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Abstract: S. Ramanujan recorded several modular equations and P -Q theta function identities in his notebooks and
lost notebook without recording the proofs. In this paper, we provide an elementary proof of two modular equations
and two P -Q theta function identities of level 35, which have been proved by B.C. Berndt using the theory of modular
forms.
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1. Introduction
The Gauss series or the ordinary hypergeometric series 2F1 [a, b; c; z] [16–18, 21, 26, 27] is defined by

2F1 [a, b; c; z] = 1 +
ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!
+ · · · .

It is well known that the Gauss hypergeometric function 2F1 [a, b; c; z] has many important applications
in mathematics, physics, and engineering and many special functions are the particular cases or limiting values
of the Gauss hypergeometric function. For example, the perimeter of an ellipse with semi-axes a and b and

eccentricity e =
√
a2−b2

a can be expressed by 4a2F1

[
− 1

2 ,
1
2 ; 1; e

2
]
; the conformal modulus µ(r) [10, 22, 23] of

the Grötzsch ring in the plane can be given by

µ(r) =
π

2

2F1

[
1
2 ,

1
2 ; 1; 1− r2

]
2F1

[
1
2 ,

1
2 ; 1; r

2
] ,

which plays a very important role in the conformal and quasi-conformal mapping theory. The classical complete
elliptic integrals K(r) and E(r) [5–9, 19, 20, 24, 25] of the first and second kinds are given by

K(r) =
π

2
2F1

[
1

2
,
1

2
; 1; r2

]
and

E(r) = π

2
2F1

[
−1

2
,
1

2
; 1; r2

]
.
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Let

K(α) = 2F1

[
1

2
,
1

2
; 1;α

]
and

K ′(α) = 2F1

[
1

2
,
1

2
; 1; 1− α

]
.

Suppose that

k
K ′(α)

K(α)
=
K ′(β)

K(β)
, l

K ′(α)

K(α)
=
K ′(γ)

K(γ)
and kl

K ′(α)

K(α)
=
K ′(δ)

K(δ)
(1.1)

holds for some positive integers k and l . The relation between α , β , γ , and δ induced by the above is called
a modular equation of composite degree kl or modular equation of level kl . Also, the relation between α and
β induced by (1.1) is called a modular equation of degree k . We define the multipliers m and m′ by

m =
K ′(α)

K(β)
and m′ =

K ′(γ)

K(δ)
.

On pages 249 and 250 of his second notebook [12], Ramanujan recorded seven modular equations of composite
degree 35. Berndt in [2, pp. 423–425] proved two of these modular equations using theta function identities
and the other five by using the theory of modular forms. Recently Vasuki and Sharath [14] proved three of
the above mentioned five modular equation of Ramanujan by employing the tools known to Ramanujan, which
had been proved by Berndt by using the theory of modular forms. In Section 4 of this paper, we provide an
elementary proof of two modular equations that were not considered in [14].

For any complex number a and q ,

(a; q)∞ =

∞∏
n=0

(1− aqn), |q| < 1.

On page 197 of his second notebook [12], Ramanujan defined his general theta function:

f(a, b) =

∞∑
n=−∞

an(n+1)/2 bn(n−1)/2 = (−a; ab)∞(−b; ab)∞(ab; ab)∞, |ab| < 1.

Furthermore, he also defined three special cases of f(a, b) , namely

φ(q) = f(q, q) =

∞∑
n=−∞

qn
2

= (−q; q2)2∞(q2; q2)∞,

ψ(q) = f(q, q3) =

∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

,

f(−q) = f(−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2 = (q; q)∞ .
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Besides φ(q) , ψ(q) , f(−q) he further defined

χ(q) = (−q; q2)∞ ,

which is not a theta function but plays a prominent role in the theory of theta functions. For convenience
throughout the paper we set

f(−qn) = fn.

One can easily show that

φ(−q) = f1
2

f2
and χ(−q) = f1

f2
. (1.2)

Let P (q) and Q(q) be the product or quotient of theta functions f1 , fk , fl , and fkl . Then we call the relation
between P (q) and Q(q) the P -Q theta function identity of level kl .

Ramanujan recorded twenty-three such P -Q theta function identities in his second notebook [12]. Berndt
proved eighteen of them by employing the theory of theta functions in the spirit of Ramanujan, whereas for
the remaining five he used the theory of modular forms. In Section 3 of this paper we give a proof of two P -Q
theta function identities of level 35, one of which is from those five mentioned above and the other one is from
his lost notebook [13]. The proofs are worth noting as we give proofs free of the theory of modular forms and
by using theory known to Ramanujan.

2. Preliminary results
In this section, we recall some important results that will be used to prove our main results.

Theorem 2.1 We have:
(i) [15], [2, p. 315]

If M =
f1

q1/24f2
and N =

f7
q7/24f14

, then

(MN)
3
+

8

(MN)
3 + 7 =

(
N

M

)4

+

(
M

N

)4

.

(2.1)

(ii) [3, p. 209]

If M =
f1

q1/4f7
and N =

f2
q1/2f14

, then

(MN)
2
+

72

(MN)
2 =

(
N

M

)6

− 8

(
N

M

)2

− 8

(
M

N

)2

+

(
M

N

)6

.

(2.2)

(iii) [3, p. 206]

If M =
f1

q1/6f5
and N =

f2
q1/3f10

, then

MN +
5

MN
=

(
N

M

)3

+

(
M

N

)3

.

(2.3)
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Ramanujan recorded identity (2.1) in the form of a modular equation in Entry 19(ix) [2] and Berndt gave a
proof of the same using parametrization. For a proof of (2.2) and (2.3), one may refer to [3].

Theorem 2.2 Let α , β , γ , and δ have degrees 1, 5, 7, and 35, respectively. Then

Q4 +
1

Q4
−
{
Q2 +

1

Q2

}
− 2

{
P 2 +

1

P 2

}
= 0, (2.4)

R4 +
1

R4
−
{
Q6 +

1

Q6

}
+ 5

{
Q4 +

1

Q4

}
− 10

{
Q2 +

1

Q2

}
+ 15 = 0, (2.5)

and

T 6 +
1

T 6
+Q6 +

1

Q6
= 4

{
P 4 +

1

P 4
−R4 − 1

R4

}
, (2.6)

where

P = {256αβγδ(1− α)(1− β)(1− γ)(1− δ)}1/48,

Q =

{
αδ(1− α)(1− δ)

βγ(1− β)(1− γ)

}1/48

,

R =

{
γδ(1− γ)(1− δ)

αβ(1− α)(1− β)

}1/48

,

and T =

{
βδ(1− β)(1− δ)

αγ(1− α)(1− γ)

}1/48

.

(2.7)

Ramanujan recorded elven Schläfli-type modular equations for composite degrees on pages 86 and 88 of his first
notebook [11]. In [4] Berndt proved all the eleven modular equations, one equation by using tools known to
Ramanujan and the remaining ten by using the theory of modular forms. Baruah in [1] gave elementary proofs
for seven of the ten equations mentioned above. Identities (2.4) and (2.5) are two among them and identity
(2.6) is due to Baruah [1]. For the remaining sections we shall use the following notations:

u =
qf1f35
f5f7

, v =
q4/3f5f35
f1f7

, w =
q3/2f7f35
f1f5

,

u1 =
q2f2f70
f10f14

, v1 =
q8/3f10f70
f2f14

, and w1 =
q3f14f70
f2f10

.

3. P -Q theta function identities

Theorem 3.1 [3, p. 236], [12, p. 303] We have

1

w2
+ 49w2 − 5 =

1

u3
− u3 − 5

(
1

u2
+ u2

)
. (3.1)
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Proof Let
u

u1
+
u1
u

= t. (3.2)

From identity (2.1) of [14], we have

1

uu1
+ uu1 =

(u1
u

)3

+

(
u

u1

)3

+ 4

{(u1
u

)2

+

(
u

u1

)2
}

+ 8

{
u1
u

+
u

u1

}
+12 .

Making use of (3.2) in the above identity, we obtain

1

uu1
+ uu1 = t3 + 4t2 + 5t+ 4, (3.3)

which imples
1

uu1
− uu1 = (t+ 1)

√
(t+ 3) (t+ 2) (t2 + t+ 2) , (3.4)

1

(uu1)
3/2

+ (uu1)
3/2

=
(
t3 + 4t2 + 5t+ 3

)√
(t+ 3) (t2 + t+ 2), (3.5)

and
1

(uu1)
3/2

− (uu1)
3/2

=
(
t3 + 4t2 + 5t+ 5

)
(t+ 1)

√
t+ 2 . (3.6)

We have considered positive sign for (3.4) and (3.6), as 1
uu1

> uu1 , which follows from their series expansion

1

uu1
= q−3 + q−2 + 3q−1 + 4 + 7q + 8q2 + 12q3 + 12q4 + · · · ,

uu1 = q3 − q4 − 2q5 + q6 + q7 + 3q8 − 2q9 − 2q10 + · · · .

Similarly, from (3.2) we have
u

u1
− u1

u
=

√
t2 − 4 , (3.7)

(
u

u1

)3/2

+
(u1
u

)3/2

= (t− 1)
√
t+ 2, (3.8)

and (
u

u1

)3/2

−
(u1
u

)3/2

= (t+ 1)
√
t− 2 . (3.9)

We have considered positive sign for (3.7) and (3.9), as u
u1

> u1

u , which follows from their series expansion

u

u1
= q−1 − 1 + q2 + 2q3 − 2q5 + q6 + 2q8 − 3q9 + · · · ,

u1
u

= q + q2 + q3 + 2q4 − q6 − q7 − 4q8 − 5q9 + · · · .
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On multiplying identity (3.5) with (3.9), we obtain

u3 − 1

u3
− u1

3 +
1

u13
=

(
t3 + 4t2 + 5t+ 3

)
(t+ 1)

√
(t+ 3) (t− 2) (t2 + t+ 2) . (3.10)

On multiplying identity (3.6) with (3.8), we obtain

−u3 + 1

u3
− u1

3 +
1

u13
=

(
t3 + 4t2 + 5t+ 5

)
(t+ 1) (t− 1) (t+ 2) . (3.11)

Subtracting identity (3.10) from (3.11), we obtain

1

u3
− u3 =

1

2

{(
t3 + 4t2 + 5t+ 5

)
(t+ 1) (t− 1) (t+ 2)

−
(
t3 + 4t2 + 5t+ 3

)
(t+ 1)

√
(t+ 3) (t− 2) (t2 + t+ 2)

}
.

(3.12)

On multiplying identity (3.2) with identity (3.3), we find

u2 +
1

u2
+ u1

2 +
1

u12
= t

(
t3 + 4t2 + 5t+ 4

)
. (3.13)

On multiplying identity (3.4) with identity (3.7), we find

−u2 − 1

u2
+ u1

2 +
1

u12
= (t+ 1) (t+ 2)

√
(t+ 3) (t− 2) (t2 + t+ 2) . (3.14)

Subtracting (3.14) from (3.13), we obtain

u2 +
1

u2
=

1

2

{
t
(
t3 + 4t2 + 5t+ 4

)
− (t+ 1) (t+ 2)

√
(t+ 3) (t− 2) (t2 + t+ 2)

}
. (3.15)

Making use of identities (3.12) and (3.15), we deduce

1

u3
− u3 − 5

( 1

u2
+ u2

)
=
1

2

{(
t3 + 3t+ 1

) (
t4 + 3t3 − 3t2 − 5t− 10

)
− (t+ 1)

(
t3 + 4t2 − 7

)√
(t+ 3) (t− 2) (t2 + t+ 2)

}
.

(3.16)

Let

X =
f1

q1/24f2
, X1 =

f5
q5/24f10

, Y =
f7

q7/24f14
, and Y1 =

f35
q35/24f70

.

Multiplying identity (2.1) with the identity obtained replacing q by q5 in (2.1) and then using (3.2) in it, we
deduce (w1

w

)4

+

(
w

w1

)4

=

{
(XY )

3
+

8

(XY )
3

}{
(X1Y1)

3
+

8

(X1Y1)
3

}

+ 7

{
(XY )

3
+

8

(XY )
3 + (X1Y1)

3
+

8

(X1Y1)
3

}
+ 51−

(
t2 − 2

)2
.

(3.17)
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From identity (2.4) we have

XYX1Y1 +
4

XYX1Y1
=

(
u

u1

)2

+
(u1
u

)2

+
u

u1
+
u1
u
.

Making use of (3.2) the above identity reduces to

XYX1Y1 +
4

XYX1Y1
= t2 + t− 2, ;

this implies

(XYX1Y1)
3/2

+
8

(XYX1Y1)
3/2

=
(
t2 + t− 4

)√
t2 + t+ 2 (3.18)

and

(XYX1Y1)
3/2 − 8

(XYX1Y1)
3/2

=
(
t2 + t

)√
t2 + t− 6 . (3.19)

We have considered the positive sign above as XYX1Y1 > 1
XYX1Y1

, which follows from their series
expression

XXX1Y1 = q−2 − q−1 + 2q2 − 2q3 + 2q4 − 3q5 + 3q6 + · · · ,

1

XYX1Y1
= q2 + q3 + q4 + 2q5 + q7 + q8 + q10 − q11 + · · · .

Using modular equations (2.4) and (2.5) in (2.6) we deduce the modular equation relating T and Q , where T
and Q are as in (2.7). Transforming the obtained modular equation into theta functions, we deduce that(

X1Y1
XY

)3

+

(
XY

X1Y1

)3

= t4 + 7t3 + 17t2 + 21t+ 16;

this implies (
X1Y1
XY

)3/2

+

(
XY

X1Y1

)3/2

= (t+ 3)
√
t2 + t+ 2 (3.20)

and (
X1Y1
XY

)3/2

−
(
XY

X1Y1

)3/2

=
√
t4 + 7t3 + 17t2 + 21t+ 14 . (3.21)

We have considered the positive sign above as X1Y1

XY > XY
X1Y1

, which follows from their series expansion

X1Y1
XY

= q−4/3 + q−1/3 + q2/3 + 2q5/3 − q11/3 − q14/3 − 2q17/3 + · · · ,

XY

X1Y1
= q4/3 − q7/3 − q13/3 + 2q16/3 − 3q25/3 + q28/3 + q31/3 + · · · .

69



VASUKI and THIPPESHA/Turk J Math

Multiplying identity (3.18) with (3.20) results in

(XY )
3
+

8

(XY )
3 + (X1Y1)

3
+

8

(X1Y1)
3 = (t+ 3)

(
t2 + t− 4

) (
t2 + t+ 2

)
.

Multiplying identity (3.19) with (3.21) results in

− (XY )
3 − 8

(XY )
3+(X1Y1)

3
+

8

(X1Y1)
3

=
(
t2 + t

)√
(t4 + 7t3 + 17t2 + 21t+ 14) (t2 + t− 6) .

From the above two identities, we deduce the following:

(XY )
3
+

8

(XY )
3 =

1

2

{
(t+ 3)

(
t2 + t− 4

) (
t2 + t+ 2

)
−
(
t2 + t

)√
(t4 + 7t3 + 17t2 + 21t+ 14) (t2 + t− 6)

} (3.22)

and

(X1Y1)
3
+

8

(X1Y1)
3 =

1

2

{
(t+ 3)

(
t2 + t− 4

) (
t2 + t+ 2

)
+
(
t2 + t

)√
(t4 + 7t3 + 17t2 + 21t+ 14) (t2 + t− 6)

}. (3.23)

Substituting (3.22) and (3.23) in (3.17) results in(
w

w1

)4

+
(w1

w

)4

= t6 + 10t5 + 39t4 + 80t3 + 99t2 + 70t+ 23.

This implies
w

w1
+
w1

w
=

√
t3 + 5t2 + 7t+ 7 (3.24)

and
w

w1
− w1

w
= (t+ 1)

√
t+ 3. (3.25)

We have considered the positive sign above as w
w1

> w1

w , which follows from their series expansion

w

w1
= q−3/2 + q−1/2 + q1/2 + 2q3/2 + 2q7/2 + q9/2 − 2q11/2 + · · · ,

w1

w
= q3/2 − q5/2 − q9/2 + 2q11/2 − 2q13/2 + 2q15/2 − q17/2 + · · · .

Multiplying identity (2.2) with the identity obtained replacing q by q5 in (2.2) and then using (3.2) in it, we
deduce

1

ww1
+ 72ww1 = t

(
t2 + t− 5

)√
t3 + 5t2 + 7t+ 7. (3.26)
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This implies

1

ww1
− 72ww1 =

(
t3 + 4t2 − 7

)√
(t− 2) (t2 + t+ 2) . (3.27)

Multiplying identity (3.24) with (3.26) yields

1

w2
+ 72w2 +

1

w1
2
+ 72w1

2 = t
(
t2 + t− 5

) (
t3 + 5t2 + 7t+ 7

)
. (3.28)

Similarly, multiplication of identity (3.25) with (3.27) yields

− 1

w2
− 72w2 − 1

w1
2
+ 72w1

2 = (t+ 1)
(
t3 + 4t2 − 7

)√
(t+ 3) (t− 2) (t2 + t+ 2) . (3.29)

Subtracting identity (3.29) from (3.28) and then subtracting 5 on both sides of the resulting identity yields

1

w2
+ 49w2 − 5 =

1

2

{(
t3 + 3t+ 1

) (
t4 + 3t3 − 3t2 − 5t− 10

)
− (t+ 1)

(
t3 + 4t2 − 7

)√
(t+ 3) (t− 2) (t2 + t+ 2)

}
.

(3.30)

From (3.16) and (3.30) we obtain the required result. 2

Theorem 3.2 [13, p. 55] We have

1

v3
+ 125v3 =

{
1

u4
− u4

}
−

{
1

u3
+ u3

}
+ 7

{
1

u2
− u2

}
+ 14

{
1

u
+ u

}
. (3.31)

Proof Multiplying identity (2.3) with the identity obtained replacing q by q7 in (2.3) and then using (3.2)
in it, we deduce

1

vv1
+ 25 vv1 = −4t3 − 20t2 − 28t− 20 +

(v1
v

)3

+

(
v

v1

)3

. (3.32)

Using modular equations (2.4) and (2.5) in (2.6) we deduce the modular equation relating T and Q , where T
and Q are as in (2.7). Transforming the obtained modular equation into theta functions, we deduce that(v1

v

)3

+

(
v

v1

)3

= t4 + 7t3 + 17t2 + 21t+ 16 . (3.33)

Substituting (3.33) in (3.32), we get

1

vv1
+ 25 vv1 = t4 + 3t3 − 3t2 − 7t− 4 .

This implies

1

(vv1)
3/2

+ 125 (vv1)
3/2

= (t− 1)
(
t4 + 3t3 − 3t2 − 7t− 9

)√
(t+ 3) (t+ 2) (3.34)
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and
1

(vv1)
3/2

− 125 (vv1)
3/2

=
(
t4 + 3t3 − 3t2 − 7t+ 1

)√
(t− 2) (t3 + 5t2 + 7t+ 7) . (3.35)

We have considered the positive sign above as 1
vv1

> vv1 , which follows from their series expression

1

vv1
= q−4 − q−3 − 2q−2 + q−1 + 1 + 3q − 2q2 − 4q3 + · · · ,

vv1 = q4 + q5 + 3q6 + 4q7 + 7q8 + 8q9 + 14q10 + q11 + · · · .

Identity (3.33) implies (
v

v1

)3/2

+
(v1
v

)3/2

= (t+ 3)
√
t2 + t+ 2 (3.36)

and (
v

v1

)3/2

−
(v1
v

)3/2

=
√
(t+ 2) (t3 + 5t2 + 7t+ 7) . (3.37)

We have considered the positive sign above as v
v1

> v1

v , which follows from their series expansion
v

v1
= q−4/3 + q−1/3 + q2/3 + 2q5/3 − q11/3 − q14/3 − 2q17/3 + · · · ,

v1
v

= q4/3 − q7/3 − q13/3 + 2q16/3 − 3q25/3 + q28/3 + q31/3 · · · .

Subtracting the identity obtained multiplying (3.35) with (3.37) from the identity obtained by multiplying (3.34)
with (3.36) yields

1

v3
+ 125v3 =

1

2

{
(t+ 3) (t− 1)

(
t4 + 3t3 − 3t2 − 7t− 9

)√
(t+ 2) (t+ 3) (t2 + t+ 2)

−
(
t4 + 3t3 − 3t2 − 7t+ 1

) (
t3 + 5t2 + 7t+ 7

)√
t2 − 4

}
.

(3.38)

Identity (3.2) implies (
u

u1

)1/2

+
(u1
u

)1/2

=
√
t+ 2 (3.39)

and (
u

u1

)1/2

−
(u1
u

)1/2

=
√
t− 2 . (3.40)

We have considered the positive sign above, as u
u1

> u1

u , which follows from their series expansion as explained
in (3.7).
Identity (3.3) implies

1

(uu1)
1/2

+ (uu1)
1/2

=
√
(t+ 3)(t2 + t+ 2) (3.41)
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and

1

(uu1)
1/2

− (uu1)
1/2

= (t+ 1)
√
t+ 2 . (3.42)

We have considered the positive sign above as 1
uu1

> uu1 , which follows from their series expansion as explained
in (3.4). Subtracting the identity obtained by multiplying (3.40) with (3.42) from the identity obtained by
multiplying (3.39) with (3.41) yields

u+
1

u
=

1

2

{√
(t+ 2) (t+ 3) (t2 + t+ 2)− (t+ 1)

√
(t2 − 4)

}
. (3.43)

In the same way, subtracting the identity obtained by multiplying (3.2) with (3.4) from the identity obtained
by multiplying (3.3) with (3.7) yields

u2 − 1

u2
=

1

2

{(
t3 + 4t2 + 5t+ 4

)√
t2 − 4− t (t+ 1)

√
(t+ 2) (t+ 3) (t2 + t+ 2)

}
. (3.44)

Similarly, subtracting the identity obtained by multiplying (3.4) with (3.7) from the identity obtained by
multiplying (3.2) with (3.3) yields

u2 +
1

u2
=

1

2

{
t
(
t3 + 4t2 + 5t+ 4

)
− (t+ 1) (t+ 2)

√
(t+ 3) (t− 2) (t2 + t+ 2)

}
. (3.45)

On the same lines, subtracting the identity obtained by multiplying (3.6) with (3.9) from the identity obtained
by multiplying (3.5) with (3.8), we obtain

u3 +
1

u3
=

1

2

{
(t− 1)

(
t3 + 4t2 + 5t+ 3

)√
(t+ 3)(t+ 2)(t2 + t+ 2)

− (t+ 1)
2 (
t3 + 4t2 + 5t+ 5

)√
t2 − 4

}
.

(3.46)

Making use of identities (3.43), (3.44), (3.45), and(3.46), we deduce{
1

u4
− u4

}
−

{
1

u3
+ u3

}
+ 7

{
1

u2
− u2

}
+ 14

{
1

u
+ u

}

=
1

2

{
(t+ 3) (t− 1)

(
t4 + 3t3 − 3t2 − 7t− 9

)√
(t+ 2) (t+ 3) (t2 + t+ 2)

−
(
t4 + 3t3 − 3t2 − 7t+ 1

) (
t3 + 5t2 + 7t+ 7

)√
t2 − 4

}
.

(3.47)

From (3.38) and (3.47), we obtain the required result.
2
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4. Modular equations

Theorem 4.1 [2, p. 423] Let β , γ , and δ have degrees 5, 7, and 35, respectively. Let m and m′ denote the
multipliers connecting α , β , and γ , δ , respectively. Then

(αδ)
1/4

+ {(1− α) (1− δ)}1/4 + 24/3{αδ (1− α) (1− δ)}1/12

+(βγ)
1/4

+ {(1− β) (1− γ)}1/4 + 24/3{βγ (1− β) (1− γ)}1/12

= 1 + {1 + 24/3{αβγδ (1− α) (1− β) (1− γ) (1− δ)}1/24}2

(4.1)

and

{(αδ)1/4 + {(1− α) (1− δ)}1/4 + 24/3{αδ (1− α) (1− δ)}1/12}

×{(βγ)1/4 + {(1− β) (1− γ)}1/4 + 24/3{βγ (1− β) (1− γ)}1/12}

= 1− 27/3{αβγδ (1− α) (1− β) (1− γ) (1− δ)}1/24

×{(αβγδ)1/8 + {(1− α) (1− β) (1− γ) (1− δ)}1/8} .

(4.2)

Proof of (4.1) From Entry 42 [4, p. 379] we have

2{256αβγδ (1− α) (1− β) (1− γ) (1− δ)}1/24

+
2

{256αβγδ (1− α) (1− β) (1− γ) (1− δ)}1/24

=

{
αδ (1− α) (1− δ)

βγ (1− β) (1− γ)

}1/12

+

{
βγ (1− β) (1− γ)

αδ (1− α) (1− δ)

}1/12

−
{
αδ (1− α) (1− δ)

βγ (1− β) (1− γ)

}1/24

−
{
βγ (1− β) (1− γ)

αδ (1− α) (1− δ)

}1/24

.

From Entry 12(v) [2, p. 124] the above identity can be written as

4q2

χ(q)χ(q5)χ(q7)χ(q35)
+
χ(q)χ(q5)χ(q7)χ(q35)

q2
=
q2χ2(q5)χ2(q7)

χ2(q)χ2(q35)

+
χ2(q)χ2(q35)

q2χ2(q5)χ2(q7)
− qχ(q5)χ(q7)

χ(q)χ(q35)
− χ(q)χ(q35)

qχ(q5)χ(q7)
.

(4.3)

Replacing q by −q in (4.3) we obtain

4q2

χ(−q)χ(−q5)χ(−q7)χ(−q35)
+
χ(−q)χ(−q5)χ(−q7)χ(−q35)

q2

=
q2χ2(−q5)χ2(−q7)
χ2(−q)χ2(−q35)

+
χ2(−q)χ2(−q35)
q2χ2(−q5)χ2(−q7)

+
qχ(−q5)χ(−q7)
χ(−q)χ(−q35)

+
χ(−q)χ(−q35)
qχ(−q5)χ(−q7)

.

(4.4)

Let

X =
1

q2
χ(−q)χ(−q5)χ(−q7)χ(−q35) . (4.5)
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Making use of (1.2) and (4.5) in (4.4), we obtain

4

X
+X =

(u1
u

)2

+

(
u

u1

)2

+
u1
u

+
u

u1
.

The above identity can be simplified as (
2

X

)2

− y

(
X

2

)
+ 1 = 0, (4.6)

where

y =
1

2

{(u1
u

)2

+

(
u

u1

)2

+
u1
u

+
u

u1

}
.

Solving (4.6), we obtain

4

X
= y −

√
y2 − 4 . (4.7)

By the definition of X , we can see that X > 2 when q approaches 0. Hence, we select the negative sign above.
Consider

y2 − 4 =
1

4

{(u1
u

)4

+

(
u

u1

)4

+ 2
(u1
u

)3

+ 2

(
u

u1

)3

+
(u1
u

)2

+

(
u

u1

)2

+ 2
u1
u

+ 2
u

u1

}
.

y2 − 4 can be written as the sum of two terms:

y2 − 4 = A (u, u1) +B (u1, u) ,

where

A (u, u1) = u−3u1
−3

(
u2u1

2 + u3 + 2u2u1 + 2uu1
2 + u1

3 − uu1
)

×
(
u3u1 + u3 + 2u2u1 + 2uu1

2 + u1
3 − u1

2
)

and

B (u1, u) =
1

4

{(u1
u

)2

+

(
u

u1

)2

+ 3
u1
u

+ 3
u

u1
+ 4 + 2u− 2

u

}2

.

Identity (2.14) of [14] shows that A (P,Q) is zero. Hence, we have

y2 − 4 =
1

4

{(u1
u

)2

+

(
u

u1

)2

+ 3
u1
u

+ 3
u

u1
+ 4 + 2u− 2

u

}2

. (4.8)

Substituting (4.8) in (4.7) and simplification results in

4

X
+ 2 +

u1
u

(
1 +

u2

u1

)
+

u

u1

(
1− u1

u2

)
= 0 . (4.9)
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Making use of (1.2) and (4.5), we write (4.9) as

4q2

χ(−q)χ(−q5)χ(−q7)χ(−q35)
+
qχ(−q5)χ(−q7)
χ(−q)χ(−q35)

{
1 +

φ(−q)φ(−q35)
φ(−q5)φ(−q7)

}

+ 2 +
χ(−q)χ(−q35)
qχ(−q5)χ(−q7)

{
1− φ(−q5)φ(−q7)

φ(−q)φ(−q35)

}
= 0.

(4.10)

Multiplying (4.10) with q2

χ(−q)χ(−q5)χ(−q7)χ(−q35) and then replacing q by −q in the resulting identity yields
us

4q4

χ2(q)χ2(q5)χ2(q7)χ2(q35)
+

2q2

χ(q)χ(q5)χ(q7)χ(q35)
=

q3

χ2(q)χ2(q35)

{
1 +

φ(q)φ(q35)

φ(q5)φ(q7)

}
+

q

qχ2(q5)χ2(q7)

{
1− φ(q5)φ(q7)

φ(q)φ(q35)

}
.

Using Entry 10(i)[2, p.122] and Entry 12(v)[2, p. 124], the above can be written as

28/3{αβγδ (1− α) (1− β) (1− γ) (1− δ)}1/12

+27/3{αβγδ (1− α) (1− β) (1− γ) (1− δ)}1/24

= 24/3{αδ (1− α) (1− δ)}1/12
{
1 +

√
m

m′

}

+24/3{βγ (1− β) (1− γ)}1/12
{
1 +

√
m′

m

}
.

Making use of elementary algebra, the above can be rewritten as

1+
{
1 + 24/3{αβγδ (1− α) (1− β) (1− γ)}1/24

}2

−

24/3{αδ (1− α) (1− δ)}1/12 − 24/3{βγ (1− β) (1− γ)}1/12 = 2+

24/3{αδ (1− α) (1− δ)}1/12
√
m

m′ − 24/3{βγ (1− β) (1− γ)}1/12
√
m′

m
.

(4.11)

Addition of Entry 18(iii) and (iv) [2, p. 423] results in

(αδ)
1/4

+ {(1− α) (1− δ)}1/4 + (βγ)
1/4

+ {(1− β) (1− γ)}1/4 = 2

+24/3{αδ (1− α) (1− δ)}1/12
√
m

m′ − 24/3{βγ (1− β) (1− γ)}1/12
√
m′

m
.

(4.12)

Comparing (4.11) and (4.12), we obtain the required result. 2

Proof of (4.2) Let

A =(αδ)
1/24

, B = (βγ)
1/24

, M =

√
m

m′ ,

A′ ={(1− α) (1− δ)}1/24, and B′ = {(1− β) (1− γ)}1/24 .

(4.13)
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Using (4.13) in (4.2), we obtain

(AB)
6
+ (AB′)

6
+ (A′B)

6
+ (A′B′)

6
+ 24/3 (AA′)

2
B6 + 24/3 (AA′)

2
B′6

+24/3 (BB′)
2
A6 + 24/3 (BB′)

2
A′6 + 24/3 (AA′BB′)

2

= 1− 27/3AA′BB′
{
(AB)

3
+ (A′B′)

3
}

.

(4.14)

With multiplication of Entry 18(iii) with Entry 18(iv) and then using (4.13), we obtain

(AB)
6
+ (AB′)

6
+ (A′B)

6
+ (A′B′)

6 −A6 −A′6 −B6 −B′6 + 1

= −28/3 (AA′BB′)
2
.

(4.15)

Rearranging the terms of (4.1) gives us

−A6 −A′6 −B6 −B′6 = 24/3 (AA′)
2
+ 24/3 (BB′)

2 − 2

− 28/3 (AA′BB′)
2 − 27/3 (AA′BB′) .

Substituting the above in (4.15) yields

(AB)
6
+ (AB′)

6
+ (A′B)

6
+ (A′B′)

6
=1 + 27/3AA′BB′

− 24/3 (AA′)
2 − 24/3 (BB′)

2
.

(4.16)

Substituting (4.16) in (4.14), we find

24/3 (AA′)
2 (
B6 +B′6 − 1

)
+ 24/3 (BB′)

2 (
A6 +A′6 − 1

)
+ 28/3 (AA′BB′)

2
+ 27/3AA′BB′

{
1 + (AB)

3
+ (A′B′)

3
}
= 0 .

Using Entry 18 (iii), (iv), and (v) [2, p. 423], the above identity can be written as

21/3 (AA′)
4

{
21/2(BB′)3 − 21/6AA′

21/2(AA′)3 + 21/6AA′

}
− 21/3 (BB′)

4

{
21/6BB′ − 21/6(AA′)3

21/2BB′ + 21/6(BB′)3

}

+ 21/3(AA′BB′)2 +AA′BB′ {1 + (AB)3 + (A′B′)3
}
= 0 .

(4.17)

We get from (2.7) and (4.13)

P 2 = 21/3AA′BB′ and Q2 =
AA′

BB′ . (4.18)

Simplifying (4.17) using elementary algebra and then substituting (4.18) results in

2P 2 + (P 4 − P 2)
(
Q2 + 1

Q2

)
−
(
Q4 + 1

Q4

)
P 2 + 1

P 2 +Q2 + 1
Q2

+ P 2 + 1 + (AB)
3

+(A′B′)
3
= 0 .

(4.19)
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From Entry 19(i) [2, p. 314], we have

(αγ)
1/8

+ {(1− α)(1− γ)}1/8 = 1 , (4.20)

(βδ)1/8 + {(1− β)(1− δ)}1/8 = 1 . (4.21)

Identities (4.20) and (4.21) respectively imply

(αγ)
1/8 − {(1− α)(1− γ)}1/8 =

√
1− 4{αγ(1− α)(1− γ)}1/8 , (4.22)

(βδ)1/8 − {(1− β)(1− δ)}1/8 =
√
1− 4{βδ(1− β)(1− δ)}1/8 . (4.23)

Adding the identity obtained by multiplying (4.20) with (4.21) with the identity obtained by multiplying (4.22)
with (4.23), we have

(AB)
3
+ (A′B′)

3
=

1

2

{
1 +

√
1− 23/2P 3

(
T 3 +

1

T 3

)
+ 8P 6

}
. (4.24)

Substituting (4.24) in (4.19) results in

2P 2

{
P 4Q6 − P 2Q6 −Q8 + P 4Q2 − P 2Q4 − P 2Q2 − 1

Q2 (P 2 +Q2) (P 2Q2 + 1)

}
+ 2P 3 + 3

= −

√
1− 23/2P 3

(
T 3 +

1

T 3

)
+ 8P 6 .

Squaring on both sides of the above identity and then rearranging the terms yields[
2P 2

{
P 4Q6 − P 2Q6 −Q8 + P 4Q2 − P 2Q4 − P 2Q2 − 1

Q2 (P 2 +Q2) (P 2Q2 + 1)

}
+ 2P 3 + 3

]2

−1− 8P 6 + 2P 3
√
2
(
T 3 +

1

T 3

)
= 0 .

(4.25)

Making use of (2.4), (2.5), and (2.6), we obtain T 3 + T−3 in terms of P and Q

T 3 +
1

T 3
=
P
(
Q12 − 4Q10 + 8Q8 − 14Q6 + 8Q4 − 4Q2 + 1

)
Q6 (P 2 + 1)

. (4.26)

Substituting (4.26) in (4.25) results in

M (P,Q) N (P,Q) = 0, (4.27)

where

M (P,Q) = −P 2Q8 + 2P 4Q4 + P 2Q6 + P 2Q2 + 2Q4 − P 2

78



VASUKI and THIPPESHA/Turk J Math

and

N (P,Q) = 2P 12Q6 + P 10Q8 + 2P 8Q10 + P 6Q12 − 8P 8Q8 − 3P 6Q10

+ P 10Q4 + 2P 8Q6 + 5P 6Q8 + 4P 4Q10 − 8P 8Q4 − 24P 6Q6

− 8P 4Q8 + 2P 2Q10 + 2P 8Q2 + 5P 6Q4 − 6P 4Q6 − 3P 2Q8 + P 6

− 3P 6Q2 − 8P 4Q4 − 5P 2Q6 + 4P 4Q2 − 3P 2Q4 − 2Q6 + 2P 2Q2.

By (2.4), it follows that M (P,Q) = 0 . This implies that (4.27) holds and equivalently (4.2) holds. 2
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