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Abstract: A ring R is said to be NJ if J(R) = N(R) . This paper mainly studies the relationship between NJ rings
and related rings, and investigates the Dorroh extension, the Nagata extension, the Jordan extension, and some other
extensions of NJ rings. At the same time, we also prove that if R is a weakly 2-primal α -compatible ring with an
isomorphism α of R , then R[x;α] is NJ; if R is a weakly 2-primal δ -compatible ring with a derivation δ of R , then
R[x; δ] is NJ. Moreover, we consider some topological conditions for NJ rings and show for a NJ ring R that R is J-pm
if and only if J -Spec(R) is a normal space if and only if Max(R) is a retract of J -Spec(R) .
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1. Introduction
Throughout this paper, all rings are associative with identity unless otherwise stated. Given a ring R , we use
the symbol N(R) to denote the set of all nilpotent elements of R , U(R) its unit group. The prime radical,
the Levitzki radical, the upper nil-radical, the Jacobson radical, and the Brown–McCoy radical of a ring R

are denoted by P (R) , L(R) , N∗(R) , J(R) , and BM(R) , respectively. The symbol Mn(R) denotes the ring
of n × n matrices over a ring R , Tn(R) denotes the ring of n × n upper triangular matrices over R , Dn(R)

denotes the subring {A ∈ Tn(R)| the diagonal entries of A are all equal} of Tn(R) , and Vn(R) denotes the
ring of all matrices (aij) in Dn(R) such that aij = a(i+1)(j+1) for i = 1, 2, · · · , n− 2 and j = 1, 2, · · · , n− 1 .

In recent years, a growing number of articles have studied the class of rings that is associated with the
set N(R) of all nilpotent elements of a ring R . In 1973, Shin [21] proved that the prime radical P (R) coincides
with the set of all nilpotent elements of R if and only if every minimal prime ideal is completely prime. In 1993,
the term 2-primal, which satisfies P (R) = N(R) , was created by Birkenmeier et al. [5]. At the same time, they
also studied some fundamental properties of 2-primal rings and proved that the subring, direct sum of 2-primal
rings and the polynomial ring R[x] , and the ring of all n× n upper triangular matrices Tn(R) over a 2-primal
ring R are also 2-primal. Since then, many papers have further researched 2-primal rings. For example, Marks
[16] investigated conditions on ideals of a 2-primal ring R that will ensure that the skew polynomial ring R[x;α]

and the differential polynomial R[x; δ] be 2-primal.
In 2001, Marks [17] proposed NI rings. A ring R is called NI if the upper nilradical N∗(R) coincides with
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the set of all nilpotent elements of R . Note that a ring R is NI if and only if N(R) forms an ideal. Obviously,
every 2-primal ring is NI, but the converse is negative by Example 1.2 of [12]. Hwang et al. [12] studied the
basic structure of NI rings and showed that R is NI if and only if every subring (possibly without identity) of R
is NI if and only if every minimal strongly prime ideal is completely prime if and only if R/N∗(R) is reduced.
They also proved that the direct sum and the direct limit of a direct system of NI rings are also NI. In addition,
they investigated topological conditions for NI rings relating to the space SSpec(R) of strongly prime ideals of
R and proved for an NI ring R that R is weakly pm if and only if Max(R) is a retract of SSpec(R) if and
only if SSpec(R) is normal, where Max(R) is the space of maximal ideals of R .

More generally, in 2011, Chen et al. [7] called a ring R weakly 2-primal if the set of nilpotent elements
in R coincided with its Levitzki radical L(R) . By the definition, we have the following implication: 2-primal
⇒ weakly 2-primal ⇒ NI. The converse is negative by [7]. Meanwhile, they proved that R is weakly 2-primal
if and only if Tn(R) is weakly 2-primal and if R is a weakly 2-primal α -compatible ring, then R[x;α] is weakly
2-primal. Moreover, Wang et al. [24] further showed that if R is (α , δ )-compatible, then R is weakly 2-primal
if and only if the Ore extension R[x;α, δ] is weakly 2-primal.

Naturally, in this paper, we will study the relationship between the Jacobson radical J(R) and the set
of nilpotent elements of a ring R and put forward the concept of NJ rings. A ring R is called NJ if the
Jacobson radical coincides with the set of all nilpotent elements, that is, J(R) = N(R) . First, we research
the relationship between 2-primal rings, weakly 2-primal rings, NI rings, and NJ rings and we also give some
examples of NJ rings. Second, we study some fundamental properties of NJ rings and prove that, for some
conditions, the trivial extension, the direct product, the Dorroh extension, the Nagata extension, the Jordan
extension, and the direct limit are also NJ. Third, we investigate the polynomial extension of NJ rings and show
that if R is weakly 2-primal α -compatible with an automorphism α of R , then R[x;α] is NJ; if R is weakly
2-primal δ -compatible or δ -Armendariz NJ with a derivation δ of R , then R[x; δ] is NJ. Lastly, we apply the
topological methods to study some topological conditions for NJ rings and prove for an NJ ring R that R is
J-pm if and only if J -Spec(R) is a normal space if and only if Max(R) is a retract of J -Spec(R) .

2. Some properties of NJ-rings

Definition 2.1 A ring R is called an NJ ring if the set of nilpotent elements in R coincides with its Jacobson
radical, that is, N(R) = J(R) .

Clearly, every NJ ring is NI, but the converse is negative by the following example.

Example 2.2 Let R = Z[[x]] . Then R is a domain (hence NI) and N(R) = 0 , but J(Z[[x]]) = xZ[[x]] ̸= 0

and so R is not an NJ ring.

Proposition 2.3 (1) A ring R is NJ if and only if R is NI and J(R) is nil.
(2) A ring R is an NJ ring if and only if R is an NI ring and R/N∗(R) is J-semisimple.

Proof (1) Suppose that R is NJ. Then J(R) = N(R) is nil and R is NI. Conversely, suppose that R is NI
and J(R) is nil. Then we have N∗(R) = N(R) ⊆ J(R) ⊆ N(R) and so R is NJ.

(2) Every NJ ring is NI. Since N∗(R) ⊆ J(R) , we get J(R/N∗(R)) = J(R)/N∗(R) . On the other hand,
J(R) = N(R) = N∗(R) implies J(R)/N∗(R) = 0 and so R/N∗(R) is J-semisimple.
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Conversely, since N(R) = N∗(R) ⊆ J(R) , we have J(R)/N∗(R) = J(R/N∗(R)) = 0̄ and so J(R) =

N∗(R) = N(R) . It is proved that R is an NJ ring. 2

Example 2.2 also proves that a 2-primal ring (hence weakly 2-primal) is not NJ. Meanwhile, we can also
find an NJ ring that it is not 2-primal by Example 1.7 of [14].

Proposition 2.4 If R is an NJ ring and satisfies a polynomial identity, then R is weakly 2-primal.

Proof Since R is an NJ ring, we have L(R) ⊆ J(R) = N(R) . As it is well known that if a ring R satisfies a
polynomial identity, then every nil ideal of R is locally nilpotent. Hence, N(R) ⊆ L(R) , completed. 2

In the following, we supply several examples of NJ rings. We can see that NJ rings are abundant.

Example 2.5 (1) Recall that a ring R (without 1) is called nil if every element in R is nilpotent, i.e.
R = N(R) . Every nil ring is NJ.

(2) Every division ring is an NJ ring. In fact, N(R) = J(R) = 0 .
(3) Every Boolean ring is an NJ ring. Note that the Jacobson radical of a ring R contains no idempotent

elements except for 0. Then the Jacobson radical of the Boolean ring R is 0. On the other hand, for every
a ∈ N(R) , there exists a positive integer n such that an = 0 . Since R is a Boolean ring, we have a2 = a and
so N(R) = 0 .

(4) Recall that a ring R is a Jacobson ring if every prime ideal is an intersection of primitive ideals.
Every commutative Jacobson ring is NJ. Let R ⊆ A be a commutative ring such that A is finitely generated
as an R -algebra and R is a Jacobson ring. Then, by Corollary 5.4 of [15], A is also a Jacobson ring. In
particular, A is an NJ ring.

(5) Let R be a commutative affine algebra over a field K . By ( [15], p60) , the Jacobson radical of R is
exactly the set of nilpotent elements in R . Thus, R is an NJ ring.

(6) Every semi-Abelian π -regular ring is NJ by Corollary 3.13 of [6].
(7) Every locally finite Abelian ring is NJ by Proposition 2.5 of [11].

Considering Example 2.5 (1, 2, 3), one may naturally ask whether the converse of Example 2.5 (1, 2, 3)
also holds. The answer is negative, as can be seen by R = Z . In fact, J(R) = N(R) = 0 and so R is an NJ
ring, but R is not a division ring. At the same time, R is also not a nil-ring and a Boolean ring.

As is well known, every division ring is local, and every division ring is NJ by Example 2.5 (2), so it is
natural to ask whether local rings are related to NJ rings. However, there is no implication between the classes
of local rings and NJ rings by the following.

Example 2.6 (1) Let R = Z . Obviously, R is an NJ ring, but R is not local.
(2) If R is a commutative local domain, then N(R) = 0 , but J(R) is the unique maximal ideal of R ,

which is nonzero if R is not a field in ([15, p 60]).

Proposition 2.7 Supposing that R ̸= 0 , and every a /∈ U(R) is nilpotent, then R is a NJ ring, where U(R)

is the unit group of R .

Proof By hypothesis, we have R\U(R) = N(R) . The following is similar to the proof of ([15], Proposition
19.3). If a /∈ N(R) = R\U(R) , then a ∈ U(R) and there exists r ∈ R such that ar = ra = 1 . Thus,

46



JIANG et al./Turk J Math

1− ra = 0 /∈ U(R) and so a /∈ J(R) . It is implied that J(R) ⊆ R\U(R) = N(R) . For the converse inclusion, if
a ∈ N(R) = R\U(R) , then a /∈ U(R) . Let k be the smallest positive integer such that ak = 0 . We claim that
Ra ⊆ R\U(R) = N(R) . Assume that there exists some ra ∈ Ra such that ra ∈ U(R) . Then (ra)ak−1 = 0

implies ak−1 = 0 . This is a contradiction. Thus, Ra is a nil left ideal, and so a ∈ Ra ⊆ J(R) . This implies
N(R) ⊆ J(R) , and R is an NJ ring. 2

Recall that a ring R is called reduced if there are no nonzero nilpotent elements in R . Note that a
division ring is a domain and a domain is reduced. However, there is no relationship between the classes of
reduced rings (domains) and NJ rings by the following examples.

Example 2.8 Let F be a field and R =

(
F F
0 F

)
. Then J(R) =

(
0 F
0 0

)
= N(R) and so R is an NJ

ring. However, R is not reduced (hence, R is not a domain). In fact, take A =

(
0 1
0 0

)
; then A2 = 0 , but

A ̸= 0 .

Proposition 2.9 If R is a reduced ring and J(R) is nil, then R is an NJ ring.

Proof Since R is reduced, we have N(R) = 0 . On the other hand, J(R) is nil, that is, J(R) ⊆ N(R) = 0 .
Hence, J(R) = N(R) = 0 and so R is an NJ ring. 2

Recall that a ring R is feckly reduced if R/J(R) is reduced. A ring R is feckly Armendariz if R/J(R)

is Armendariz. Obviously, every feckly reduced ring is feckly Armendariz. A ring R is directly finite if ab = 1

implies ba = 1 for a, b ∈ R . By Proposition 2.6 (2) of [14], every feckly Armendariz ring is directly finite.

Proposition 2.10 Every NJ ring is feckly reduced. Hence, every NJ ring is directly finite. Conversely, if R is
a feckly reduced and J(R) is nil, then R is NJ.

Proof Let R be an NJ ring. If r̄2 = 0 for every r̄ ∈ R/J(R) , then r2 ∈ J(R) . We have r ∈ N(R) = J(R)

since R is NJ. Hence, r̄ = 0 and so R is a feckly reduced ring. Conversely, it is easy to see that N(R) ⊆ J(R)

since R is feckly reduced. Therefore, R is NJ by J(R) ⊆ N(R) . 2

However, the converse of Proposition 2.10 is not correct by Example 2.2 (1). In fact, R/J(R) ∼= Z is
a reduced ring. Recall that a ring R is regular if for every a ∈ R there exists x ∈ R such that a = axa .
Note that J(R) = 0 if R is a regular ring. Moreover, we can see that reduced, regular, and NJ are mutually
independent by the following examples and Example 2.2. Let R = Z . Then R is reduced and R is also NJ,
but R is not regular. If R = M2(F ) and F is a field, we have that R is a regular ring since F is regular.
However, R is not reduced. At the same time, R is not NJ since J(R) = 0 ̸= N(R) . This means that there
exists a regular ring such that it is not NJ.

Proposition 2.11 (1) Every reduced regular ring is NJ.
(2) If R is a regular ring, then we have the following equivalent:

(i) R is reduced;
(ii) R is NJ;
(iii) R is NI.
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Proposition 2.12 (1) Let R be a ring. Then we have the following equivalent:
(i) A ring R is NJ;
(ii) Every ideal I of R is an NJ ring;
(iii) R is an NI ring and every proper ideal of R is NJ.

(2) Let I ⊆ J(R) be an ideal of R . If R is NJ, then R/I is NJ.
(3) Let I be a nil ideal of R . If R/I is an NJ ring, then R is NJ.
(4) Let I be an ideal of R and I NJ as a ring. If a ∈ N(R) , then ab, ba ∈ N(R) for any b ∈ I .
(5) Let I be an ideal of R . Then the following are equivalent:

(i) R/I is an NJ ring;
(ii) xn ∈ I if and only if x ∈ p(I) , that is, p(I) = {x ∈ R|xn ∈ I for some n ∈ N} , where

p(I) = ∩{J |J is a maximal right ideal of R containing I} .

Proof (1) (i) ⇔ (ii) and (i) ⇒ (iii) are clear by J(I) = J(R) ∩ I = N(R) ∩ I = N(R) . For (iii) ⇒ (i),
we only need to show J(R) ⊆ N(R) since R is NI. If a ∈ J(R) , then we have J(RaR) = N(RaR) by the
hypothesis. On the other hand, since a ∈ RaR and a ∈ J(R) , we can obtain a ∈ J(R) ∩ RaR = J(RaR) and
so a ∈ N(RaR) = N(R) ∩RaR . This implies a ∈ N(R) and R is NJ.

(2) Since I ⊆ J(R) , we have J(R/I) = J(R)/I . If r̄ ∈ N(R/I) , then there exists a positive integer n

such that r̄n = 0̄ and so rn ∈ I ⊆ J(R) = N(R) . Hence, r ∈ N(R) = J(R) and r̄ ∈ J(R)/I = J(R/I) . For
the converse inclusion, if ā ∈ J(R/I) = J(R)/I , then a ∈ J(R) = N(R) and so ā ∈ N(R/I) . This implies that
R/I is an NJ ring.

(3) If r ∈ N(R) , then there exists a positive integer n such that rn = 0 . Thus, we have r̄n = 0̄ in R/I

and so r̄ ∈ N(R/I) = J(R/I) . By hypothesis, we have I ⊆ J(R) and r̄ ∈ J(R/I) = J(R)/I . Hence, r ∈ J(R)

and N(R) ⊆ J(R) . On the other hand, if a ∈ J(R) , then r̄ ∈ J(R)/I = J(R/I) = N(R/I) . Thus, there
exists a positive integer m such that r̄m = 0̄ and so rm ∈ I ⊆ N(R) . Hence, r ∈ N(R) and J(R) ⊆ N(R) , as
desired.

(4) Suppose an = 0 . We will show that an−kb ∈ N(R) for every 0 ⩽ k ⩽ n−1 , by induction on k . Then
the k = n− 1 case will complete the proof. When k = 0 , anb = 0 ∈ N(R) . Assume that an−kb ∈ N(R) with
0 ⩽ k < n − 1 . Then there exists a positive integer m such that (an−kb)m = 0 and so (an−k−1ba)m+1 = 0 .
Thus, we have an−k−1ba ∈ N(R) ∩ I = N(I) = J(I) since I is NJ, and so an−k−1ban−k−1b ∈ J(I) = N(I) .
Therefore, an−k−1b is nilpotent and the induction goes through.

(5) (i)⇒ (ii) For any y ∈ {x ∈ R|xn ∈ I for some n ∈ N} , then there exists a positive integer n such
that yn ∈ I . In R̄ = R/I , we have ȳn = 0̄ and so ȳ ∈ N(R/I) = J(R/I) . Note that J/I is a maximal right
ideal of R/I if and only if J is a maximal right ideal of R containing I . This implies ȳ ∈ J/I and y ∈ J .
Thus, x ∈ p(I) . Let x ∈ p(I) . Then, for every maximal right ideal J of R containing I , we have x ∈ J and
so x̄ ∈ J/I . That is, x̄ ∈ J(R/I) = N(R/I) . There exists n ∈ N such that xn ∈ I .

(ii) ⇒ (i) For any r̄ ∈ N(R/I) , there exists n ∈ N such that rn ∈ I and so r ∈ p(I) . By the above
proof, we can obtain r̄ ∈ J(R/I) . Conversely, if ā ∈ J(R/I) , then a ∈ p(I) . Thus, we have an ∈ I for some
n . Therefore, ā ∈ N(R/I) . 2

Considering Proposition 2.12 (2)(3), if R/I is an NJ ring and I is also NJ as a ring without 1, then R

is also NJ. However, the following example gives a negative answer.
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Example 2.13 Let F be a field and R = M2(F ) . Then J(R) = M2(J(F )) = 0 , but N(R) ̸= 0 . Thus, R is

not NJ. Take I =

(
F 0
0 F

)
. Obviously, we have J(I) = N(I) = 0 and so I is NJ as a ring. On the other

hand, R/I ∼= F and we can obtain J(R/I) = N(R/I) = 0 . Hence, R/I is NJ.

Proposition 2.14 Let e be an idempotent element of R . If R is an NJ ring, then eRe is also NJ.

Proof Notice that J(eRe) = J(R) ∩ eRe = N(R) ∩ eRe = N(eRe) . 2

Corollary 2.15 If there exists a ring R such that Mn(R) is an NJ ring for all n ≥ 2 , then R is NJ.

Proof Since E11Mn(R)E11 = RE11
∼= R , we have that R is NJ by Proposition 2.14. 2

The index of nilpotency of a nilpotent element a in a ring R is the least positive integer n such that
an = 0 . The index of nilpotency of a subset X of R is the supremum of the indices of nilpotency of all nilpotent
elements in X . If such a supremum is finite, then X is said to be of bounded index of nilpotency.

Proposition 2.16 (1) Let R =
⊕
γ∈Γ

Rγ be a direct sum of rings Rγ and Γ an indexed set. Then R is an NJ

ring if and only if Rγ is an NJ ring for every γ ∈ Γ .
(2) Let R =

∏
γ∈Γ

Rγ be a direct product of rings Rγ and Γ an indexed set. If R is of bounded index of

nilpotency, then R is an NJ ring if and only if Rγ is a NJ ring for every γ ∈ Γ .

Proof (1) Assume that Rγ is an NJ ring for each γ ∈ Γ . It comes from J(
⊕
γ∈Γ

Rγ) =
⊕
γ∈Γ

J(Rγ) =⊕
γ∈Γ

N(Rγ) = N(
⊕
γ∈Γ

Rγ) . Conversely, suppose that R is an NJ ring. If aγ ∈ J(Rγ) for every γ ∈ Γ ,

then (0, . . . , aγ , 0, . . .) ∈
⊕
γ∈Γ

J(Rγ) = J(
⊕
γ∈Γ

Rγ) = N(
⊕
γ∈Γ

Rγ) and so aγ ∈ N(Rγ) . On the other hand, if

aγ ∈ N(Rγ) , then (0, . . . , aγ , 0, . . .) ∈ N(
⊕
γ∈Γ

Rγ) = J(
⊕
γ∈Γ

Rγ) =
⊕
γ∈Γ

J(Rγ) . Hence, aγ ∈ J(Rγ) . This

completes the proof.
(2) Since R is of bounded index of nilpotency, we have N(

∏
γ∈Γ

Rγ) =
∏
γ∈Γ

N(Rγ) . This implies that

J(
∏
γ∈Γ

Rγ) =
∏
γ∈Γ

J(Rγ) =
∏
γ∈Γ

N(Rγ) = N(
∏
γ∈Γ

Rγ) . Hence, R is an NJ ring. For the converse, the proof is

similar to the proof of (1). 2

Corollary 2.17 For a central idempotent element e ∈ R , eR and (1− e)R are NJ if and only if R is NJ.

Proof If R is an NJ ring, then eR and (1−e)R are NJ since e is central. Conversely, since R = eR
⊕

(1−e)R ,
it comes from Proposition 2.16 (1). 2

Proposition 2.18 Let R be a ring. Then the following are equivalent:
(1) R is an NJ ring;
(2) Tn(R) is an NJ ring for all n ≥ 2 ;
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(3) Dn(R) is an NJ ring for all n ≥ 2 ;
(4) Vn(R) is an NJ ring for all n ≥ 2 .

Proof We apply the method in the proof of Proposition 2.5 in [14] to prove this proposition.
(1) ⇔ (2) Let I = {A ∈ Tn(R) | each diagonal entry of A is zero} . Then I is a nil ideal of Tn(R) and

I ⊆ J(Tn(R)) . On the other hand, we can obtain Tn(R)/I ∼=
n⊕

i=1

Ri where Ri = R . The proof is completed by

Proposition 2.12 (3) and Proposition 2.16 (1).
(1) ⇔ (3) It is similar to the above proof. Let I = {B ∈ Dn(R) | each diagonal entry of B is zero} .

Then I is a nil ideal of Dn(R) and Dn(R)/I ∼= R .
(1) ⇔ (4) Let I = {C ∈ Vn(R) | each diagonal entry of C is zero} . Then I is a nil ideal of Vn(R) and

Vn(R)/I ∼= R . 2

Considering Corollary 2.15 and Proposition 2.18, it is natural to ask whether Mn(R) is also NJ when R

is an NJ ring for all n ≥ 2 . However, the answer is negative by the following.

Example 2.19 Let R = Z2 and S = M2(Z2) . Clearly, R is an NJ ring from J(R) = N(R) = 0 . On the

other hand, J(S) = M2(J(Z2)) = 0 , but
(

0 1
0 0

)
∈ N(S) ̸= 0 = J(S) . Therefore, S is not an NJ ring.

Recall that for a ring R and an (R,R) -bimodule M , the trivial extension of R by M is the ring
T (R,M) = R

⊕
M with the usual addition and the following multiplication: (r1,m1)(r2,m2) = (r1r2, r1m2 +

m1r2) . This is isomorphic to the ring of all matrices
(

r m
0 r

)
where r ∈ R , m ∈ M and the usual matrix

operations are used.

Corollary 2.20 (1) Let R =

(
S M
0 T

)
, where S and T are rings and M is an (S, T )-bimodule. Then S

and T are both NJ if and only if R is NJ.
(2) Let R be a ring and M an (R,R)-bimodule. Then the trivial extension T (R,M) is an NJ ring if

and only if R is an NJ ring.

3. Extensions of NJ rings
In this section, we focus on some extensions of NJ rings, such as the Dorroh extension, the ideal-extension, the
Nagata extension, the Jordan extension, and so on.

Let R0 be an algebra with identity over a commutative ring S . Due to [8], the Dorroh extension of R0

by S is the Abelian group S
⊕

R0 with multiplication given by (s1, r1)(s2, r2) = (s1s2, s1r2 + s2r1 + r1r2) for
si ∈ S , ri ∈ R0 .

Proposition 3.1 Let R0 be an algebra with identity over a field F . Then R0 is an NJ ring if and only if the
Dorroh extension R of R0 by F is an NJ ring.

Proof By the proof of Proposition 2.7 in [14], we obtain that J(R) = 0
⊕

J(R0) . On the other hand, since
F is a field, we have N(R) = 0

⊕
N(R0) . The proof is completed by the condition. 2
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Let R be a ring and V an (R,R) -bimodule that is a general ring (possibly with no unity) in which
(vw)r = v(wr) , (vr)w = v(rw) and (rv)w = r(vw) hold for all v, w ∈ V and r ∈ R . Then ideal-
extension I(R;V ) of R by V is defined to be the additive Abelian group I(R;V ) = R

⊕
V with multiplication

(r, v)(s, w) = (rs, rw + vs+ vw) .

Proposition 3.2 Suppose that for any v ∈ V , there exists w ∈ V such that v + w + vw = 0 . Then we have
the following:

(1) If an ideal-extension S = I(R;V ) is an NJ ring, then R and V are both NJ;
(2) If R is a reduced NJ ring and V is NJ, then the ideal-extension S = I(R;V ) is NJ.

Proof (1) By hypothesis, we can obtain V = J(V ) and (0, V ) ⊆ J(S) . If v ∈ J(V ) = V , then
(0, v) ∈ J(S) = N(S) and so there exists a positive integer n such that (0, v)n = (0, 0) . Thus, we have
vn = 0 and v ∈ N(V ) . Therefore, V is an NJ ring. If a ∈ J(R) , then we have (a, 0) ∈ S . Next we claim that
(a, 0) ∈ J(S) . For any (r, v) ∈ S , we have (1, 0)− (a, 0)(r, v) = (1− ar,−av) = (1− ar, 0)(1, (1− ar)−1(−av)) .
Since (1, (1 − ar)−1(−av)) = (1, 0) + (0, (1 − ar)−1(−av)) ∈ U(S) by (0, v) ⊆ J(V ) and a ∈ J(R) , we can
obtain (1, 0) − (a, 0)(r, v) ∈ U(S) and so (a, 0) ∈ J(S) = N(S) . Then there exists a positive integer n such
that (a, 0)n = (0, 0) . Thus, we have an = 0 and a ∈ N(R) . If a ∈ N(R) , then (a, 0) ∈ N(S) = J(S) . For any
r ∈ R , we have (1, 0)− (a, 0)(r, 0) = (1− ar, 0) ∈ U(S) and so 1− ar ∈ U(R) . Thus, a ∈ J(R) and so R is an
NJ ring.

(2) If (a, v) ∈ J(S) , then we have (a, 0) ∈ J(S) since (0, v) ∈ J(S) and (a, v) = (a, 0) + (0, v) . For any
r ∈ R , (1, 0) − (a, 0)(r, 0) = (1 − ar, 0) ∈ U(S) and so 1 − ar ∈ U(R) . Thus, a ∈ J(R) = N(R) = 0 . This
implies that (a, v) = (0, v) . Therefore, we have v ∈ V = J(V ) = N(V ) and so (a, v) ∈ N(S) . For the converse,
if (a, v) ∈ N(S) , then there exists a positive integer n such that (a, v)n = (0, 0) . Thus, we have an = 0 and
so s = 0 by the multiplication and reduced property. This implies that (a, v) = (0, v) ∈ J(S) . Therefore, the
ideal-extension S = I(R;V ) is NJ. 2

Due to Nagata [19], let R be a commutative ring, M be a left R -module, and σ be an endomorphism
of R . Given R

⊕
M a (possibly noncommutative) ring structure with multiplication (r1,m1)(r2,m2) =

(r1r2, σ(r1)m2 + r2m1) , where ri ∈ R and mi ∈ M , we call this extension the Nagata extension of R by
M and σ .

Proposition 3.3 Let R be a commutative ring and σ an endomorphism of R . Then R is an NJ ring if and
only if the Nagata extension S of R by R and σ is also NJ.

Proof In order to prove this proposition, we only need to show that N(S) = N(R)
⊕

R and J(S) = J(R)
⊕

R .
If (a, b) ∈ N(S) , then there exists a positive integer n such that (a, b)n = (0, 0) and so an = 0 . This implies
that (a, b) ∈ N(R)

⊕
R . If (a, b) ∈ N(R)

⊕
R , then there is a positive integer m such that am = 0 . Moreover,

we can imply that [(a, b)m]2 = (am, ∗)2 = (0, ∗)2 = (0, 0) and so (a, b) ∈ N(S) . Therefore, it is implied
that N(S) = N(R)

⊕
R . If (a, b) ∈ J(S) , then we have (1, 0) − (a, b)(s, r) = (1 − as,−σ(a)r − sb) ∈ U(S)

for any (s, r) ∈ S . By the multiplication, this implies that 1 − as is invertible in R . That is, we have
a ∈ J(R) and so (a, b) ∈ J(R)

⊕
R . If (a, b) ∈ J(R)

⊕
R , then we have 1 − ax ∈ U(R) for any x ∈ R .

For any (s, r) ∈ S , we consider (1, 0) − (a, b)(s, r) = (1 − as,−σ(a)r − sb) . Since R is commutative,
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we can find y = σ[(1 − as)−1] · (1 − as)−1 · [σ(a)r + sb] such that ((1 − as)−1, y)(1 − as,−σ(a)r − sb) =

(1− as,−σ(a)r − sb)((1− as)−1, y) = (1, 0) . Thus, (a, b) ∈ J(S) , completed. 2

Let α be an injective homomorphism of a ring R and A an extension ring of R . If α can be extended

to an isomorphism of A and A =
∞∪

n=0
α−n(R) , then we call this extension ring A the Jordan extension of R .

Proposition 3.4 Let α be an isomorphism of R . If R is an NJ ring, then the Jordan extension A of R is
also NJ.

Proof If a ∈ N(A) , then there exists a positive integer n such that an = 0 and there is an integer m ≥ 0

such that αm(a) ∈ R . Then we have [αm(a)]n = αm(an) = 0 and so αm(a) ∈ N(R) = J(R) since R is NJ.
For any r ∈ A , there exists an integer k ≥ 0 such that αk(r) ∈ R . Taking l = m + k , it is well known that
α(J(R)) ⊆ J(R) since α is an isomorphism of R . This implies αl(a) ∈ J(R) and αl(r) ∈ R . Then we can obtain
that there exists b ∈ R such that αl(a)αl(r)+b+αl(a)αl(r)b = 0 and so αl(ar+α−l(b)+arα−l(b)) = 0 . Since α

is an isomorphism, we have ar+α−l(b)+arα−l(b) = 0 . Therefore, it is implied that a ∈ J(A) and N(A) ⊆ J(A) .
If a ∈ J(A) , then there exists an integer n ≥ 0 such that αn(a) ∈ R . For any r ∈ R , aα−n(r) ∈ J(A) and
there is b ∈ A such that aα−n(r) + b + aα−n(r)b = 0 . We can find an integer m ≥ 0 such that αm(b) ∈ R

for b ∈ A . Thus, we have αn(aα−n(r) + b + aα−n(r)b) = 0 and so αn(a)r + αn(b) + αn(a)rαn(b) = 0 . This
implies αn(a) ∈ J(R) = N(R) since αn(b) = αn−m(αm(b)) ∈ R . Hence, there exists a positive integer k such
that αn(ak) = [αn(a)]k = 0 and so ak = 0 . This implies a ∈ N(A) and J(A) ⊆ N(A) . Therefore, we show
that A is NJ. 2

Let D be a ring and C a subring of D with 1D ∈ C and R[D,C] denotes the set {(a1, . . . , an, b, b, . . .)|ai ∈
D, b ∈ C, n ≥ 1, 1 ≤ i ≤ n} . Then R[D,C] is a ring under the componentwise addition and multiplication. It
is well known that J(R[D,C]) = R[J(D), J(D) ∩ J(C)] .

Proposition 3.5 Let D be a ring and C a subring of D with 1D ∈ C . Then R[D,C] is an NJ ring if and
only if D and C are both NJ.

Proof Assume that D and C are both NJ. It is sufficient that N(R[D,C]) = R[N(D), N(C)] . In fact, if

(d1, d2, . . . , dn, c, c, . . .) ∈ N(R[D,C]) , then there exists a positive integer k such that (d1, d2, . . . , dn, c, c, . . .)
k
=

0 . Thus, for every 1 ≤ i ≤ n , we have dki = 0 and ck = 0 . That is, di ∈ N(D) and c ∈ N(C) . Conversely,
if (d1, d2, . . . , dn, c, c, . . .) ∈ R[N(D), N(C)] , then we always find a positive integer m such that dmi = cm = 0

for 1 ≤ i ≤ n . Thus, we have (d1, d2, . . . , dn, c, c, . . .) ∈ N(R[D,C]) . By the hypothesis, we can obtain
J(R[D,C]) = R[J(D), J(D) ∩ J(C)] = R[N(D), N(C)] = N(R[D,C]) , completely.

Suppose that R[D,C] is an NJ ring. Then we have R[J(D), J(D)∩J(C)] = J(R[D,C]) = N(R[D,C]) =

R[N(D), N(C)] . This implies that J(D) = N(D) and N(C) = J(D) ∩ J(C) . Thus, we can obtain that
D is an NJ ring and N(C) ⊆ J(C) . If c ∈ J(C) , then 1 − cr ∈ U(C) for every r ∈ C . For ev-
ery (d1, d2, . . . , dn, r, r, . . .) ∈ R[D,C] , we have (1, . . . , 1, 1, . . .) − (0, . . . , 0, c, c, . . .)(d1, d2, . . . , dn, r, r, . . .) =

(1, . . . , 1, 1− cr, 1− cr, . . .) ∈ U(R[D,C]) . It is implied that (0, . . . , 0, c, c, . . .) ∈ J(R[D,C]) = R[J(D), J(D) ∩
J(C)] and so c ∈ J(D) ∩ J(C) = N(C) . Moreover, we can get N(C) = J(C) and so c is also an NJ ring. 2

Proposition 3.6 Let (I,⩽) be a strictly ordered set and {Aα|α ∈ I} a family of NJ rings. Suppose that
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(Aα, (φαβ)α⩽β) is a direct limit system over I and (A, (ηα)α∈I) is a direct limit of the direct system. If
φαβ : Aα → Aβ is an isomorphism for all α ⩽ β and ηα : Aα → A is a monomorphism for all α ∈ I , then
the direct limit A = lim

→
Aα is also NJ.

Proof Note that since A is a direct limit of {Aα|α ∈ I} , we have A =
∪
α∈I

Imηα . Let a ∈ N(A) ⊆ A =∪
α∈I

Imηα . Then there exists a positive integer n such that an = 0 and there is aα ∈ Aα such that ηα(aα) = a .

Hence, we can obtain 0 = an = (ηα(aα))
n = ηα(a

n
α) . Since ηα is a monomorphism, we have anα = 0 and so

aα ∈ N(Aα) = J(Aα) . For any r ∈ A , there exists rβ ∈ Aβ such that ηβ(rβ) = r . Next we claim that ar

is a quasiregular element in A . For α and β , we can find k ∈ I such that α ⩽ k and β ⩽ k because I is a
direct set. Then a and r can be expressed by a = ηα(aα) = ηkφαk(aα) and r = ηβ(rβ) = ηkφβk(rβ) . Since
aα ∈ N(Aα) and ηk is monomorphism, we can imply φαk(aα) ∈ N(Ak) = J(Ak) and φβk(rβ) ∈ Ak . Thus,
φαk(aα)φβk(rβ) is a quasiregular element in Ak . That is, there exists bk ∈ Ak such that φαk(aα)φβk(rβ) +

bk + φαk(aα)φβk(rβ)bk = 0 . Moreover, ηkφαk(aα)ηkφβk(rβ) + ηk(bk) + ηkφαk(aα)ηkφβk(rβ)ηk(bk) = 0 and so
ar + ηk(bk) + arηk(bk) = 0 . This implies that ar is quasiregular in A and so a ∈ J(A) . It is proved that
N(A) ⊆ J(A) .

For the converse inclusion, suppose a ∈ J(A) . Then there exists aα ∈ Aα such that ηα(aα) = a .
Next we prove aα ∈ J(Aα) . For any rα ∈ Aα , we can get that ηα(aαrα) = aηα(rα) is quasiregular in A

and so aηα(rα) + b + aηα(rα)b = 0 for some b ∈ A . For the element b ∈ A , we can find bβ ∈ Aβ such
that ηβ(bβ) = b . Then, by the condition, there is k ∈ I such that α ⩽ k and β ⩽ k and we can obtain
ηα(aαrα) = ηkφαk(aαrα) and ηβ(bβ) = ηkφβk(bβ) . Since ηα(aαrα) + b+ ηα(aαrα)b = 0 , we have the equation
ηkφαk(aαrα) + ηkφαk(bβ) + ηkφαk(aαrα)ηkφαk(bβ) = 0 and φαk(aαrα) + φαk(bβ) + φαk(aαrα)φαk(bβ) = 0 .
Because I is a strictly ordered set, we have the following two cases:

If β ⩽ α ⩽ k , then φβk = φαkφβα . By the fact that φαk is isomorphism, we have aαrα + φβα(bβ) +

aαrαφβα(bβ) = 0 . Hence, aα ∈ J(Aα) because of φβα(bβ) ∈ Aα .
If α ⩽ β ⩽ k , then φαk = φβkφαβ . Similarly, we have φαβ(aαrα) + bβ + φαβ(aαrα)bβ = 0 . Since φαβ

is isomorphism, it implies that aαrα + φ−1
αβ(bβ) + aαrαφ

−1
αβ(bβ) = 0 , so aα ∈ J(Aα) by φ−1

αβ(bβ) ∈ Aα .

According to the above cases, we always have aα ∈ J(Aα) = N(Aα) . Then there exists a positive integer
n such that anα = 0 . It is further implied that an = (ηα(aα))

n = ηα(a
n
α) = 0 and so a ∈ N(A) . This proves

that J(A) ⊆ N(A) . Therefore, A = lim
→

Aα is NJ. 2

In the following, we study the polynomial extension of NJ rings including the polynomial ring R[x] , the
skew polynomial ring R[x;α] , and the differential polynomial ring R[x; δ] of a ring R .

Recall that a ring R is Armendariz if f(x)g(x) = 0 for any f(x) =
n∑

i=0

aix
i, g(x) =

m∑
j=0

bjx
j ∈ R[x] , then

aibj = 0 for any i, j . Since there is an Armendariz ring such that it is not feckly Armendariz by Example 1.2
of [14], it is also not NJ. Conversely, we can also find an NJ ring such that it is not Armendariz by Example
1.7 of [14]. Therefore, there is no relationship between Armendariz rings and NJ rings.

Lemma 3.7 ([1], Theorem 1) J(R[x]) = N [x] for a ring R , where N = J(R[x])∩R is a nil ideal containing
the locally nilpotent radical L(R) of R .

53



JIANG et al./Turk J Math

Proposition 3.8 (1) If R is a weakly 2-primal ring, then R[x] is NJ.
(2) Let R be an Armendariz ring. If R is an NJ ring, then R[x] is also NJ.
(3) Let J(R) be a nil ideal. If R[x] is an NJ ring, then R is also NJ.

Proof (1) If R is a weakly 2-primal ring, then R[x] is also weakly 2-primal and N(R[x]) = N(R)[x] by
Theorem 3.1 and Corollary 2.3 of [24]. Hence, we have N(R[x]) = L(R[x]) ⊆ J(R[x]) = (J(R[x]) ∩ R)[x] ⊆
N∗(R)[x] = N(R)[x] = N(R[x]) by Lemma 3.7. Therefore, R[x] is NJ.

(2) Note that if R is an Armendariz ring, then we have J(R[x]) = N∗(R[x]) = N∗(R)[x] by Theorem
1.3 of [14] and N(R[x]) = N(R)[x] by Lemma 2.6 and Lemma 5.1 of [3]. Moreover, we can imply J(R[x]) =

N∗(R[x]) = N∗(R)[x] = N(R)[x] = N(R[x]) since R is NJ.
(3) Since R[x] is an NJ ring, R[x] is an NI ring. Thus, it implies that R is NJ by Proposition 2.4 (2) of

[12]. Therefore, R is NJ by Proposition 2.3. 2

Let α be an endomorphism of R . We denote by R[x;α] the skew polynomial ring whose elements are
the polynomials over R , the addition is defined as usual, and the multiplication is subject to the reaction
xr = α(r)x for any r ∈ R . According to Annin [2], a ring R is said to be α -compatible if for each a, b ∈ R ,
ab = 0 ⇔ aα(b) = 0 . The work in [18] called a ring R nil-semicommutative if for any a, b ∈ nil(R) , ab = 0

implies aRb = 0 . In [4], an automorphism α of R is said to be of locally finite order if for every r ∈ R there
exists integer n(r) ⩾ 1 such that αn(r)(r) = r .

Lemma 3.9 (1)( [4], Theorem 3.1) Let R be a ring and α an automorphism of R . Then J(R[x;α]) =

I ∩ J(R) + I0[x;α] , where I = {r ∈ R|rx ∈ J(R[x;α])} and I0[x;α] = {
n∑

i⩾1

rix
i|ri ∈ I, n ∈ N} .

(2)( [4], Corollary 3.3) If α is an automorphism of R of locally finite order and J(R) is locally nilpotent,
then J(R[x;α]) = J(R)[x;α] .

Theorem 3.10 (1) Let R be a ring and α an automorphism of R . If R is a weakly 2-primal α-compatible
ring, then R[x;α] is NJ.

(2) Let α be an automorphism of R of locally finite order and J(R) locally nilpotent. Then we have the
following:
(i) If R is a nil-semicommutative α-compatible NJ ring, then R[x;α] is NJ;
(ii) If R[x;α] is NJ, then R is also NJ.

Proof (1) Suppose that R is a weakly 2-primal α -compatible ring. By Theorem 3.1 and Corollary 2.1 of
[24], R[x;α] is a weakly 2-primal ring and N(R[x;α]) = N(R)[x;α] . Then we have N(R[x;α]) = L(R[x;α]) ⊆
J(R[x;α]) . According to Lemma 3.9 (1), J(R[x;α]) = I ∩ J(R) + I0[x;α] , where I = {r ∈ R|rx ∈ J(R[x;α])}

and I0[x;α] = {
n∑

i⩾1

rix
i|ri ∈ I, n ∈ N} , and in the following, we prove that J(R[x;α]) ⊆ N(R)[x;α] =

N(R[x;α]) . For any f(x) =
n∑

i=0

aix
i ∈ J(R[x;α]) , then a0 ∈ I ∩ J(R) and a1x+ a2x

2 + · · ·+ anx
n ∈ I0[x;α] .

Further, we can imply ai ∈ I for all i ⩾ 0 . For every i ⩾ 0 , we have aix ∈ J(R[x;α]) . There exists

gi(x) =
m∑
j=0

bijx
j ∈ R[x;α] such that aix + gi(x) + aixgi(x) = 0 . We can obtain the following equations:
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bi0 = 0 , ai + bi1 + aiα(bi0) = 0 , bi2 + aiα(bi1) = 0 , bi3 + aiα(bi2) = 0 , · · · , bim + aiα(bi(m − 1)) = 0 , and
aiα(bim) = 0 . Because bi0 = 0 , the equation ai + bi1 + aiα(bi0) = 0 can become bi1 = −ai . We plug this into
the equation bi2 + aiα(bi1) = 0 , and then it becomes bi2 = aiα(ai) . We also substitute it into the equation
bi3 + aiα(bi2) = 0 , and similarly, it implies bi3 = −aiα(ai)α

2(ai) . Continuing this progress, for the equation
bim + aiα(bi(m − 1)) = 0 , we have bim = (−1)maiα(ai)α

2(ai) · · ·αm−1(ai) . Then the equation aiα(bim) = 0

can become aiα(ai)α
2(ai) · · ·αm(ai) = 0 . Thus, am+1

i = 0 since R is α -compatible. Therefore, ai ∈ N(R)

and so f(x) ∈ N(R)[x;α] = N(R[x;α]) . We prove that J(R[x;α]) ⊆ N(R[x;α]) and R[x;α] is NJ.
(2)(i) By Lemma 3.9 (2) and Theorem 2.5 of [23], we have J(R[x;α]) = J(R)[x;α]

= N(R)[x;α] = N(R[x;α]) . Therefore, R[x;α] is NJ.
(ii) Clearly, J(R) ⊆ N(R) . For any a ∈ N(R) , then a ∈ N(R[x;α]) . Since N(R[x;α]) = J(R[x;α]) , we

have a ∈ J(R[x;α]) = J(R)[x;α] . Hence, N(R) ⊆ J(R) . Therefore, R is NJ. 2

Let δ be a derivation of R ; that is, δ is an additive map such that δ(ab) = δ(a)b+ aδ(b) , for a, b ∈ R .
We denote by R[x; δ] the differential polynomial ring whose elements are the polynomials over R , the addition
is defined as usual, and the multiplication is subject to the reaction xr = rx+ δ(r) for any r ∈ R . According
to Annin [2], R is called δ -compatible if for each a, b ∈ R , ab = 0 ⇒ aδ(b) = 0 . A ring is called locally finite
if every finite subset in it generates a finite semigroup multiplicatively. In [20], a ring R is δ -Armendariz if for

each f(x) =
n∑

i=0

aix
i , g(x) =

m∑
j=0

bjx
j ∈ R[x; δ] , f(x)g(x) = 0 implies aibj = 0 for each 0 ⩽ i ⩽ n , 0 ⩽ j ⩽ m .

Lemma 3.11 ([9], Theorem 3.2) Let R be a ring and δ a derivation of R . Then J(R[x; δ]) = (J(R[x; δ])∩
R)[x; δ] .

Theorem 3.12 Let R be a ring and δ a derivation of R . Then we have the following:
(1) If R is a weakly 2-primal δ -compatible ring, then R[x; δ] is NJ;
(2) If R is a locally finite δ -Armendariz ring, then R[x; δ] is NJ;
(3) If R is a δ -Armendariz NJ ring, then R[x; δ] is NJ.

Proof (1) Since R is a weakly 2-primal δ -compatible ring, by Theorem 3.1 and Corollary 2.1 of [24], R[x; δ] is
a weakly 2-primal ring and N(R[x; δ]) = N(R)[x; δ] . This implies that N(R[x; δ]) = L(R[x; δ]) ⊆ J(R[x; δ]) =

(J(R[x; δ]) ∩ R)[x; δ] by Lemma 3.11. Next we claim that if R is δ -compatible, then J(R[x; δ]) ∩ R is a

nil ideal. For any a ∈ J(R[x; δ]) ∩ R , then 1 − ax ∈ U(R[x; δ]) . There exists f(x) =
n∑

i=0

aix
i ∈ R[x; δ]

such that (1 − ax)f(x) = 1 . It implies the following equations: a0 − aδ(a0) = 1 , a1 − aa0 − aδ(a1) = 0 ,
a2−aa1−aδ(a2) = 0 , · · · , an−1−aan−2−aδ(an−1) = 0 , an−aan−1−aδ(an) = 0 , and aan = 0 . Since aan = 0

and R is δ -compatible, we get aδ(an) = 0 and so an = aan−1 . Hence, a2an−1 = aan = 0 and a2δ(an−1) = 0 .
Thus, aan−1 = a2an−2 and so a3an−2 = a2an−1 = 0 . Continuing this progress, we can obtain ana1 = 0 .
Moreover, since a1 − aa0 − aδ(a1) = 0 , we have an−1a1 = ana0 and an+1a0 = ana1 = 0 , so an+1δ(a0) = 0 .
Hence, ana0 = an and an+1 = an+1a0 = 0 . Therefore, a ∈ N(R) and J(R[x; δ])∩R is nil. Moreover, we have
N(R[x; δ]) = L(R[x; δ]) ⊆ J(R[x; δ]) = (J(R[x; δ]) ∩ R)[x; δ] ⊆ N∗(R)[x; δ] ⊆ N(R)[x; δ] = N(R[x; δ]) . Hence,
R[x; δ] is NJ.

(2) By Corollary 3.15 of [20], we have J(R[x; δ]) = N(R[x; δ]) . Hence, R[x; δ] is NJ.
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(3) Since R is a δ -Armendariz ring, by Corollary 3.4 of [20], we have J(R[x; δ]) = N∗(R[x; δ]) ⊆
N(R[x; δ]) . On the other hand, according to Proposition 2.9 of [20], N(R[x; δ]) ⊆ N(R)[x; δ] = N∗(R)[x; δ] =

N∗(R[x; δ]) = J(R[x; δ]) . Hence, R[x; δ] is NJ. 2

4. Topological conditions for NJ rings

In [12], a ring R is called weakly pm if every strongly prime ideal is contained in a unique maximal ideal in it.
They also showed that if R is an NI ring, then R is weakly pm if and only if SSpec(R) is a normal space if and
only if Max(R) is a retract of SSpec(R) , where SSpec(R) is the space of all strongly prime ideals of R and
Max(R) is the subspace of all maximal ideals of R . In this section, we will apply the topological methods of
Sun [22] and Hwang et al. [12] to analyze these conditions for NJ rings relating to the space of J-prime ideals
in place of SSpec(R) .

In [10], an ideal I of R is called J-prime if I is a prime ideal and I is an intersection of primitive ideals
(equivalently, J(R/I) = 0). Clearly, every maximal ideal is primitive and every primitive ideal is J-prime. We
write J -Spec(R) for the space of all J-prime ideals of R and denote the lattice of all ideals of R by Idl(R) . Let
A be a subset of a ring R . Define D(A) = {P ∈ J -Spec(R)|A ⊈ P} and S(A) = ∩{P ∈ J -Spec(R)|A ⊆ P} .
It is well known that the following hold.

Lemma 4.1 Let R be a ring and A be a subset of R .
(1) D(A) =

∪
a∈A

D(a) = D(S(A)) ;

(2)
∪
i∈Γ

D(Ai) = D(
∑
i∈Γ

Ai) , where Ai is a subset of R containing 0 for all i ∈ Γ ;

(3) D(I) ∩D(J) = D(I ∩ J) = D(IJ) for ideals I , J of R ;
(4) (J -Spec(R), {D(I)|I ◁ R}) is a topological space with a base {D(a)|a ∈ R} ;
(5) S(I)S(J) ⊆ S(IJ) = S(I) ∩ S(J) for ideals I , J of R .

Lemma 4.2 (1) If R is an NJ ring, then D(I) ∩D(J) = ∅ if and only if IJ ⊆ J(R) for ideals I , J in R ;
(2) If F is a closed set and D(K) is a open set in J -Spec(R) satisfying (F ∩Max(R)) ⊆ D(K) , then

F ⊆ D(K) .

Proof (1) Let D(I) ∩ D(J) = ∅ . By Lemma 4.1 (3), we have D(IJ) = ∅ . That is, for any P ∈ J -
Spec(R) , IJ ⊆ P . Thus, IJ ⊆ ∩{P |P ∈ J -Spec(R)} . Since every primitive ideal is J-prime, we can
get IJ ⊆ ∩{P |P ∈ J -Spec(R)} ⊆ ∩{I|I is a primitive ideal of R} = J(R) . Let IJ ⊆ J(R) . Since
every J-prime ideal is strongly prime and R is NJ, we have N∗(R) = ∩{P |P ∈ SSpec(R)} ⊆ ∩{P |P ∈ J -
Spec(R)} ⊆ J(R) = N(R) = N∗(R) and so J(R) = ∩{P |P ∈ J -Spec(R)} . For any P ∈ J -Spec(R) , we have
IJ ⊆ P . Thus, D(I) ∩D(J) = ∅ .

(2) Suppose that F ⊈ D(K) . Then there exists a J-prime ideal P ∈ J -Spec(R) such that P ∈ F , but
P /∈ D(K) and so K ⊆ P . Since F is a closed set in J -Spec(R) , we can find an ideal L of R such that
F = J -Spec(R)\D(L) . Therefore, P /∈ D(L) and so L ⊆ P . Moreover, K + L ⊆ P . For any maximal ideal
M containing P , we have K + L ⊆ M . Hence, K ⊆ M and L ⊆ M . Since every maximal ideal is primitive,
we can get M ∈ J -Spec(R) and M /∈ D(L) . Thus, M ∈ F ∩Max(R) ⊆ D(K) and so K ⊈ M , a contradic-
tion. 2
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Lemma 4.3 (1) J -Spec(R) is a compact space;
(2) If J -Spec(R) is a normal space, then Max(R) is a Hausdorff space;
(3) Let R be an NJ ring and J(R) = BM(R) . If Max(R) is a Hausdorff space, then J -Spec(R) is a

normal space, where BM(R) is the Brown–McCoy radical of R .

Proof (1) Let {Ui|i ∈ Ω} be a open cover of the topological space J -Spec(R) . Then we have J -Spec(R) =∪
i∈Ω

Ui . Hence, there exists a subset A of R such that
∪
i∈Ω

Ui =
∪

a∈A

D(a) . Take I = (A) = RAR . Next we claim

that
∪

a∈A

D(a) =
∪
b∈I

D(b) . For any P ∈
∪

a∈A

D(a) , then there exists a ∈ A such that P ∈ D(a) and so a /∈ P .

Thus, I ⊈ P by a ∈ I . Therefore, P ∈ D(I) =
∪
b∈I

D(b) and so
∪

a∈A

D(a) ⊆
∪
b∈I

D(b) . For any P ∈
∪
b∈I

D(b) , we

have a′ /∈ P for some a′ ∈ I . Assume that P /∈
∪

a∈A

D(a) . Then, for each a ∈ A , we have a ∈ P , a contradiction.

Therefore,
∪

a∈A

D(a) =
∪
b∈I

D(b) = D(I) . This implies that J -Spec(R) =
∪
i∈Ω

Ui =
∪

a∈A

D(a) =
∪
b∈I

D(b) = D(I) .

Hence, I = (A) = R . There exist n ∈ N , ri, si ∈ R , and ai ∈ A such that
n∑

i=1

riaisi = 1 . It implies that

(a1, a2, · · · , an) = R and so
n∪

i=1

D(ai) = D((a1, a2, · · · , an)) = D(R) = J -Spec(R) . For every 1 ⩽ i ⩽ n , we

take Ui ∈ {Ui|i ∈ Ω} such that Ui contains D(ai) . Then
n∪

i=1

Ui = J -Spec(R) . Therefore, J -Spec(R) is a

compact space.
(2) Let M1 , M2 ∈ Max(R) with M1 ̸= M2 . Then M1 , M2 ∈ J -Spec(R) and M1 /∈ D(M1) ,

M2 /∈ D(M2) . Hence, {M1} ⊆ J -Spec(R)\D(M1) and {M2} ⊆ J -Spec(R)\D(M2) . For any P ∈ J -
Spec(R)\D(M1) , we have M1 ⊆ P . Since M1 is a maximal ideal, we can obtain M1 = P and so P ∈ {M1} .
Thus, {M1} ⊆ J -Spec(R)\D(M1) . Similarly, we also have {M2} ⊆ J -Spec(R)\D(M2) . That is, {M1} and
{M2} are closed sets in J -Spec(R) . Because J -Spec(R) is a normal space, there exist open neighborhoods
D(I) and D(J) such that {M1} ⊆ D(I) , {M2} ⊆ D(J) , and D(I)∩D(J) = ∅ . Hence, M1 ∈ D(I)∩Max(R) ,
M2 ∈ D(J)∩Max(R) , and (D(I)∩Max(R))∩ (M2 ∈ D(J)∩Max(R)) = ∅ . Therefore, Max(R) is Hausdorff.

(3) Let F1 and F2 be closed sets in J -Spec(R) and F1∩F2 = ∅ . Then F1∩Max(R) and F2∩Max(R) are
closed sets in Max(R) and (F1∩Max(R))∩ (F2∩Max(R)) = ∅ . Since Max(R) is a compact Hausdorff space,
Max(R) is a normal space. There exist two open neighborhoods A , B in Max(R) such that F1∩Max(R) ⊆ A ,
F2 ∩Max(R) ⊆ B , and A ∩B = ∅ . For A and B , we can find ideals I and J such that A = D(I) ∩Max(R)

and B = D(J)∩Max(R) . At the same time, we also have ∅ = A∩B = (D(I)∩Max(R))∩(D(J)∩Max(R)) =

D(I) ∩ D(J) ∩ Max(R) = D(IJ) ∩ Max(R) . For any M ∈ Max(R) , it can imply IJ ⊆ M . Thus, IJ ⊆
BM(R) = J(R) . By Lemma 4.2 (1), we can obtain D(I)∩D(J) = ∅ . Since F1∩Max(R) ⊆ A = D(I)∩Max(R)

and F2∩Max(R) ⊆ B = D(J)∩Max(R) , we have F1∩Max(R) ⊆ D(I) and F2∩Max(R) ⊆ D(J) . Moreover,
F1 ⊆ D(I) and F2 ⊆ D(J) by Lemma 4.2 (2). Therefore, J -Spec(R) is normal. 2

According to Koh [13], a ring R is strongly harmonic provided that for each pair of distinct maximal
ideals M1 , M2 there are ideals I1 , I2 such that I1 ⊈ M1 , I2 ⊈ M2 , and I1I2 = 0 . Obviously, if R is a strongly
harmonic ring, then Max(R) is a Hausdorff space. Associated to Lemma 4.3 (2), we will prove the following
proposition.
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Proposition 4.4 If R is a strongly harmonic ring, then J -Spec(R) is a normal space.

Proof Let F1 and F2 be closed sets in J -Spec(R) with F1 ∩F2 = ∅ . Then F1 ∩Max(R) and F2 ∩Max(R)

are closed sets in Max(R) and (F1 ∩ Max(R)) ∩ (F2 ∩ Max(R)) = ∅ . Let M ∈ F1 ∩ Max(R) . Then
M /∈ F2 ∩ Max(R) . It is well known that every closed subset in a compact space is a compact subset. That
is, F1 ∩ Max(R) and F2 ∩ Max(R) are both compact subsets in Max(R) . According to Theorem 3.2 of
[13], we can find ideals IM and JM such that M ∈ D(IM ) , F2 ∩ Max(R) ⊆ D(JM ) , and IMJM = 0 .
Repeating the above procedure and by the compactness of F1 ∩Max(R) , we can find a finite number of ideals

I1, I2, · · · , In, J1, J2, · · · , Jn such that F1 ∩ Max(R) ⊆
n∪

i=1

D(Ii) = D(
n∑

i=1

Ii) , F2 ∩ Max(R) ⊆
n∩

i=1

D(Ji) =

D(J1J2 · · · Jn) , and IiJi = 0 . Taking I =
n∑

i=1

Ii and J = J1J2 · · · Jn , then IJ = 0 . By Lemma 4.2 (2), we

have F1 ⊆ D(I) , F2 ⊆ D(J) and D(I) ∩D(J) = D(IJ) = ∅ . Therefore, J -Spec(R) is normal. 2

In Sun’s work in [22], Idl(R) is normal if for each pair I1 , I2 ∈ Idl(R) with I1+ I2 = R , there are ideals
J1 , J2 such that I1 + J1 = R = I2 + J2 and J1J2 = 0 .

Proposition 4.5 Let R be an NJ ring. Then we have the following:
(1) J -Spec(R) is a normal space if and only if for each pair I1 , I2 ∈ Idl(R) with I1 + I2 = R , there

are ideals J1 , J2 such that I1 + J1 = R = I2 + J2 and S(J1)S(J2) ⊆ J(R) ;
(2) Idl(R) is normal, and then J -Spec(R) is a normal space.

Proof (1) For the sufficiency, let F1 and F2 be closed sets in J -Spec(R) with F1 ∩ F2 = ∅ . Then there
exist I1 , I2 ∈ Idl(R) such that F1 = J -Spec(R)\D(I1) and F2 = J -Spec(R)\D(I2) . Since F1 ∩ F2 = ∅ ,
we have D(I1) ∪ D(I2) = J -Spec(R) and so I1 + I2 = R . By the hypothesis, there are ideals J1 , J2 such
that I1 + J1 = R = I2 + J2 and J1J2 = 0 . Hence, J -Spec(R) = D(R) = D(I1 + J1) = D(I1) ∪ D(J1) and
J -Spec(R) = D(R) = D(I2 + J2) = D(I2) ∪ D(J2) . Moreover, we can get F1 ⊆ D(J1) , F2 ⊆ D(J2) and
D(S(J1)) = D(J1) , D(S(J2)) = D(J2) by Lemma 4.1 (1). This implies that D(J1) ∩ D(J2) = D(S(J1)) ∩
D(S(J2)) = D(S(J1)S(J2)) . Since S(J1)S(J2) ⊆ J(R) , we have D(J1) ∩ D(J2) = D(S(J1)S(J2)) = ∅ .
Therefore, J -Spec(R) is normal.

For the necessity, assume that I1 , I2 ∈ Idl(R) with I1+I2 = R . Let F1 = J -Spec(R)\D(I1) and F2 = J -
Spec(R)\D(I2) . Then F1 and F2 are closed sets in J -Spec(R) and D(I1)∪D(I2) = D(I1 + I2) = D(R) = J -
Spec(R) . Hence, F1 ∩ F2 = J -Spec(R)\(D(I1) ∪ D(I2)) = ∅ . Since J -Spec(R) is normal, there exist J1 ,
J2 ∈ Idl(R) such that F1 ⊆ D(J1) , F2 ⊆ D(J2) , and D(J1)∩D(J2) = ∅ . Because J -Spec(R) = F1 ∪D(I1) ⊆
D(J1)∪D(I1) = D(J1+ I1) ⊆ J -Spec(R) , we have D(J1+ I1) = J -Spec(R) and so J1+ I1 = R . Similarly, we
also conclude J2+I2 = R . R is NJ and D(J1)∩D(J2) = ∅ , so, by Lemma 4.2 (1), we can obtain J1J2 ⊆ J(R) .
On the other hand, if R is NJ, we have J(R) = {P |P ∈ J -Spec(R)} . Hence, S(J1)S(J2) ⊆ S(J1J2) ⊆ J(R)

by Lemma 4.1 (5).
(2) Let Idl(R) be normal. Then for each pair I1 , I2 ∈ Idl(R) with I1 + I2 = R , there are ideals J1 ,

J2 such that I1 + J1 = R = I2 + J2 and J1J2 = 0 . Hence, S(J1)S(J2) ⊆ S(J1J2) = S(0) = {P |P ∈
J -Spec(R)} = J(R) by Lemma 4.1 (5). Therefore, according to (1), we can prove that J -Spec(R) is
normal. 2

In [22], a ring R is called pm if every prime ideal is contained in a unique maximal ideal in it. Hwang et
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al. in [12] extended to weakly pm. In this section, we call a ring R J-pm if every J-prime ideal is contained in
a unique maximal ideal in it. Clearly, every pm ring is weakly pm and every weakly pm is J-pm.

Proposition 4.6 If Max(R) is a retract of J -Spec(R) , then R is J-pm.

Proof For any P ∈ J -Spec(R) , let µ : J -Spec(R) → Max(R) be a continuous retraction with µ(P ) = M .
From the proof of Lemma 4.3 (2), we can obtain that {M} is a closed set in Max(R) , so µ−1({M}) is also
a closed set in J -Spec(R) . By Observation 1.4 of [22], the closed set µ−1({M}) contains the closure of {P} ,
and so any maximal ideal M ′ containing P . Moreover, we have M ′ = µ(M ′) = M . Therefore, R is J-pm. 2

Lemma 4.7 Let R be an NJ ring and X be a multiplicative monoid in R\0 . Suppose that P ⊆ J(R) is an
ideal of R maximal with respect to the property P ∩X = ∅ . Then P is J-prime.

Proof Let A , B be ideals of R with AB ⊆ P . Since P ∩X = ∅ , we have AB ∩X = ∅ . Assume that there
exist x ∈ A∩X and y ∈ B∩X . Then we can get xy ∈ AB∩X , a contradiction. Therefore, P is a prime ideal.
Since R is NJ and P ⊆ J(R) , we have J(R/P ) = N(R/P ) = N∗(R/P ) by Proposition 2.12 (2). According to
Lemma 2.2 of [12], we can obtain J(R/P ) = 0 . Thus, P is J-prime. 2

Proposition 4.8 If R is a NJ J-pm ring, then Max(R) is a Hausdorff space.

Proof We apply the proof of ([12], Lemma 3.4) and ([22], Lemma 2.1). Let M1 , M2 ∈ Max(R) with M1 ̸= M2 .
Consider the multiplicative subset S = {a1b1a2b2 · · · anbn|ai ∈ M1, bi ∈ M2, i = 1, 2, · · · , n, n ∈ N} . If
0 /∈ S , then there would be a J-prime ideal P ⊆ J(R) such that P ∩ S = ∅ by Lemma 4.7. It implies
P ⊆ M1 and P ⊆ M2 , which is a contradiction because R is J-pm. Therefore, 0 ∈ S and there are
ai ∈ M1 , bi ∈ M2 , and n ∈ N such that a1b1a2b2 · · · anbn = 0 . Then there are ci , di ∈ R such that
x1 = a1c1 · · · an−1cn−1an /∈ M1 and x2 = b1d1 · · · bn−1dn−1bn /∈ M2 . Otherwise, we have a1b1 · · · an−1bn−1an ∈
M1 and so (a1b1 · · · an−1bn−1an)bn /∈ S , a contradiction. Since R is NJ, R/J(R) is reduced. In R/J(R) ,
we have a1b1a2b2 · · · anbn = 0̄ . For any r ∈ R , we can imply a1b1a2b2 · · · anbnc1c2 · · · cn−1d1d2 · · · dn−1 = 0̄

and so x1rx2 = 0̄ . Thus, x1Rx2 ⊆ J(R) . In an NJ ring, J(R) = ∩{P |P ∈ J -Spec(R)} . That is, for any
P ∈ J -Spec(R) , we have x1Rx2 ⊆ P . Assume that D(x1)∩D(x2) ̸= ∅ . Then we can find P ∈ D(x1)∩D(x2)

and so x1 /∈ P , x2 /∈ P . It implies x1Rx2 ⊈ P because P is a prime ideal, a contraction. This proves that
D(x1) ∩D(x2) = ∅ . On the other hand, since x1 ∈ M1 and x2 ∈ M2 , we have M1 ∈ D(x1) and M2 ∈ D(x2) .
Therefore, Max(R) is Hausdorff. 2

Theorem 4.9 Let R be an NJ ring. Then the following are equivalent:
(1) J -Spec(R) is a normal space;
(2) Max(R) is a retract of J -Specc(R) and Max(R) is a Hausdorff space.

Proof (1) ⇒ (2) If J -Spec(R) is a normal space, then Max(R) is a Hausdorff space by Lemma 4.3 (2). Next
we only prove that Max(R) is a retract of J -Spec(R) . For any P ∈ J -Spec(R) , we let FP = {I◁R|I+P = R} .
In the proof of Theorem 1.6 of [22], we know that FP has the following properties:

(i) if I1 + I2 ∈ Fp , then either I1 ∈ Fp or I2 ∈ FP ;
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(ii) if I ∈ FP , and I ⊆ J , then J ∈ FP . Meanwhile, for each I ◁R , we define MP =
∑

{I ◁ |I /∈ FP } . If
1 ∈ MP , then we have

∑
{I ◁ |I /∈ FP } = R and so P +

∑
{I ◁ |I /∈ FP } = R . This implies

∑
{I ◁ |I /∈ FP } ∈ FP

and so J ∈ FP for each J ∈ {I ◁ R|I /∈ FP } , a contradiction. Thus, 1 /∈ MP . On the other hand, if P ∈ FP ,
then we have P + P = R and so P = R , a contradiction. Hence, P /∈ FP and P ⊆ MP . Assume that MP

is not a maximal ideal. There exists M ∈ Max(R) with M ̸= R such that MP ⫋ M and so M ⊈ MP .
Then M ∈ FP and so M + P = R , which implies M = M +MP ⊇ M + P = R , a contradiction. Therefore,
MP is a maximal ideal. Now we define a map µ : J -Spec(R) → Max(R) with µ(P ) = MP for each P ∈ J -
Spec(R) . Obviously, when P ∈ Max(R) , P ⊆ MP ; on the other hand, for any I ◁ R with I /∈ FP , then
I + P ̸= R . Since P ⊆ I + P and so I ⊆ P , therefore, MP ⊆ P . That is, if P ∈ Max(R) , then P = MP .
Moreover, µ is extended from 1Max(R) : Max(R) → Max(R) . Next we prove that µ is a continuous map. For
any I ◁ R , D(I) ∩ Max(R) is a open set in Max(R) . We will claim that µ−1(D(I) ∩ Max(R)) = {P ∈ J -
Spec(R)|µ(P ) ∈ D(I) ∩Max(R)} is an open set in J -Spec(R) . For each P ∈ µ−1(D(I) ∩Max(R)) , we have
µ(P ) ∈ D(I) ∩ Max(R) . That is, µ(P ) ∈ D(I) and µ(P ) ∈ Max(R) . This implies I ⊈ µ(P ) = MP and
I ∈ FP , so we have I + P = R . By Lemma 4.5 (1), there exist ideals J1 , J2 such that I + J1 = R = P + J2

and S(J1)S(J2) ⊆ J(R) . Since R = P + J2 , we can obtain J2 ⊈ P and so P ∈ D(J2) . It can imply
µ−1(D(I) ∩ Max(R)) ⊆ D(J2) . For the converse inclusion, if P ′ ∈ D(J2) , then J2 ⊈ P ′ and so S(J2) ⊈ P ′

by J2 ⊆ S(J2) . Since S(J1)S(J2) ⊆ J(R) ⊆ P ′ and P ′ is a prime ideal, we have S(J1) ⊆ P ′ and so J1 ⊆ P ′ .
Hence, we get I + P ′ = R by I + J1 = R . Thus, I ∈ FP ′ and I ⊈ µ(P ′) = MP ′ . Therefore, we can obtain
MP ′ = µ(P ′) ∈ D(I) ∩Max(R) and so P ′ ∈ µ−1(D(I) ∩Max(R)) . That is, µ−1(D(I) ∩Max(R)) = D(J2)

and so µ−1(D(I) ∩Max(R)) is a open set.
(2) ⇒ (1) Let µ : J -Spec(R) → Max(R) be a continuous retraction by the hypothesis. Suppose that

F1 and F2 are closed sets in J -Spec(R) with F1 ∩ F2 = ∅ . Then F1 ∩ Max(R) and F2 ∩ Max(R) are
closed sets in Max(R) and (F1 ∩ Max(R)) ∩ (F2 ∩ Max(R)) = ∅ . Since every compact Hausdorff space is
normal, there are I , J ◁ R such that F1 ∩Max(R) ⊆ D(I) ∩Max(R) , F2 ∩Max(R) ⊆ D(J) ∩Max(R) and
(D(I) ∩Max(R)) ∩ (D(J) ∩Max(R)) = ∅ . Because µ is continuous, µ−1(D(I) ∩Max(R)) and µ−1(D(J) ∩
Max(R)) are open sets in J -Spec(R) . Assume that µ−1(D(I) ∩Max(R)) ∩ µ−1(D(J) ∩Max(R)) ̸= ∅ . Then
there exists P ∈ µ−1(D(I) ∩ Max(R)) ∩ µ−1(D(J) ∩ Max(R)) and so µ(P ) ∈ D(I) ∩ D(J) ∩ Max(R) , a
contradiction. Therefore, µ−1(D(I) ∩Max(R)) ∩ µ−1(D(J) ∩Max(R)) = ∅ . By Observation 1.4 of [22] and
F1 ∩Max(R) ⊆ D(I)∩Max(R) , we have F1 = µ−1(F1 ∩Max(R)) ⊆ µ−1(D(I)∩Max(R)) . Similarly, we also
have F2 ⊆ µ−1(D(J) ∩Max(R)) . Therefore, J -Spec(R) is normal. 2

Theorem 4.10 Let R be an NJ ring. Then the following are equivalent:
(1) R is J-pm;
(2) J -Spec(R) is a normal space;
(3) Max(R) is a retract of J -Spec(R) .

Proof (3) ⇒ (1) and (2) ⇒ (3) are proved by Proposition 4.6 and Theorem 4.9, respectively.
(1) ⇒ (2) If R is an NJ J-pm ring, then Max(R) is a Hausdorff space by Proposition 4.8. According to

Theorem 4.9, we only prove that Max(R) is a retract of J -Spec(R) . Since R is J-pm, we can obtain a retraction
µ : J -Spec(R) → Max(R) by sending each J-prime ideal to the unique maximal ideal containing it. We only
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prove that µ is continuous by showing that µ−1(F) is closed in J -Spec(R) for a closed set F of Max(R) . In
the following, we apply the proof of ([22], Theorem 2.2). Let B =

∪
{M |M ∈ F} , F =

∩
{M |M ∈ F} , and

I =
∩
{P ∈ J -Spec(R)|µ(P ) ∈ F} . We will claim that µ−1(F) = J -Spec(R)\D(I) . For each P ∈ µ−1(F) , then

µ(P ) ∈ F and so I ⊆ P . Hence, we have P ∈ J -Spec(R)\D(I) . Therefore, µ−1(F) ⊆ J -Spec(R)\D(I) .
If Q ∈ J -Spec(R) with Q ⊆ B , then clearly Q + F ⊆ B and so there exists a maximal ideal M with

Q + F ⊆ M . Since F ⊆ M and F is a closed set, we have M ∈ F . Because R is J-pm, M is the unique
maximal ideal containing Q .

For each P ∈ J -Spec(R)\D(I) , then we have I ⊆ P . Considering the multiplicative monoid X =

{s1t1s2t2 · · · sntn|si /∈ B, ti /∈ P, i − 1, 2, · · · , n, n ∈ N} in Theorem 3.7 of [12]. Similarly, we also can prove
that 0 /∈ X . Then there exists a J-prime ideal Q ⊆ J(R) such that Q ∩X = ∅ by Lemma 4.7. Hence, we can
obtain Q ⊆ P ∩B and so µ(P ) ∈ F . 2
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