem 4.1. Note that Vanstone’s proof of this identity does not require
the (p, p) double form ω to satisfy the first Bianchi identity or to be a symmetric double form.

6.2. Greub–Vanstone basic identities
Greub–Vanstone basic identities are stated in the following theorem.

Theorem 6.3 ([3]). For 1 ≤ p ≤ n , and for bilinear forms h1, ..., hp and k1, ..., kp , we have

(h1h2...hp) ◦ (k1k2...kp) =
∑
σ∈Sp

(h1 ◦ kσ(1))...(hp ◦ kσ(p)) =
∑
σ∈Sp

(hσ(1) ◦ k1)...(hσ(p) ◦ kp).

In particular, when h = h1 = ... = hp and k = k1 = ... = kp , we have the following nice relation:

hp ◦ kp = p!(h ◦ k)p. (26)

Proof We assume that hi = θi⊗ϑi and ki = θ′i⊗ϑ′i , where θi, ϑi, θ′i, and ϑ′i are in V ∗ , and then by definition
of the exterior product of double forms, we have

h1...hp = θ1 ∧ ... ∧ θp ⊗ ϑ1 ∧ ... ∧ ϑp

and
k1...kp = θ′1 ∧ ... ∧ θ′p ⊗ ϑ′1 ∧ ... ∧ ϑ′p.

It follows from the definition of the composition product that

(h1h2...hp) ◦ (k1k2...kp) = det(⟨θi, ϑ′j⟩)[θ′1 ∧ ... ∧ θ′p ⊗ ϑ1 ∧ ... ∧ ϑp].

Now the determinant here can be expanded in two different ways:

det(⟨θi, ϑ′j⟩) =
∑
σ∈Sp

εσ⟨θ1, ϑ′σ(1)⟩...⟨θp, ϑ
′
σ(p)⟩ =

∑
σ∈Sp

εσ⟨θσ(1), ϑ′1⟩...⟨θσ(p), ϑ′p⟩.
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Therefore, using the definition of the composition product, we get:

(h1h2...hp)◦(k1k2...kp) =
∑
σ∈Sp

εσ⟨θ1, ϑ′σ(1)⟩...⟨θp, ϑ
′
σ(p)⟩[θ

′
1 ∧ ... ∧ θ′p ⊗ ϑ1 ∧ ... ∧ ϑp]

=
∑
σ∈Sp

⟨θ1, ϑ′σ(1)⟩...⟨θp, ϑ
′
σ(p)⟩[θ

′
σ(1) ∧ ... ∧ θ

′
σ(p) ⊗ ϑ1 ∧ ... ∧ ϑp]

=
∑
σ∈Sp

( p∏
i=1

(θi ⊗ ϑ′i) ◦ (θ′σ(i) ⊗ ϑ′σ(i))
)
=
∑
σ∈Sp

( p∏
i=1

h1 ◦ kσ(i)
)
.

If we use the second expansion of the determinant we get the second formula using the same arguments.

7. Pontryagin classes and p-pure curvature tensors
7.1. Alternating operator, Bianchi map
For each p ≥ 1 , we define the alternating operator as follows:

Alt :Dp,p(V ∗) −→ Λ2p(V ∗)

ω 7→ Alt(ω)(v1, ..., vp, vp+1, ...v2p)

=
1

(2p)!

∑
σ∈S2p

ε(σ)ω(vσ(1) ∧ ... ∧ vσ(p), vσ(p+1) ∧ ... ∧ vσ(2p)).

Another basic map in D(V ∗) is the first Bianchi map, denoted by S . It maps Dp,q(V ∗) into Dp+1,q−1(V ∗)

and is defined as follows. Let ω ∈ Dp,q(V ∗) and set Sω = 0 if q = 0 . Otherwise, set

Sω(e1 ∧ ... ∧ ep+1, ep+2 ∧ ... ∧ ep+q) =
1

p!

∑
σ∈Sp+1

ε(σ)ω(eσ(1) ∧ ... ∧ eσ(p), eσ(p+1) ∧ ep+2 ∧ ... ∧ ep+q). (27)

In other terms, S is a partial alternating operator with respect to the first (p + 1) arguments. If we assume
that p = q , then the composition

Sp := S ◦ ... ◦S (28)

is up to a constant factor, the alternating operator Alt. In particular, we have the following relation first
observed by Thorpe [11] and Stehney [10].

Lemma 7.1. If ω ∈ kerS , then Alt(ω) = 0.

Lemma 7.2. The linear application Alt is surjective.

Proof If ω is a (2p) -form in Λ2p(V ∗) , then ω is also a (p, p) double form whose image under the alternating
operator is the (2p) -form ω itself.

Lemma 7.3. We have the following isomorphism:

Dp,p(V )/ ker Alt ∼= Λ2p(V ),

In particular, we have the following orthogonal decomposition:

Dp,p(V ) = ker Alt ⊕ Λ2p(V ).
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7.2. p-Pure Riemannian manifolds

According to Maillot [9], a Riemannian n -manifold has a pure curvature tensor if at each point of the manifold
there exists an orthonormal basis (ei) of the tangent space at this point such that the Riemann curvature
tensor R belongs to Span{e∗i ∧ e∗j ⊗ e∗i ∧ e∗j : 1 ≤ i < j ≤ n} . This class contains all conformally flat manifolds,
hypersurfaces of space forms, and all three-dimensional Riemannian manifolds. Maillot proved in [9] that all
Pontryagin forms of a pure Riemannian manifold vanish. In this section we are going to refine this result.

Definition 7.1. Let 1 ≤ p ≤ n/2 be a positive integer. A Riemannian n-manifold is said to have a p-pure
curvature tensor if at each point of the manifold there exists an orthonormal basis (ei) of the tangent space at
this point such that the exterior power Rp of R belongs to

Span{e∗i1 ∧ ... ∧ e
∗
i2p ⊗ e∗i1 ∧ ... ∧ e

∗
i2p : 1 ≤ i1 < ... < i2p ≤ n}.

The previous definition can be reformulated using the exterior product of double forms as follows.

Proposition 7.4. Let 1 ≤ p ≤ n/2 be a positive integer. A Riemann n-manifold with Riemann curvature
tensor R is p-pure if and only if at each point of the manifold, there exists a family {hi : i ∈ I} of simultaneously
diagonalizable symmetric bilinear forms on the tangent space such that the exterior power Rp of R at that point
belongs to

Span{hi1 ...hi2p : i1, ..i2p ∈ I}.

We notice that the condition that the family {hi : i ∈ I} consists of simultaneously diagonalizable
symmetric bilinear forms is equivalent to the fact that hti = hi and hi ◦ hj = hj ◦ hi for all i, j ∈ I .

Proof Assuming that R is p -pure, then by definition we have

Rp =
∑

1≤i1<...<i2p≤n

λi1...i2pe
∗
i1 ∧ ... ∧ e

∗
i2p ⊗ e∗i1 ∧ ... ∧ e

∗
i2p

=
∑

1≤i1<...<i2p≤n

λi1...i2p
(
e∗i1 ⊗ e∗i1

)(
e∗i2 ⊗ e∗i2

)
...
(
e∗i2p ⊗ e∗i2p

)
=

∑
1≤i1<...<i2p≤n

λi1...i2phi1 ...hi2p ,

where hi = e∗i ⊗ e∗i . It is clear that hti = hi and hi ◦ hj = δije
∗
j ⊗ e∗i = hj ◦ hi .

Conversely, assume that there exists a family {hi : i ∈ I} of simultaneously diagonalizable symmetric
bilinear forms such that

Rp =
∑

i1,...,i2p∈I
λi1...i2phi1 ...hi2p .

Let (ei) be an orthonormal basis of the tangent space at the point under consideration that diagonalizes
simultaneously all the bilinear forms in the family {hi : i ∈ I} . Then if hik =

∑n
jk=1 ρikjke

∗
jk

⊗ e∗jk for each
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k = 1, ..., 2p we have

Rp =
∑

i1,...,i2p∈I
λi1...i2phi1 ...hi2p

=
∑

i1,...,i2p∈I

n∑
j1,...,j2p=1

λi1...i2pρi1j1 ...ρi2pj2p

(
e∗j1 ⊗ e∗j1

)
...
(
e∗j2p ⊗ e∗j2p

)

=
∑

i1,...,i2p∈I

n∑
j1,...,j2p=1

λi1...i2pρi1j1 ...ρi2pj2pe
∗
j1 ∧ ... ∧ e

∗
j2p ⊗ e∗j1 ∧ ... ∧ e

∗
j2p .

This completes the proof.
In the next proposition we provide several classes of examples and properties about p -pure manifolds

Proposition 7.5. 1. Every pure Riemannian manifold is p-pure for any p ≥ 1 . More generally, if a
Riemannian manifold is p-pure for some p then it is pq -pure for any q ≥ 1 .

However the converse it is not always true. A Riemannian manifold can be p-pure for some p > 1 without
being pure.

2. A Riemannian manifold of dimension n = 2p is always p-pure.

3. A Riemannian manifold of dimension n = 2p+ 1 is always p-pure.

4. A Riemannian manifold with constant p-sectional curvature, in the sense of Thorpe [11], is always p-pure.

Proof The first and second statements in (1) are straightforward to prove. The next three properties provide
examples of p -pure manifolds (p > 1) without being necessarily pure. Property (2) follows from the fact that
in this case the Riemann tensor R is such that Rp is proportional to gn . To prove (3) , we use Proposition 2.1
in [6], which shows that in this case we have

Rp = ω1g
2p−1 + ω0g

2p,

where ω1 is a symmetric bilinear form and ω0 is a scalar. Finally, (4) follows from the fact that constant
p -sectional curvature is equivalent to the fact that its Riemann tensor R satisfying Rp is proportional to g2p .

We are now ready to state and prove the following theorem.

Theorem 7.6. If a Riemannian n-manifold is k -pure and n ≥ 4k , then its Pontryagin class of degree 4k

vanishes.

Proof Denote by R the Riemann curvature tensor of the given Riemannian manifold. Then the following
differential form is a representative of the Pontryagin class of degree 4k of the manifold [10]:

Pk(R) =
1

(k!)2(2π)2k
Alt
(
Rk ◦Rk

)
. (29)

We are going to show that Pk(R) vanishes.
According to Proposition 7.4 there exists a family {hi : i ∈ I} of simultaneously diagonalizable symmetric

bilinear forms such that
Rk =

∑
i1,...,i2k∈I

λi1...i2khi1 ...hi2k .

558



BELKHIRAT and LABBI/Turk J Math

Therefore, we have

Rk ◦Rk =
∑

i1,...,i2k∈I
j1,...,j2k∈I

λi1...i2kλj1...j2khi1 ...hi2k ◦ hj1 ...hj2k .

Next, Proposition 6.3, shows that each term of the previous sum is an exterior product of double forms
of the form hi ◦ hj , each of which is a symmetric bilinear form and therefore belongs to the kernel of the first
Bianchi sum S . On the other hand, the kernel of S is closed under exterior products [4], and consequently
Rk ◦Rk belongs to the kernel of S and therefore Alt

(
Rk ◦Rk

)
= 0 by Lemma 7.1.

Remark 7.1. We remark that the previous theorem can alternatively be proved directly without using identity
7.4 as follows.

Let us use a multiindex and write Rk =
∑
I λIeI ⊗ eI as in the definition. Then

Alt
(
Rk ◦Rk

)
= Alt

(∑
I

λ2IeI ⊗ eI

)
= 0.

As a direct consequence of the previous theorem, we obtain the following, equivalent to a result of Stehney
(Theorem 3.3, [10]).

Corollary 7.7. Let M be a Riemannian manifold and p an integer such that 4p ≤ n = dimM . If at any point
m ∈M the Riemann curvature tensor R satisfies

Rp = cpA
2p,

where A : TmM −→ TmM is symmetric bilinear form and cp is a constant, then the differential form
Alt(Rp ◦Rp) is 0 .

Proof Since A is symmetric then Rp = cpA...A is p -pure; the result follows directly from the previous
theorem.
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