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Abstract: This paper is dedicated to exhaustive structural analysis of the holonomy invariant foliated cocycles on the
tangent bundle of an arbitrary (m + n) -dimensional manifold. For this purpose, by applying Spencer theory of formal
integrability, sufficient conditions for the metric associated with the semispray S are determined to extend to a transverse
metric for the lifted foliated cocycle on TM . Accordingly, this geometric structure converts to a holonomy invariant
foliated cocycle on the tangent space, which is totally adapted to the Helmholtz conditions.
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1. Introduction
Differential geometry of the total space of a manifold’s tangent bundle has its origins in diverse fields of study
such as calculus of variations, differential equations, theoretical physics, and mechanics. In recent years, it can be
regarded as a distinguished domain of differential geometry and has noteworthy applications in specific problems
of mathematical biology and mainly in the theory of physical fields [3–5, 25–27]. This significance provides a
constructive setting for the development of novel notions and geometric structures such as systems of second-
order differential equations (SODEs), metric structures, semisprays, and nonlinear connections. Accordingly,
analysis of the above-mentioned concepts can be considered as a powerful tool for the thorough investigation of
the geometric properties of a tangent bundle.

From a historical point of view, principled investigation of the differential geometry of tangent bundles
started with Dombrowski [16], Kobayashi and Nomiza [20], and Yano and Ishihara [36] in the 1960s and 1970s.
Specifically, Crampin [11] and Grifone [17] considerably contributed to the geometry of the tangent bundle
by introducing the notion of the nonlinear connection on the tangent bundle of a system of SODEs. In [25]
Miron introduced and investigated the concept of generalized Lagrange spaces. Moreover, regarding covariant
derivatives and geometric objects that can be associated to a system of SODEs, comprehensive research was
undertaken in [2, 13, 21, 23, 34] (refer to [9] for more details).

In the last decades increasing numbers of studies have been dedicated to the qualitative investigation
of the solutions of systems of (non-)autonomous second (higher)-order ordinary (partial) differential equation
fields via some corresponding geometric structures. The notable fact regarding these investigations is the
significant demand for a unifying geometric setting for a differential equation field considering the associated
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geometric structures and invariants. The inverse problem of the calculus of variations is fundamentally based
on the following notable question: what are the conditions under which the solutions of a typical SODE on an
m -dimensional manifold as the configuration space with the local coordinates xi

d2xi

dt2
+ 2Gi(x, ẋ) = 0, i ∈ {1, 2, · · · ,m}, (1.1)

can be regarded as the solutions of the associated Euler-Lagrange equations for some Lagrangian function L

d

dt

(
∂L
∂xi

)
− ∂L
∂xi

= 0, i ∈ {1, 2, · · · ,m}. (1.2)

In addition, system (1.1) can be totally characterized via a second-order vector field on the tangent bundle TM
denoted by semispray. Moreover, TM is considered as the velocity space with local coordinates xi , yi := ẋi .

S = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
. (1.3)

Helmholtz conditions can be regarded as one of the significant points of view to the inverse problem of the
calculus of variations and are fundamentally based on the necessary and sufficient conditions for the existence
of a multiplier matrix gij(x, ẋ) such that for some Lagrangian L the following identity holds:

gij(x, ẋ)

(
d2xj

dt2
+ 2Gi(x, ẋ)

)
=

d

dt

(
∂L
∂ẋi

)
− ∂L
∂xi

. (1.4)

Note that in this case the semispray S is denoted by variational or a Lagrangian vector field. Furthermore, the
system (1.4) can be thoroughly reformulated as follows:

LS

(
∂L
∂ẋi

dxi
)

= dL, (1.5)

where LS is the Lie derivative with respect to semispray S . Meanwhile, for the multiplier matrix gij , the
Helmholtz conditions are illustrated by:

gij = gji,
∂gij
∂yk

=
∂gik
∂yj

, (1.6)

∇gij = 0, gikR
k
j = gjkR

k
i . (1.7)

It is worth mentioning that conditions (1.6) can be regarded as the necessary and sufficient conditions for
the existence of a Lagrange function that is defined locally and has as its Hessian the multiplier matrix gij .
Likewise, conditions (1.7) demonstrate the compatibility between the given SODE structure and the multiplier
matrix via some related induced geometric structures such as the Jacobi endomorphism Ri

j and the dynamical
covariant derivative ∇ .

The problem of metrizability has been investigated from several aspects in recent years. Indeed, a
semispray is called metrizable if the paths of the semispray are just the geodesics of some metric space. The
problem of compatibility between a system of SODEs and a metric structure on a tangent bundle has been
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studied by many authors and it is known as one of the Helmholtz conditions from the inverse problem of
Lagrangian mechanics [1, 8, 12, 14, 15, 18, 22, 34]. The noticeable fact is that Helmholtz conditions can be totally
reformulated in terms of some regular and linear partial differential operators by applying Frö licher–Nijenhuis
theory as a powerful tool [10]. As a consequence, the formal integrability of the declared differential operators
can be exhaustively addressed via Spencer theory (refer to [10] for more complete details). In this paper, taking
into account [10], sufficient conditions for the metric associated with the semispray S are determined to extend
to a transverse metric for the lifted foliated cocycle on TM .

In mathematics, foliation theory can be regarded as a powerful geometric device that is applied in order to
study manifolds, consisting of an integrable subbundle of the tangent bundle. In other words, a foliation locally
looks like a decomposition of the manifold as a union of parallel submanifolds of smaller dimension. Such
foliations of manifolds occur naturally in various geometric fields, such as solutions of differential equations
and integrable systems or in differential topology. In 1959 Reinhart introduced a particular type of foliations
constructed via a particular geometric structure called a metric foliated cocycle [32]. When for a given foliation
there exists a metric g on M that is transverse (or bundle-like) for F , we say that (M, g,F) is a metric
foliated cocycle. This notion is quite intuitive. In other words, the existence of this geometric structure leads
to the creation of a particular metric for which the leaves of the foliation remain locally at constant distance
from each other. Indeed, from another point of view, the theory of foliations has a close relationship to that of
differential equations. For example, a nowhere vanishing vector field X on a manifold M is totally equivalent
to an oriented one-dimensional foliation. Therefore, solutions of a system of ordinary differential equations are
the integral curves of X . According to the Frobenius theorem, foliations of higher dimensions associate with
systems of partial differential equations, so the foliation is said to be metric whenever the solutions (or leaves)
are locally equidistant. If, in addition, the space of leaves L is well behaved, the map M −→ L that projects
a point of the manifold M to the leaf on which it lies is denoted by a metric fibration.

Consequently, a metric foliation F of M can be considered as a decomposition of M into connected
subsets, known as leaves, which are locally equidistant; namely, for any p ∈ M there exist neighborhoods
V ⊂ U of p such that the following holds: given two arbitrary leaves Li and connected components Bi of
Li ∩ U , i = 1, 2 , the distance function q −→ d(q,B1) is constant on B2 ∩ V . This class of foliations can
be regarded as a good candidate and a significant device for modeling situations drawn from mechanics and
physics and particularly plays a fundamental role in generalizing Riemannian or Finsler geometry to foliated
manifolds. Consequently, metric foliated cocycles form a natural class of foliations that is worth investigating
from different aspects [6, 19, 28, 29, 35].

In the theory of foliations the notion of holonomy is closely related to the existence of a transverse metric
structure on the foliation. For a given point x on a manifold equipped with a foliation of codimension n , one
may consider how the leaves near that point intersect a small n -dimensional disk that is transversal to the
leaves and includes the mentioned point. The ways in which these leaves depart from this disk and return to
it are identified in a group, denoted by the holonomy group at x . In the case of metric foliations, assume that
π : M −→ L is the corresponding metric fibration and γ : [0, 1] −→ L is a piecewise smooth curve in the base
space. Then the map Hγ : π−1(γ(0)) −→ π−1(γ(1)) among the fibers over the endpoints of the curve γ is
denoted by the holonomy diffeomorphism associated to γ . It is worth noticing that the map declared above
projects a point p in the first fiber to the endpoint of the horizontal lift of γ that originates at point p .

In [30, 31] Popescu et al. defined the notion of the Lagrangian adopted to the lifted foliation and in
[24] Riemannian foliations that are compatible with SODE structure were discussed. In this paper, we have
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comprehensively analyzed the structure of the holonomy invariant foliated cocycles on the tangent bundle of an
arbitrary manifold via the notion of formal integrability, which was first introduced by Bucataru and Muzsnay
in [10] and is fundamentally based on Frö licher–Nijenhuis formalism and is extensively fruitful since it provides
a noteworthy setting to apply Spencer theory in order to investigate the formal integrability of Helmholtz
conditions. This reformulation of the inverse problem of the calculus of variations enables us to apply Spencer
theory in order to construct a transverse metric on the tangent bundle, which leads to the creation of the
holonomy invariant foliated cocycles. The structure of the present paper is as follows: in Section 2, according to
[10], a brief discussion regarding the reformulation of the Helmholtz conditions in terms of a formal integrability
of a partial differential operator is presented. Section 3 is devoted to geometric investigation of metric foliated
cocycles via the concept of holonomy groups. In Section 4, a thorough analysis of the holonomy invariant
foliated cocycles via the concept of formal integrability is presented. Some concluding remarks are mentioned
at the end of the paper.

2. Reformulation of the Helmholtz conditions via formal integrability

Let M be an m -dimensional manifold and (TM, π,M) denote its tangent bundle with local coordinates (xi, yi)

and V TM the corresponding vertical subbundle. The tangent structure J is locally expressed by J =
∂

∂yi
⊗dxi

and the vector field C ∈ Γ(TTM) defined by C = yi
∂

∂yi
is called the Liouville vector field. In addition, a

k -form ω is called semibasic if ω(X1, X2, · · · , Xk) = 0 whenever one of the vector fields Xi is vertical for
i ∈ {1, · · · , k} . Moreover, the module of semibasic k -forms is denoted by Sec(ΛkT ∗

V ) . Also, a vector valued
k -form A on TM\{0} is said to be semi-basic if it takes values in the vertical bundle and specifically when one
of the vectors Xi , i ∈ {1, · · · , k} is vertical the following relation holds: A(X1, X2, · · · , Xk) = 0 .

Hence, according to Frö licher–Nijenhuis theory a semispray (spray) on M is a vector field S ∈
Γ(TTM\{0}) such that JS = C (and [C,S] = S ). Now consider the almost tangent structure P = −LSJ =

h − v where h and v are the horizontal and vertical projectors induced by S , respectively. Then the Jacobi
endomorphism (or Douglas tensor) Φ is defined as the following (1, 1) -type tensor field:

Φ = v ◦ LSh = −v ◦ LSv = Ri
j

∂

∂yi
⊗ dxj . (2.1)

The dynamical covariant derivative ∇ is defined by:

∇X = h[S, hX] + v[S, vX], ∀ X ∈ Γ(TTM\{0})
∇ = LS + h ◦ LSh+ v ◦ LSv = LS +Ψ.

(2.2)

Taking into account that ∇ is a zero-degree derivation on Λk(TM\{0}) , it can be uniquely decomposed into
the sum of a Lie derivation LS and an algebraic derivation iΨ as follows: ∇ = LS − iΨ . According to [10] the
following significant relations hold:

(a) : ∇S = 0, ∇C = 0, ∇iS = iS∇, ∇iC = iC∇;
(b) : ∇h = 0, ∇v = 0, ∇J = 0, ∇F = 0;
(c) : d∇−∇d = dΨ, ∇ih = ih∇ = 0, ∇iJ − iJ∇ = 0.

(2.3)

According to (2.3), a semispray S on M is called a Lagrangian vector field if there exist L ∈ C∞(TM\{0})
such that LSdJ L = dL. Mainly due to [10] we have the following:
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Theorem 2.1 A semispray S is a Lagrangian vector field if and only if there exists a semibasic 1-form Θ on
TM\{0} that satisfies the following reformulations of the Helmholtz conditions:

dhΘ = 0, dJΘ = 0, ∇dΘ = 0, dΦΘ = 0. (2.4)

Consequently, the semispray S is a Lagrangian vector field if and only if the following partial differential operator
is formally integrable:

PL =
(
dJ , dh, dΦ,∇d

)
: Sec(T ∗

v ) −→ Sec
(
⊕(4) Λ2T ∗

v

)
. (2.5)

Overall, considering the above discussion, a spray S is projectively metrizable if there exists a 1-homogeneous
function F ∈ C∞(TM\{0}) such that LSdJF = dF ; moreover, a spray S is Finsler metrizable if there exists
a 2-homogeneous function L ∈ C∞(TM)\{0} such that LSdJ L = L. Equivalently, related to the notion of
projective metrizability from the Frö licher–Nijenhuis theory approach, we have [10]:

Proposition 2.2 A spray S is projectively metrizable if and only if there exists a semibasic 1-form Θ on
TM\{0} such that the following identities satisfied:

LCΘ = 0, dJΘ = 0, dhΘ = 0. (2.6)

It is noticeable that in order to address the formal integrability of the partial differential system (2.6) the
following first-order partial differential operator should be reckoned:

P1 =
(
LC, dJ , dh

)
: Sec(T ∗

v ) −→
(
T ∗
v ⊕ Λ2T ∗

v ⊕ Λ2T ∗
v

)
. (2.7)

Furthermore, P1 induces the following morphism of vector bundles defined by:

p0(P1) : J1T
∗
v −→ F := T ∗

v ⊕ Λ2T ∗
v ⊕ Λ2T ∗

v . (2.8)

Subsequently, the l th-order jet prolongation is expressed by: pl(P1) : Jl+1T
∗
v −→ JlF . Meanwhile, for

ϑ ∈ TM , Rl+1,ϑ = Ker(P1(P1)ϑ) ⊂ Jl+1,ϑT
∗
v can be regarded as the space of solutions of order (l+1) of P1 at

ϑ . In addition P1 is formally integrable at ϑ if Rl is a vector bundle and for all l ≥ 1 , π̄l,ϑ : Rl+1,ϑ −→ Rl,ϑ

is onto. Consequently, in the analytic case the concept of formal integrability implies the existence of a locally
defined section in R1 and therefore a solution of (2.6). Overall, according to the Cartan–Kählar theorem, if
π̄1 : R2 −→ R1 is onto and the symbol ς2(P1) is involutive then P1 can be regarded as a formally integrable
partial differential operator. Note the following diagram:

0 0 0

0 g2(P1) S2T ∗ ⊗ T ∗
v T ∗ ⊗ F K 0

0 R2 J2T
∗
v J1F

0 R1 J1T
∗
v F

0 0

i ς2 τ

i

π̃1

p1(P1)

π1 π

i p0(P1)
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In order to determine the surjectivity of π̄1 : R2 −→ R1 it is required to investigate the following map:

τ : T ∗ ⊗
(
T ∗
v ⊕ Λ2T ∗

v ⊕ Λ2T ∗
v

)
−→ K , where K = Coker(ς2(P1)) . Since dim K =

m2(m− 1)

2
, it is deduced

that K ∼= ⊕(2)Λ2T ∗
v ⊕(3) Λ3T ∗

v . The five main components of the map τ are given by:

τ1
(
A,B1, B2

)
= τJA− iCB1; τ2

(
A,B1, B2

)
= τJA− iCB2;

τ3
(
A,B1, B2

)
= τJB1; τ4

(
A,B1, B2

)
= τhB2;

τ5
(
A,B1, B2

)
= τhB1 + τJB2.

(2.9)

Additionally, ς2(P1) is involutive; namely, it admits a quasiregular basis that specifically satisfies Cartan’s test
if and only if all the groups of the Spencer cohomology vanish (refer to [10] for more complete explanations).

Consequently, a first-order formal solution Θ ∈ Λ1T ∗
v of system (2.6) can be lifted into a second-order

solution (in other words, π̄ : R2 −→ R1 is onto) if and only if dRΘ = 0 where R is the curvature tensor defined

by R =
1

2
[h, h] = −1

3
[J ,Φ] .

Overall, the following three specific cases can be regarded as the significant cases when system (2.6) is
formally integrable and subsequently the corresponding spray S is projectively metrizable [10]: (i) Flat case
R = 0 ; (ii) Isotropic case R = Ω∧J for Ω , a semibasic 1-form; (iii) Any spray on a two-dimensional manifold
is projectively metrizable.

3. Holonomy groups and metric foliated cocycles
Let M be a manifold of dimension m+ n . Then a foliation F of codimension n is defined via an open cover
U = {Ui}i∈I , and for each i , a local diffeomorphism Ψ : Rm+n −→ Ui such that on each nonempty Ui ∩ Uj

the following change of coordinates occurs:

Ψ−1
j ◦Ψi : (x, y) ∈ Ψ−1

i (Ui ∩ Uj) −→ (x̃, ỹ) ∈ Ψ−1
j (Ui ∩ Uj),

where x̃ = Ψij(x, y) and ỹ = ζij(y) . Consequently, the manifold M is decomposed into m -dimensional
connected submanifolds, which are denoted by a leaf of F . Moreover, V ⊂ M is called saturated for the
foliation F if it can be regarded as the union of leaves. In other words, if x ∈ V then the leaf passing
through x is contained in V . Now assume that F is a foliation of codimension n on the manifold M and
π : Rm+n = Rm×Rn −→ Rn is the second projection. Then the map hi = π◦Ψ−1

i : Ui −→ Rn is a submersion
and on Ui ∩ Uj ̸= ∅ the following identity holds: hj = ζij ◦ hi . Furthermore, the fibers of submersion hi are
considered as the F -plaques of (Ui,F) and the foliation F is thoroughly characterized via the submersions hi
and the local diffeomorphisms ζij of Rn . Overall, a foliation F of codimension n on M is totally identified via
an open cover {Ui}i∈I and submersions hi : Ui −→ T over an n -dimensional manifold T and a diffeomorphism
ζij : hi(Ui∩Uj) −→ hj(Ui∩Uj) such that hj = ζij ◦hi for Ui∩Uj ̸= ∅ . Then X =

{
Ui, hi, T , ζij

}
is denoted by

a foliated cocycle characterizing the foliation F . According to the above definition, the n -manifold T ∗ =
⊔

T ∗
i ,

T ∗
i = hi(Ui) , is denoted as the transverse manifold corresponding to the cocycle X and the pseudogroup H

of local diffeomorphisms of T ∗ generated by ψij , the holonomy pseudogroup representative on T ∗ , which is
associated to the cocycle X . It is noticeable that T ∗ is a complete transverse manifold and the equivalence
class of H is called the holonomy pseudogroup of (M,F) . In this paper, in what follows, it is assumed that
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F is constructed via a cocycle X and the transverse manifold and holonomy pseudogroup associated to X are
denoted by T ∗ and H , respectively. The foliation F is called (transversally) metric if it is constructed via a
cocycle X =

{
Ui, hi, T , ζij

}
modeled on a manifold (T ∗

0 , g0) and such that the transformations ζij are local
isometries of the metric structure g0 .

A symmetric C∞ -bilinear form h : Γ(TM)×Γ(TM) → C∞ is said to be positive if it satisfies h(X,X) ≥ 0

for any X ∈ Γ(TM) . Such a form induces a positive bilinear form hx on the tangent space TxM at any point
x ∈ M . The kernel ker(hx) is the linear subspace: {v ∈ Tx(M) : hx(v, Tx(M)) = 0} of TxM . The Lie
derivative LXh of h in the direction of a vector field X ∈ Γ(TM) is the symmetric C∞ -bilinear form on
Γ(TM) given by:

LXh(Y, Z) = X(h(Y, Z))− h([X,Y ], Z)− h(Y, [X,Z]).

A transverse metric on (M,F) can be regarded as a positive bilinear form h on Γ(TM) such that:
(1) ker(hx) = Tx(F) for any x ∈M and
(2) LXh = 0 for any vector field X on M tangent to F .
Taking into account [28], a foliation together with a transverse metric h on (M,F) is denoted by a metric
foliation of M .

The notion of holonomy has a close relationship to existence of a transverse metric structure on the
foliation. For an arbitrary point x on a manifold equipped with a foliation of codimension n , one of the main
problems is regarding how the leaves near that point intersect a small n -dimensional disk that is transversal to
the leaves and includes the mentioned point. In this situation, the significant concept of holonomy is introduced.
In other words, the holonomy group at x exhaustively demonstrates the ways in which these leaves depart from
this disk and return to it. This group is a quotient group of the fundamental group of leaves through x and is
of particular significance because it includes much information about the structure of the foliation around the
leaf through x .

The concept of holonomy is totally characterized via the notion of a germ of a locally defined diffeomor-
phism. A germ of a map from x to y is an equivalence class of maps f : V → U from an open neighborhood V
of x to an open neighborhood U of y with y = f(x) . The germs of diffeomorphisms (M,x) −→ (M,x) form
a group denoted by: Diffx(M) .
Let (M,F) be a foliated manifold of codimension n , and let Lα be a leaf of F . Let x, y ∈ Lα be two points
on this leaf, and let A and B be transversal sections at x and y , i.e. submanifolds of M transversal to leaves
of F with x ∈ A and y ∈ B . To any path γ from x to y in Lα we will associate a germ of a diffeomorphism

hol(γ) = holA,B(γ) : (A, x) → (B, y),

denoted by the holonomy of the path γ in Lα with respect to transversal sections A and B , as follows:
Let U be a foliated chart such that γ([0, 1]) ⊂ U and let x and y lie on the same plaque in U . Then we can
find a small open neighborhood N of x in A with N ⊂ U on which a smooth map f : N → B can be defined,
which satisfies f(x) = y , and for any z ∈ N the point f(z) lies on the same plaque in U as z . We can choose
N small enough such that f is a diffeomorphism onto its image. Then we define the following:

holA,B(γ) = germx(f).

The above definition is completely independent of the choice of U and f . If γ and γ̃ are homotopic paths in
Lα (with fixed end-points) from x to y and if A and B are transversal sections respectively at x and y , then
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holA,B(γ) = holA,B(γ̃) . Hence, we can regard holA,B as being defined on the homotopy classes of paths in Lα

from x to y . Particularly, for a transversal section A at x ∈ Lα , we obtain the following map:

holA = holA,A : π1(Lα, x) → Diffx(A),

which is a group homomorphism from the fundamental group of the leaf Lα at x to the group of germs at x of
local diffeomorphisms of A with respect to the point x . We will say that holA is the holonomy representation
of the leaf Lα at x . Its image is the holonomy group of Lα at x (refer to [28] for more details).

It is worth mentioning that any manifold can be equipped with a metric structure, but the specific
property is to equip a foliated manifold with a metric for which the length of curves or tangent vectors that are
transversal to the leaves remain invariant under the action of the corresponding holonomy group. In this case,
the holonomy group can be explicated as a group of isometries for an arbitrary transversal n -dimensional disk.

The metric structure gQ on the transverse bundle Q = TM
T (F) of a foliation F is holonomy invariant if

LXgQ = 0 for any X ∈ Γ
(
T (F)

)
.

Theorem 3.1 Let M be a manifold of dimension m + n that is equipped with a foliation F of codimension
n . Then F =

{
Ui, hi, T , ζij , g

}
is a metric foliated cocycle if and only if the induced metric on the transverse

bundle is holonomy invariant.

Proof: Let F be a foliation of dimension m and codimension n on manifold M . Then consider the local
coordinates (xi) = (xa, xα) where a, b, ... ∈ {1, ...,m} and α, β, ... ∈ {1, ..., n} . Now, suppose that Lt is a leaf
of F and {(U , φ) : (x1, ..., xm, xm+1, ..., xm+n)} is a foliated chart on the (m + n) -foliated manifold (M,F) .
This means that each plaque P t

c of F in U is described by equations of the form

xm+1 = cm+1, ..., xm+n = cm+n,

where c = (cm+1, ..., cm+n) is a point of Rn . Hence, { ∂
∂xa }, a ∈ {1, ...,m} are vector fields on U that are

tangent to each n -dimensional submanifold P t
c of U . Let {(Ũ , φ̃) : (x̃1, ..., x̃m, x̃m+1, ..., x̃m+n)} be another

foliated chart in such a way that U ∩Ũ ̸= ∅ . Assume that Pt
c and Pt

c̃ are two plaques in U and Ũ , respectively,
in such a way that Pt

c ∩Pt
c̃ ̸= ∅ . As Pt

c and Pt
c̃ are the domains of some local charts on the leaf Lt , which is a

m -dimensional submanifold of M , on Pt
c ∩ Pt

c̃ we have:

∂

∂xa
=
∂x̃b

∂xa
∂

∂x̃b
, a, b, ... ∈ {1, ...,m}. (3.1)

Since U ∩ Ũ is covered by the intersections of plaques of F , it can be deduced that (3.1) is satisfied on the

whole U ∩ Ũ . On U ∩ Ũ the following is generally assumed:

∂

∂xa
=
∂x̃b

∂xa
∂

∂x̃b
+
∂x̃α

∂xa
∂

∂x̃α
. (3.2)

Thus, according to (3.1), it can be inferred that:

∂x̃α

∂xa
= 0 , ∀ α ∈ {m+ 1, ...,m+ n} , a ∈ {1, ...,m}. (3.3)
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Hence, the coordinate transformations on the (m+n) -foliated manifold (M,F) have the following special form:

(a) : x̃a = x̃a(xb, xβ) , (b) : x̃α = x̃α(xβ). (3.4)

As { ∂
∂xa }, a ∈ {1, ...,m} , are tangent to leaves of F , { ∂

∂xa ,
∂

∂xα } is called an F -natural frame field on (M,F)

(refer to [6] for more details). Then the transformations of F -natural frame fields on (M,F) are given by
relation (3.1) and

∂

∂xα
=
∂x̃a

∂xα
∂

∂x̃a
+
∂x̃β

∂xα
∂

∂x̃β
. (3.5)

Let Lα be a leaf of F , Υ a path in Lα , and E and K transversal sections of F with Υ(0) ∈ E and Υ(1) ∈ K .
Then we must prove that

HolE,K(Υ) : (E,Υ(0)) −→ (K,Υ(1))

is the germ of an isometry, or in other words that H = HolE,K(Υ) preserves the metric. According to the
definition of holonomy, we can assume that Υ is inside a surjective chart, Ω = (x1, ..., xm, xm+1, ..., xm+n) :

U −→ Rm×Rn of F and E,K ⊂ U . Without loss of generality, assume that Ω(t) ⊂ {0}×Rn , so that the vector
fields ∂

∂xα |E form a frame for the tangent bundle of E . Furthermore, assume that the holonomy diffeomorphism
H : E −→ K is defined on all of E . By definition of H we have xα ◦ H = xα|E , for α = 1, ..., n . Therefore,
∂(xα◦h)

∂xβ (p) = δαβ , for α, β = 1, ..., n , so:

H⋆(
∂

∂xα
(p)) ∈ ∂

∂xα
(H(p)) + TH(p)(F), ∀p ∈ E.

Here we view TH(p)(F) as a subspace of TH(p)(M) . Particularly, we have [28]:

g|E(H⋆p(
∂

∂xα
(p)),H⋆p(

∂

∂xβ
(p)))

= g(
∂

∂xα
(H(p)),

∂

∂xβ
(H(p)))

= gαβ(H(p)) = gαβ(p) = g|E(
∂

∂xα
(p),

∂

∂xβ
(p)).

Consequently, for an arbitrary transversal section E at x ∈ Lα we obtain the following map:

HolE = HolE,E : π1(Lα, x) → Diffx(E),

which is a group homomorphism from the fundamental group of the leaf Lα at x to the group of germs at x of
local diffeomorphisms of E with respect to the point x . We will say that HolE is the holonomy representation
of the leaf Lα at x . Its image is the holonomy group of Lα at x .

Theorem 3.2 Let M be a manifold of dimension m+n that is equipped with a foliation F of codimension n .
Then F =

{
Ui, hi, T , ζij , g

}
is a holonomy invariant foliated cocycle if and only if for any X,Y, Z ∈ Γ(TM)

the following relation satisfied:

πX(g(π̃Y, π̃Z))− g([πX, π̃Y ], π̃Z)− g([πX, π̃Z], π̃Y ) = 0. (3.6)
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Proof: According to Theorem (3.1), it is deduced that F =
{
Ui, hi, T , ζij , g

}
is a metric foliated cocycle. Sup-

pose that T (F) is the tangent distribution to the foliation and T (F)⊥ denotes the complementary orthogonal
distribution to T (F) in TM , which we consider as the transversal distribution corresponding to F . Here we
denote by the same symbol g the metrics induced by g on T (F) and T (F)⊥ . The projection morphisms of
TM on T (F) and T (F)⊥ with respect to the decomposition TM = T (F)⊕ T (F)⊥ are denoted by π and π̃ ,

respectively. According to Theorem (5.1) of [6], there exists a unique connection ∇I (resp. ∇I⊥ ) with respect

to the above decomposition. We call ∇I and ∇I⊥ the intrinsic connections on T (F) and T (F)⊥ , respectively.
According to [6], we have:

∇I
π̃XπY = π[π̃X, πY ],

∇I⊥
πX π̃Y = π̃[πX, π̃Y ].

(3.7)

Now, according to metric isomorphism T (F)⊥ ≈ TM
T (F) , the proof is completed.

4. Structural analysis of the holonomy invariant foliated cocycles on the tangent bundle through
formal integrability

Let M be a smooth (m+n) -dimensional manifold and ∇ be a linear connection on M . Recall that the tangent
bundle TM possesses a natural (m + n) -foliation, which is defined by fibers. The distribution V TM , which
is tangent to this foliation, is denoted by the vertical foliation on TM . From the geometric point of view, the
linear connection ∇ assigns an (m+n) -distribution HTM on TM that is complementary to V TM as follows:
let (xi, yi) be a coordinate system on TM , where (xi), i ∈ {1, · · · ,m+ n} are local coordinates on M . Then
we define the following:

∇ ∂

∂xj

∂

∂xi
= Γk

ij(x)
∂

∂xk
, Hk

j (x, y) = yiΓk
ij(x). (4.1)

Considering the fact that {Γk
ij(x)} are the local coefficients of a linear connection on M , the distribution HTM

can be locally defined as follows:

δ

δxi
=

∂

∂xi
−Hj

i (x, y)
∂

∂yj
, i ∈ {1, · · · ,m+ n}. (4.2)

The distribution HTM is denoted by the horizontal distribution on TM , which is induced by ∇ .

A path ϑ∗ : [0, 1] −→ TM is called horizontal if for all t ∈ [0, 1] we have dϑ∗

dt ∈ HTMϑ∗(t) . Now consider
the case that ϑ : [0, 1] −→ M is a smooth piecewise path in M that connects the point x = ϑ(0) to y = ϑ(1)

in M . As a consequence, for each u ∈ TxM there exists only a unique horizontal lift ϑ∗ : [0, 1] −→ TM with
ϑ∗(0) = u . Hence, it is inferred that ϑ∗ is horizontal. Moreover, we have π(ϑ∗(t)) = ϑ(t) where the map
π : TM −→M is the natural projection. Thus, it is deduced that

ξϑ(t) : TxM −→ Tϑ(t)M, Tϑ(t)(u) = ϑ∗(t), ∀ t ∈ [0, 1] (4.3)

can be regarded as an isomorphism of vector spaces. The map ξϑ(t) is denoted by the parallel transport or
parallel displacement along path ϑ . Specifically, whenever the manifold M is equipped with a metric structure
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g and ∇ is the Levi-Civita connection associated to g , then the map ξϑ(t) can be considered as a linear isometry.
Conversely, for a given distribution HTM that is complementary to V TM , the covariant differentiation can
be defined via the notion of the parallel transport. This can be fulfilled as follows: consider X and Y as two
vector fields on M , and for any arbitrary point x ∈M , the integral curve ϑ : [0, 1] −→M of the vector field X

through the point x is selected. This means that ϑ(0) = x and ϑ́(t) = X(ϑ(t)) . Consequently, the covariant
derivative ∇XY of Y with respect to X is the vector field defined by:

(∇XY )(x) = lim 1

t

(
ξ−1
ϑ(t)Y (ϑ(t)− Y (x)

)
. (4.4)

Now, if x ∈M and ϑ : [0, 1] −→M is a loop at point x , namely ϑ(0) = ϑ(1) = x , then the parallel transport
ξϑ(t) can be regarded as an automorphism of TxM . It is worth noticing that all such automorphisms construct
a group Holx , which is denoted by the holonomy group of the connection ∇ at point x . Meanwhile, taking
into account the fact that manifold M is assumed to be connected, it can be deduced that at different points
the corresponding holonomy groups are isomorphic to each other. Thus, we can consider Hol as the holonomy
group of the connection ∇ .

In addition, let ∇ be a linear connection on an (m+ n) -dimensional manifold M with m,n > 0 . Then
an m -dimensional distribution D on M is called parallel with respect to ∇ if and only if the distribution D

is invariant under parallel transports. In other words, for all x, y ∈ M and all smooth piecewise paths ϑ from
x to y , the following condition is satisfied: ξϑ(Dx) = Dy .

Theorem 4.1 Let M be a connected smooth manifold of dimension m + n with m,n > 0 and ∇ be a linear
connection on M . Suppose that Holx denotes the holonomy group of the connection ∇ at x ∈M . If the action
of the group Holx on TxM leaves a nontrivial m-dimensional subspace Dx of TxM invariant, namely Hol is
m-reducible and ∇ is torsion free, then there exists canonically a foliated cocycle FT =

{
Ũi, h̃i, T̃ , ζ̃ij

}
on the

tangent space TM .

Proof Since the holonomy group Hol of the connection ∇ is m -reducible, then for an arbitrary point x ∈M

we select Dx as the subspace that is invariant under the action of the group Holx . Now we construct a
distribution D on the manifold M as follows: for any other point y ∈M we consider Dy as the image of Dx

under any parallel transport ξϑ from TxM to TyM . Now we select any other path ϱ connecting the point x
to y in order to illustrate that Dy does not depend on the choice of the path ϱ . Subsequently, ϱ−1 ◦ ϑ can
be regarded as a loop at point x and ultimately it is demonstrated that Dx is invariant under the parallel
transport ξϱ−1◦ϑ = ξ−1

ϱ ◦ ξϑ . Consequently, it is displayed that ξ−1
ϱ ◦ ξϑ(Dx) = Dx and thus we have proved

that ξϑ(Dx) = ξϱ(Dx) . Therefore, D is a well-defined distribution on manifold M and, from its construction
procedure, the parallelism and smoothness of D directly results. Overall, for a given connection ∇ on manifold
M , the existence problem for a distribution D that is parallel with respect to ∇ was comprehensively discussed
above. In addition, from relation (4.4) it directly results that the distribution D is parallel with respect to the
linear connection ∇ if and only if ∇ is an adapted connection to D . Thus, considering the fact that ∇ is
torsion-free, it is deduced that:

[X,Y ] = ∇XY −∇YX, ∀ X,Y ∈ Γ(TM). (4.5)

Hence, it is indicated that [X,Y ] ∈ Γ(D) for any X,Y ∈ Γ(D) . Consequently, it is proved that the distribution
D is involutive. Thus, for any x ∈M there exists a local foliated chart {(U,Ψ) : (xa, xα)} on M in such a way
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that all the submanifolds of U given by xα = cα, α ∈ {m+1, · · · ,m+n} are integral manifolds of distribution
D . Indeed, these integral manifolds can be considered as plaques of D in M and so a new topology can be
constructed on manifold M , whose basis comprises all plaques of D in M and is denoted by τ(D) . Taking into
account the fact that manifold M is totally covered via the set of all plaques of distribution D , it is inferred that
(M, τ(D)) can be reckoned as an m -dimensional integral manifold of D . Furthermore, a connected component
of (M, τ(D)) passing through the point x ∈M is considered as the leaf Lt of D through x and any other m -
dimensional manifold of D is an open submanifold of (M, τ(D)) . Consequently, it is illustrated that a disjoint
partition is induced on M , which is structurally constructed via the leaves of D . Thus, M admits an m -
dimensional foliated atlas that includes the local charts covered by plaques of the distribution D . Accordingly,
the integrable m -dimensional distribution D defines a foliated cocycle F = {Ui, hi, T , ζij} of codimension n

on M . Now, for any x ∈M , we consider the leaf Lt of F , which passes through x , and we define Dx = TxLt .
This distribution is known as the tangent distribution to the foliation F and is denoted by D(F) . Thus, if
{(U,Ψ) : (xa, xα)} is a foliated chart on (M,F) , then { ∂

∂x1 , · · · , ∂
∂xm } are tangent to Lt ∩U and consequently

in local coordinates we have: D(F) = span{ ∂
∂x1 , · · · , ∂

∂xm } . A chart can be induced: (Ū , xa, yb, xα, yβ) on TM

where (xα, yβ) are the transverse coordinates. Let (Ũ , x̃a, ỹb, x̃α, ỹβ) be another coordinate system on TM .
Then the theorem follows directly from the transformation rule:

x̃a = x̃a(xb, xβ) , x̃α = x̃α(xβ) , ỹa =
∂x̃a

∂xb
yb +

∂x̃a

∂xβ
yβ , ỹα =

∂x̃α

∂xβ
yβ .

Taking into account the coordinate transformations, it is inferred that the two foliated cocycles mentioned
above can be regarded as the natural lift of F to the tangent space TM . These two foliated cocycles are locally
spanned by { ∂

∂xa ,
∂

∂ya } and { ∂
∂ya } . 2

The semispray S = yi ∂
∂xi − 2Gi(x, y) ∂

∂yi determines a nonlinear connection N with local coefficients

Gi
j = ∂Gi

∂yj . The nonlinear connection N has local components as follows: (Gi
j) =

(
Ga

b Gα
b

Ga
β Gα

β

)
. Each of the

local components Ga
b , G

α
b , G

a
β , G

α
β has xa, xα, yb, yβ as variables.

The nonlinear connection N defines a local base of its horizontal vector fields given by:

δ

δxa
=

∂

∂xa
−Gb

a

∂

∂yb
−Gβ

a

∂

∂yβ
, (4.6)

δ

δxα
=

∂

∂xα
−Gb

α

∂

∂yb
−Gβ

α

∂

∂yβ
. (4.7)

In [30, 31] Popescu et al. defined the notion of the Lagrangian adopted to the lifted foliation and in [24]
Riemannian foliations compatible with SODE structure were discussed. In this section, by imposing the following
four significant conditions we will provide an appropriate setting in order to construct holonomy invariant foliated
cocycles on the tangent space TM . As will be demonstrated, the concept of formal integrability is applied as
a fundamental tool.

Definition 4.2 Let F =
{
Ui, hi, T , ζij

}
be a foliated cocycle of codimension n on M and FT =

{
Ũi, h̃i, T̃ , ζ̃ij

}
be the foliated cocycle on the tangent space TM . Let S be a semispray that is locally represented as S =
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yi ∂
∂xi − 2Gi(x, y) ∂

∂yi . Then S is called the adopted foliated semispray (AFS) and the metric g is called the

adopted transverse metric (ATM) if the following four conditions are satisfied:

(1) The following partial differential operator

PL =
(
dJ , dh, dΦ,∇d

)
: Sec(T ∗

v ) −→ Sec
(
⊕(4) Λ2T ∗

v

)
(4.8)

is formally integrable.

(2) gbβ = g( ∂
∂yb ,

∂
∂yβ ) = 0 .

(3) The local functions (gαβ) and (gαβ) are basic functions, i.e. they do not depend on the tangent variables
(xa, ya) .

(4) The semispray S is foliated; namely, the following identities hold:
(i) : Gα

b =
∂Gα

∂yb
= 0 , (ii) :

∂Gα

∂xb
= 0; or,

(i′) : Gb
α =

∂Gb

∂yα
= 0 , (ii′) :

∂Gb

∂xα
= 0.

(4.9)

Theorem 4.3 Let M be an (m + n)-dimensional manifold and F =
{
Ui, hi, T , ζij

}
be a foliated cocycle of

codimension n on M . Suppose that S = yi ∂
∂xi − 2Gi(x, y) ∂

∂yi is an AFS and g is an ATM. Then there exists

a metric gT on TM such that FT =
{
Ũi, h̃i, T̃ , ζ̃ij , gT

}
is a holonomy invariant foliated cocycle on TM .

Proof A coordinate system in M is defined by {(V, ψ) : x1, · · · , xm+n} or briefly {(V, ψ) : xi} , where V
is an open subset of M , ψ : V −→ Rm+n is a diffeomorphism of V onto ψ(V) , and (x1, · · · , xm+n) = ψ(x)

for any x ∈ V . The canonical projection of TM on M and by TxM the fiber at x ∈ M is denoted by
π , i.e. TxM = π−1(x) . The coordinate system {(V, ψ) : xi} in M defines a coordinate system {(V∗,Ψ) :

x1, · · · , xm+n, y1, · · · , ym+n} = {(V∗,Ψ) : xi, yi} in TM , where V∗ = π−1(V) and Ψ : V∗ −→ R2(m+n) is
a diffeomorphism of V∗ on ψ(V) × Rm+n , and (x1, · · · , xm+n, y1, · · · , ym+n) = Ψ(yx) , for any x ∈ V and
yx ∈ TxM . For short we denote by (x, y) the coordinates of yx . Next, consider another coordinate system
{(Ṽ, ψ̃);xi} in M such that V ∩ Ṽ ̸= ∅ . Then the local coordinates (x, y) and (x̃, ỹ) on TM are related by:

x̃i = x̃i(x1, x2, · · · , xm+n), ỹi =
∂x̃i

∂x̃j
yj . (4.10)

Consequently, from (4.10) the local frame fields { ∂

∂xi
,
∂

∂yi
} and { ∂

∂x̃i
,
∂

∂ỹi
} are related as follows:


∂

∂xi
=
∂x̃j

∂xi
∂

∂x̃j
+

∂2x̃j

∂xi∂xk
yk

∂

∂ỹj
,

∂

∂yi
=
∂x̃j

∂xi
∂

∂ỹj
.

(4.11)
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Analogously, it is inferred that the local coframe fields {dxi, dyi} and {dx̃i, dỹi} on the cotangent bundle T ∗M

of M are related by

dx̃i =
∂x̃i

∂xj
dxj , dỹi =

∂2x̃i

∂xj∂xk
yj dxk +

∂x̃i

∂xj
dyj . (4.12)

A complementary distribution HTM to V TM in TTM is called a nonlinear connection or a horizontal
distribution on TM . This connection is of special geometric significance and its existence leads to the following
decomposition:

TTM = HTM ⊕ V TM. (4.13)

Then we take a local frame field {Xi,
∂

∂yi
} on V́ ⊂ TM adapted to (4.13), i.e. Xi ∈ Γ(HTM) and

∂

∂yi
∈ Γ(V TM) . Thus, we have

∂

∂xi
= Ej

i (x, y)Xj +Gj
i (x, y)

∂

∂yj
, (4.14)

where Ej
i and Gj

i are smooth functions that are locally defined on TM . Hence, the transition matrix from the

local frame field { ∂

∂xi
,
∂

∂yi
} to

{
Xj ,

∂

∂yj
}

is

∆ =

Ej
i (x, y) 0

Gk
i (x, y) δkh

 . (4.15)

As ∆ is a nonsingular matrix it follows that the (m+n)×(m+n) matrix [Ej
i (x, y)] is also a nonsingular matrix.

Thus, the set of local vector fields
{ δ

δx1
, · · · , δ

δxm+n

}
given by δ

δxi
= Ej

i (x, y)Xj is a basis in Γ(HTM |Ú ) . In

this way (4.14) becomes

δ

δxi
=

∂

∂xi
−Gj

i (x, y)
∂

∂yj
. (4.16)

Denote by G̃k
h the functions in (4.16) given with respect to another coordinate system {( ˜́V, ˜́Φ); x̃i, ỹi} on TM

such that V́ ∩ ˜́V ≠ ∅ . Then, by using (4.11) and (4.16), we obtain
Gj

i (x, y)
∂x̃k

∂xj
= G̃k

h(x̃, ỹ)
∂x̃h

∂xi
+

∂2x̃k

∂xi∂xh
yh,

δ

δxi
=
∂x̃j

∂xi
δ

δx̃j
.

(4.17)

A nonlinear connection HTM enables us to define an almost product structure on TM as follows. Consider a
vector field X on TM . Then locally we have

X = Xi δ

δxi
+ Ẋi ∂

∂yi
, (4.18)
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where Xi and Ẋi satisfy

X̃j =
∂x̃j

∂xi
Xi , ˙̃Xj =

∂x̃j

∂xi
Ẋi (4.19)

with respect to (4.10). Then we define


Q : Γ(TTM) −→ Γ(TTM)

QX = Ẋi δ

δxi
+Xi ∂

∂yi
.

(4.20)

By (4.11), (4.17), and (4.19) it follows from (4.20) that QX does not depend on the local chart on TTM .
Moreover, Q2 = I and therefore Q is an almost product structure on TM . We call Q the almost product
structure corresponding to the nonlinear connection HTM [7]. Furthermore, denote by h and v the projection
morphisms of TTM to HTM and V TM , respectively. Then we have

(a) : Q ◦ h = v ◦Q and (b) : Q ◦ v = h ◦Q. (4.21)

By means of Q and v we define the following F(TM) -bilinear mapping: R1 : Γ(V TM)× Γ(V TM) −→ Γ(V TM)

R1(X,Y ) = −v[QX,QY ], ∀ X,Y ∈ Γ(V TM).
(4.22)

According to [7] we see that R1 is a tensor field of Type (1, 2) . By direct calculations using (4.22), (4.20), and
(4.16), the following significant relation is deduced:

R1(
∂

∂yj
,
∂

∂yi
) = [

δ

δxi
,
δ

δxj
] = Rk

ij

∂

∂yk
, (4.23)

where we have set

Rk
ij =

δGk
i

δxj
−
δGk

j

δxi
. (4.24)

From (4.22) it follows that R1 = (Rk
ij) is the obstruction to the integrability of the horizontal distribution.

More precisely, we have the following result:
The horizontal distribution HTM is involutive if and only if R1 = 0 on TM , or equivalently, on each coordinate
neighborhood V́ ⊂ TM we have Rk

ij = 0 . Ultimately, by using (4.16) and direct calculations, we obtain:

[
δ

δxi
,
∂

∂yj
] =

∂Gk
i

∂yj
∂

∂yk
. (4.25)

Since the semispray S is foliated, Gb
α = 0 . Thus, from (4.6), it can be deduced that δ

δxα
=

∂

∂xα
− Gβ

α

∂

∂yβ
.

Also, by definition (4.2), the following relations can be deduced: ∂Gβ
α

∂xa
=

∂2Gβ

∂xa∂yα
= 0 and ∂Gβ

α

∂ya
=

∂2Gβ

∂ya∂yα
= 0 .
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Thus, Gβ
α does not depend on tangent variables (xa, ya) . Let g be the ATM (Definition 4.2). By applying g ,

a metric gT on TM can be defined as follows:

gTIJ(x, y) =

gij(x, y) 0

0 gij(x, y)

 ,

I, J ∈ {1, · · · , 2(m+ n)} , i, j ∈ {1, · · · ,m+ n}.

(4.26)

This means that with respect to the frame field { δ
δxi ,

∂
∂yi } , which is locally defined on TM , the following can

be stated:

gT(
δ

δxi
,
δ

δxj
) = gT(

∂

∂yi
,
∂

∂yj
) = gij , gT(

δ

δxi
,
∂

∂yj
) = 0. (4.27)

As demonstrated above, { δ

δxα
,
∂

∂yβ
}, α, β ∈ {m+ 1, ...,m+ n}, is a local base of foliated vector fields for the

foliation FT . Furthermore:

gT(
δ

δxα
,
δ

δxβ
) = gT(

∂

∂yα
,
∂

∂yβ
) = gαβ , gT(

δ

δxα
,
∂

∂yβ
) = 0. (4.28)

Since gαβ is a basic function, by definition it can be inferred that gT is a transverse metric for the foliation
FT . Hence, FT =

{
Ũi, h̃i, T̃ , ζ̃ij , gT

}
is a holonomy invariant foliated cocycle on TM . 2

Corollary 4.4 Let F =
{
Ui, hi, T , ζij

}
be a foliated cocycle of codimension n on M and FT =

{
Ũi, h̃i, T̃ , ζ̃ij

}
be the foliated cocycle on the tangent space TM . Suppose that S = yi ∂

∂xi −2Gi(x, y) ∂
∂yi is an AFS. Then V FT

and HFT induce the nonlinear connection (Ga
b ) a, b ∈ {1, ...,m} , on the leaves of FT .

Proof Since the semispray S is an AFS, according to relation (4.9) we have Gβ
a = 0 . Thus, from relation

(4.6), it can be inferred that:

δ

δxa
=

∂

∂xa
−Gb

a

∂

∂yb
,

which means that HFT is locally spanned by the vector fields { δ
δxa } a ∈ {1, ...,m}. Since { ∂

∂ya } is a local base

in Γ(V FT) , we have: T (FT) = V FT ⊕HFT , where HFT = T (FT) ∩HTM and V FT = T (FT) ∩ V TM . 2

Theorem 4.5 Let M be an (m+ n)-dimensional smooth manifold with m,n > 0 and F =
{
Ui, hi, T , ζij

}
be

a parallel nondegenerate foliated cocycle of codimension n on M . Suppose that S = yi ∂
∂xi − 2Gi(x, y) ∂

∂yi is an

AFS and let g̃ be the metric associated to semispray S . Then for any (x, y) ∈ TM there exists a neighborhood
Ω∗

T ⊂ TM and two submanifolds ΩT and Ω⊥
T of dimensions 2m and 2n admitting the metric structures g

and g⊥ such that (Ω∗
T, g̃) is the product of (ΩT, g) and (Ω⊥

T , g
⊥) . Furthermore, there exist two complementary

orthogonal totally geodesic and holonomy invariant foliated cocycles on TM .

96



AHANGARI/Turk J Math

Proof Assume that F is a parallel nondegenerate m -foliation on an (m + n) -dimensional manifold (M, g̃) .
Hence, the corresponding tangent distribution D to F is nondegenerate and parallel with respect to the
Levi-Civita connection ∇̃ on (M, g̃) . Consequently, the distribution D⊥ is parallel, nondegenerate, and
complementary orthogonal to D . This yields the second parallel n -foliation F⊥ . Hence, (M,D,D⊥) can
be reckoned as an almost product manifold and the pair (F ,F⊥) is a ∇̃ -grid. Now consider L and Ĺ to be
the leaves through x∗ of F and F⊥ , respectively. Then there is a foliated chart (V, σ) about x∗ with local
coordinates (x1, · · · , xm, xm+1, · · · , xm+n) such that each plaque of F is given by the following equations:

xm+1 = cm+1, · · · , xm+n = cm+n. (4.29)

Moreover, since x∗ is the origin of the coordinate system, we may take (x1, · · · , xm, 0, · · · , 0) as local coor-
dinates on V ∩ L . Similarly, we take another foliated chart (W, θ) about x∗ with respect to F⊥ such that
(0, · · · , 0, xm+1, · · · , xm+n) are local coordinates on W ∩ Ĺ . Then we choose the open neighborhoods Ω and
Ω⊥ of x∗ in L and Ĺ such that Ω × Ω⊥ ⊂ V ∩W . Thus, Ω∗ = Ω × Ω⊥ is the required neighborhood of x∗

in M . It is worth mentioning that we can take (x1, · · · , xm, xm+1, · · · , xm+n) as a coordinate system on Ω∗

compatible with both foliations F and F⊥ . That is to say:

D = span{ ∂

∂x1
, · · · , ∂

∂xm
}, D⊥ = span{ ∂

∂xm+1
, · · · , ∂

∂xm+n
} (4.30)

on Ω∗ . The coordinate system {(V × W, σ × θ) : (xa, xα)} on Ω∗ = Ω × Ω⊥ defines a coordinate system
{(V∗ ×W∗,Σ×Θ) : (xa, xα; ya, yα)} on TΩ∗ ≃ TΩ⊕TΩ⊥ , where for any x ∈ V and yx ∈ TxΩ , we have V∗ =

π−1
1 (V) and Σ : V∗ → R2m is a diffeomorphism of V∗ on σ(V) × Rm , and (x1, . . . , xm; y1, . . . , ym) = Σ(yx) .

Correspondingly, for any v ∈ W and vu ∈ TuM2 , we have W∗ = π−1
2 (W) and Θ : W∗ → R2n is a diffeomor-

phism of W∗ on θ(W) × Rn and (xm+1, . . . , xm+n; ym+1, . . . , ym+n) = Θ(vu) . For simplicity, we denote by
(x, y) = (x1, . . . , xm; y1, . . . , ym) the coordinate of yx (likewise (u, v) = (xm+1, . . . , xm+n; ym+1, . . . , ym+n) the
coordinate of vu ). Therefore, we have (x, u, y, v) ∈ TxΩ⊕ TuΩ

⊥ . Now we consider another coordinate system,
{(Ṽ, W̃, σ̃ × θ̃) : (x̃a, x̃α)} on Ω∗ = Ω× Ω⊥ , such that V ∩ Ṽ ̸= ∅ and W ∩ W̃ ̸= ∅ . Then the local coordinates
(x, u, y, v) and (x̃, ũ, ỹ, ṽ) on TΩ∗ = TΩ⊕ TΩ⊥ are related by [7]:


x̃a = x̃a(x1, . . . , xm), x̃α = x̃α(xm+1, . . . , xm+n),

ỹa =
∂x̃a

∂xb
yb, ỹα =

∂x̃α

∂xβ
yβ . (4.31)

In the following, we will denote Ω∗
T = TΩ∗ , ΩT = TΩ , and Ω⊥

T = TΩ⊥ . If { ∂

∂xa
,
∂

∂ya
} and { ∂

∂xα
,
∂

∂yα
} are

the basis on ΩT and Ω⊥
T , resp., then we shall suppose that { ∂

∂xa
, ∂

∂xα
, ∂

∂ya
, ∂

∂yα
} are their lifts to ΩT × Ω⊥

T ,

respectively. As a consequence of (4.31) the local frame fields { ∂

∂xa
,
∂

∂xα
,
∂

∂ya
,
∂

∂yα
} and { ∂

∂x̃b
,
∂

∂x̃β
,
∂

∂ỹb
,
∂

∂ỹβ
}
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satisfy the following [33]:



∂

∂xa
=
∂x̃b

∂xa
∂

∂x̃b
+
∂ỹb

∂xa
∂

∂ỹb
,

∂

∂xα
=
∂x̃β

∂xα
∂

∂x̃β
+
∂ỹβ

∂xα
∂

∂ỹβ

∂

∂ya
=
∂x̃b

∂xa
∂

∂ỹb
,

∂

∂yα
=
∂x̃β

∂xα
∂

∂ỹβ

rank

 ∂x̃
i

∂xj
0

0
∂x̃α

∂xβ

 = m+ n.

(4.32)

It is worth noticing that the (m + n) -dimensional product manifold Ω∗ = Ω × Ω⊥ can be considered as the
configuration space of a dynamical system, which is governed by the following system of second-order ordinary
differential equations:


d2xa

dt2 + 2Ga(x, u,
dx
dt ,

du
dt ) = 0 1 ≤ a ≤ m,

d2xα

dt2 + 2Gα(x, u,
dx
dt ,

du
dt ) = 0 m+ 1 ≤ α ≤ m+ n,

(4.33)

where system (4.33) is defined over a local chart on Ω∗
T ≃ ΩT⊕Ω⊥

T . The functions Ga(x, u, y, v) and Gα(x, u, y, v)

are of class C∞ on Ω∗
T − {0} and only continuous on the null section. Hence, we have a collection of systems

(4.33) on every induced local chart on Ω∗
T that are compatible on the intersection of the induced local chart.

This is equivalent to the fact that under the change (4.31) of local induced coordinates on Ω∗
T , the functions

Ga(x, u, y, v) and Gα(x, u, y, v) transform as follows [33]:

2G̃b =
∂x̃b

∂xa
2Ga − ∂ỹb

∂xa
ya, 2G̃β =

∂x̃β

∂xa
2Ga − ∂ỹβ

∂xα
yα. (4.34)

Proof Now, taking into account the change of local coordinates (4.31) on TM and by considering (4.32), it
is deduced that

ya ∂
∂xa − 2Ga(x, u, y, v)

∂

∂ya
+ yα

∂

∂xα
− 2Gα(x, u, y, v)

∂

∂yα

= ỹa
∂

∂x̃a
− 2G̃a(x̃, ũ, ỹ, ṽ)∂ỹa + ỹα

∂

∂x̃α
− 2G̃α(x̃, ũ, ỹ, ṽ)

∂

∂ỹα

if and only if the functions Ga ,G̃a ,Gα , and G̃a are related by (4.34). 2

Thus, a vector field S ∈ Γ(TTM) is called a semispray or a second-order vector field if on every domain
of local charts of Ω∗

T we have a collection of the functions {Ga,Gα} such that:

S = ya
∂

∂xa
− 2Ga(x, u, y, v)

∂

∂ya
+ yα

∂

∂xα
− 2Gα(x, u, y, v)

∂

∂yα
. (4.35)
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The functions {Ga,Gα} are called the local coefficients of the semispray. Suppose that S is a semispray to
form (4.35) with local coefficients {Ga,Gα} . We put:

N = (Gi
j) =


Ga

b :=
∂Ga

∂yb
Gα

b :=
∂Gα

∂yb

Ga
β :=

∂Ga

∂yβ
Gα

β :=
∂Gα

∂yβ

 . (4.36)

Consequently, N is a nonlinear connection on Ω∗
T = ΩT ⊕ Ω⊥

T . In local coordinates the semispray induced by
the nonlinear connection N = (Gi

j) with coefficients (4.36) is defined by:

S = ya
∂

∂xa
− (Ga

by
b + Ga

βy
β)

∂

∂ya
+ yα

∂

∂xα
− (Gα

b y
b + Gα

βy
β)

∂

∂yα
. (4.37)

This means that coefficients of the induced semispray are identified as follows:

2Ga(x, u, y, v) = Ga
by

b + Ga
βy

β , 2Gα(x, u, y, v) = Gα
b y

b + Gα
βy

β .

By applying (4.36), we define: 
δ∗

δxa
=

∂

∂xa
− Gb

a

∂

∂yb
− Gβ

a

∂

∂yβ

δ∗

δxα
=

∂

∂xα
− Gb

α

∂

∂yb
− Gβ

α

∂

∂yβ
.

(4.38)

Therefore, if we put V(TM) := span{ ∂
∂ya ,

∂
∂yα } , H(TM) := span{ δ∗

δxa ,
δ∗

δxα } , then we can write TTM =

V(TM) ⊕ H(TM) . It is worth mentioning that we can take the coordinate system {(V∗ × W∗,Σ × Θ) :

(xa, xα; ya, yα)} as a coordinate system on Ω∗
T compatible with both foliations FT and F⊥

T . That is to say:

T (FT) = span
{ ∂

∂ya
,
δ∗

δxa
}
, T (F⊥

T ) = span
{ ∂

∂yα
,
δ∗

δxα
}
. (4.39)

It is clear that with respect to the above coordinate system the matrix of the local components of g̃ has the
form

[g̃ij(x, y)] =

(
gab(x, y) 0

0 gαβ(x, y),

)
, i, j ∈ {1, ...,m+ n}. (4.40)

This means that with respect to the frame field { δ
δxi

,
∂

∂yi
} , which is locally defined on TM , the following can

be stated: 

g = gab(x, y) = g̃(
δ∗

δxa
,
δ∗

δxb
) = g̃(

∂

∂ya
,
∂

∂yb
),

g̃(
δ

δxa
,
∂

∂yb
) = 0, a, b ∈ {1, ...,m}, and

g⊥ = gαβ(x, y) = g̃(
δ∗

δxα
,
δ∗

δxβ
) = g̃(

∂

∂yα
,
∂

∂yβ
),

g̃(
δ

δxα
,
∂

∂yβ
) = 0, α, β ∈ {1, ..., n}.

(4.41)
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Now, by applying the metric g̃ , the following decomposition can be reached:

TT (M) = T (FT)⊕ T (F⊥
T ). (4.42)

By π and π̃ the projection morphism can be denoted on T (FT) and T (F⊥
T ) , respectively. As stated previously

in Theorem (3.2), according to [6] with respect to the above decomposition there exist unique linear connections

∇I and ∇I⊥ on T (FT) and T (F⊥
T ) , respectively, denoted by intrinsic connections. Now, according to [6], by

considering the Levi-Civita connection ∇̃ on (TM, g̃) the following can be stated:

{
(a) : ∇I

XπY = π∇̃πXπY + π[π̃X, πY ],

(b) : ∇I
X

⊥
π̃Y = π̃∇̃π̃X π̃Y + π̃[πX, π̃Y ].

(4.43)

We call H : Γ(T (FT))× Γ(T (FT)) → Γ(T (F⊥
T )) and H̃ : Γ(T (F⊥

T ))× Γ(T (F⊥
T )) → Γ(T (FT)) , given by

{
H(πX, πY ) = π̃∇̃πXπY

H̃(π̃X, π̃Y ) = π∇̃π̃X π̃Y,
(4.44)

the second fundamental forms of T (FT) and T (F⊥
T ) , respectively. Since FT is a parallel nondegenerate foliation

on TM , then for any X,Y ∈ Γ(T (FT)) we have ∇̃XY ∈ Γ(T (FT)) . Thus, by (4.44) it follows that the second
fundamental form H of FT vanishes identically on TM . Hence, FT defines a totally geodesic foliated cocycle
on TM . Moreover, considering the fact that g̃ is parallel with respect to ∇̃ , it is inferred that

g̃(∇̃xY, Z) + g̃(Y, ∇̃xZ) = 0,

∀ X ∈ Γ(TTM), Y ∈ Γ
(
T (FT)

)
, Z ∈ Γ

(
T (F⊥

T )
)
.

(4.45)

As ∇̃xY ∈ Γ
(
T (FT)

)
, we have g̃(∇̃xY, Z) = 0 . Hence, g̃(Y, ∇̃xZ) = 0 , which implies that ∇̃xZ ∈ Γ

(
T (F⊥

T )
)
.

Thus, T (F⊥
T ) is also parallel with respect to ∇̃ and therefore integrable. In a similar way as above, for any

X,Y ∈ Γ
(
T (F⊥

T )
)

we have ∇̃xY ∈ Γ
(
T (F⊥

T )
)
. Thus, according to (4.44) it follows that the second fundamental

form H̃ of F⊥
T vanishes identically on TM . Hence, F⊥

T is also totally geodesic. Finally, by definition (4.2) we
obtain that

[
gab

]
and

[
gαβ

]
represent the matrices of two ATMs on ΩT and Ω⊥

T , respectively. Consequently,
it is demonstrated that both above foliations are holonomy invariant and the proof is completed. 2

5. Conclusions
Geometric analysis of the tangent bundle (TM, π,M) over a smooth manifold M is one of the most significant
fields of modern differential geometry and has outstanding applications in various problems, specifically in the
theory of physical fields. This paper is devoted to the thorough investigation of the holonomy invariant foliated
cocycles on the tangent space of an arbitrary (m+n) -dimensional manifold via the concept of formal integrability
as a powerful device and a significant reformulation of the inverse problem of the calculus of variations. For this
purpose, first of all a brief discussion regrading the expression of Helmholtz conditions in terms of Frö licher–
Nijenhuis formalism and partial differential operators is presented. Mainly, it is illustrated that via this approach
by applying Spencer theory a noteworthy setting is provided in order to construct the holonomy invariant
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foliated cocycles on the tangent bundle. Finally, by imposing four significant conditions on the foliated cocycle
F =

{
Ui, hi, T , ζij

}
of codimension n on M , the holonomy invariant foliated cocycle FT =

{
Ũi, h̃i, T̃ , ζ̃ij , gT

}
on the tangent space TM is constructed. Accordingly, an important geometric structure on the tangent space
is created, which is totally adapted to the Helmholtz conditions.

References

[1] Anderson I, Thompson G. The Inverse Problem of the Calculus of Variations for Ordinary Differential Equations.
Providence, RI, USA: American Mathematical Society, 1992.

[2] Antonelli PL, Bucataru I. KCC-heory of a system of second order differential equations. In: Antonelli PL, editor.
Handbook of Finsler Geometry, Vol. I. Dordrecht, the Netherlands: Kluwer Academic Publisher, 2003, pp. 83-174.

[3] Antonelli PL, Ingarden RS, Matsumoto M. The Theory of Sprays and Finsler Spaces with Applications in Physics
and Biology. Dordrecht, the Netherlands: Kluwer Academic Publisher, 1993.

[4] Antonelli PL, Miron R. Lagrange and Finsler Geometry. Applications to Physics and Biology. Dordrecht, the
Netherlands: Kluwer Academic Publisher, 1996.

[5] Beil RG. Finsler geometry and relativistic field theory. Found Phys 2003; 33: 1107-1127.

[6] Bejancu A, Farran HR. Foliations and Geometric Structures. Amsterdam, the Netherlands: Springer-Verlag, 2006.

[7] Bejancu A, Farran HR. Geometry of Pseudo-Finsler Submanifolds. Dordrecht, the Netherlands: Kluwer Academic
Publishers, 2000.

[8] Bucataru I, Dahl MF. Semi basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of
variations. J Geom Mech 2009; 1: 159-180.

[9] Bucataru I, Miron R. Finsler-Lagrange Geometry: Applications to Dynamical Systems. Bucharest, Romania: Editura
Academiei Romane, 2007.

[10] Bucataru I, Muzsnay Z. Projective metrizability and formal integrability. Symmetry Integr Geom 2011; 7: 114-22.

[11] Crampin M. On horizontal distributions on the tangent bundle of a differentiable manifold, J London Math Soc
1971; 2: 178-182.

[12] Crampin M. On the differential geometry of the Euler-Lagrange equation and the inverse problem of Lagrangian
dynamics. J Phys A-Math Gen 1981; 14: 2567-2575.

[13] Crampin M, Martinez E, Sarlet W. Linear connections for systems of second-order ordinary differential equations.
Ann Henri Poincar é 1996; 65: 223-249.
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