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Abstract: In view of the low accuracy of traditional adjustment, an improved multiple-group adjustment method in
indirect adjustment is proposed in this paper. In the process of improved multiple-group adjustment, the first group
is first adjusted, and then the adjustment result of the first group and the observation value of the second group are
adjusted together, which makes the results in the first-group adjustment meet the overall adjustment results. Finally, the
posteriori unit-weight variance value, the coordinated factor matrix of the adjustment result, and the unknown function
weight reciprocal are calculated. The experimental results show that the accuracy of multiple-group adjustment in the
indirect grouping adjustment will be more accurate than the traditional indirect adjustment method. Moreover, this
work provides important ideas and techniques for handling the goniometric triangular network of control surveys.
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1. Introduction
The error equation of indirect adjustment is [1, 4, 5]:

V
n×1

= B
n×u

x̂
n×1

−f

−f = BX0 −B0 − L,
(1.1)

whereX̂ = X0 + x̂ if the observed value X is divided into separate groups, namely:

L
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The equation (1.1) can be written as [2, 6]: V1

n1×1

V2
n2×1

 =

[
B1

B2

]
x̂−

[
f1
f2

]
, or


V1

n1×1
= B1x̂− f1

V2
n2×1

= B2x̂− f2,
(1.2)

where
{

−f1 = B1X
0 +B0

1 − L1

−f2 = B2X
0 +B0

2 − L2
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The above equations are the adjustment of the function; if equation (1.1) is divided into two groups (see
formula (2.1)), the first group will be individually adjusted, and then the adjustment results of the first group
and the observation values of the second group will be adjusted together, which will make them consistent with
the overall adjustment results. The above process is called indirect adjustment in groups [2, 7].

2. Method of indirect grouping adjustment
2.1. First adjustment

First, the error equations of the first group in equation (1.2) will be adjusted individually [3, 5]. The error
equation is V1 = B1x̂ − f1 , and the stochastic model is DL1

= s2oP
−1
1 . Then the indirect adjustment can be

expressed as [2, 4, 8]:  x̂′ = (BT
1 P1B1)

−1BT
1 f1 = N−1

1 fe1
V ′
1 = B1x̂

′ − f
Qx̂′ = P−1

x̂ = (BT
1 P1B1)

−1 = N−1
1

(2.1)

From equation (2.1), the adjustment values of the unknowns X̂ ′ in the first adjustment are:

X̂ ′ = X0 + x̂′. (2.2)

2.2. Second adjustment
The adjustment values of the unknowns in the first adjustment are treated as the approximation of the unknowns;
from error equations (1.2) and (2.1), the new error equation is obtained as follows [2, 9, 12]:{

V1 = B1x̂
′′ − f ′

1

V2 = B2x̂
′′ − f ′

2

(2.3)

Where −f ′
1 = B1X̂

′ + B0
1 − L1and − f2 = B2X̂

′ + b02 − L2 , equation (2.3) is adjusted by overall indirect
adjustment, and the normal equation is:

[
B1

B2

] [
P1 0
0 P2

] [
B1 B2

]
x̂′′ −

[
B1

B3

]T [
P1 0
0 P2

] [
f ′
1

f ′
2

]
= 0. (2.4)

Equation (2.4) is treated as:

(BT
1 P1B1 +BT

2 P2B2)x̂
′′ − (BT

1 P1f
′
1 +BT

2 P2f
′
2) = 0. (2.5)

Taking into account equation (2.3),
BT

1 P1f
′
1 = BT

1 P1V
′
1 = 0. (2.6)

Inserting equation (2.6) into equation (2.5),

(BT
1 P1B1 +BT

2 P2B2)x̂
′′ −BT

1 P2f
′
2 = 0. (2.7)

Based on equation (2.7),
x̂′′ = (BT

1 P1B1 +BT
2 P2B2)

−1BT
2 P2f

′
2. (2.8)
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According to equation (2.1), equation (2.8) can be rewritten as

x̂′′ = (Px +BT
2 P2B2)

−1BT
2 P2f

′
2. (2.9)

The adjustment value of the unknown is:

X̂ = X̂ ′ + x̂′′ = X0 + x̂′ + x̂′′. (2.10)

Equation (2.9) can be expressed by the following equation:

(Px̂′ +BT
2 P2B2)x̂

′′ −BT
2 P2f

′
2 = 0. (2.11)

Equation (2.11) comprises the following normal equation of indirect adjustment:{
V ′′
x = x̂′′

V ′′
2 = B2x̂

′′ − f ′
2

(2.12)

Here, the weight of V ′′
x is Px̂′ , and the weight of V ′′

2 is P2 .
For indirect adjustment, when the second adjustment in the group adjustment is processed, the error

equations (2.12) in the second set will be based on the first-adjustment results; at the same time, the parameter
of X̂ ′ , the unknowns in the first adjustment, needs to take part in the adjustment as the virtual correlation
observation value. Based on equation (2.12), the normal equation of (2.11) can be expressed as:

x̂′′ = (Px̂′ +BT
2 P2B2)

−1BT
2 P2f

′
2. (2.13)

According to Eqs. (2.11), (2.12), and (2.13), V ′′
2 can be obtained, which is the second solution method in the

indirect group adjustment. The observations of the second sets were not considered in the first adjustment;
thus, the error is V ′

2 = 0 , and we can obtain:

V1 = V ′
1 + V ′′

1 = B1x̂− f1 = B1(x̂
′ − x̂′′)− f1. (2.14)

Based on Eqs. (2.13) and (2.14), 
V ′
1 = B1x̂

′′

X̂ = X0 + x̂′ + x̂′′ = X̂ ′ + x̂′

V2 = V ′
2 + V ′′

2

(2.15)

Through the above deduction, it can be known that the calculation formula in the second adjustment only uses
the first-adjustment result and observation values of the second sets. Obviously, the calculation and the storage
in the group adjustment are better than the overall adjustment [9, 10, 13].

3. Accuracy evaluation
3.1. Estimation of posteriori unit-weight variance
The equation of posteriori unit-weight variance is:

σ̂2
0 =

V TPV

n1 + n2 − t
, (3.1)

where VTPV = (V ′)TPV ′ = (V ′)TPV ′′ and (V ′)TPV ′ = (V ′′
1 )TP1V

′′
1 + (V ′′

2 )TP2V
′′
2 .
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3.2. Coordinated factor matrix of adjustment result

Above all, the coordinated factor matrix of the second-adjustment result is the coordinated factor matrix of the
ultimate-adjustment result, so the coordinated factor matrix of the unknown-adjustment value array is:

QX̂ = (BT
1 P1B1 +BT

2 P2B2)
−1 = (PX̂′ +BT

2 P2B2)
−1. (3.2)

3.3. Weight reciprocal of unknown function

Let the function of the unknown-adjustment value be φ̂ = ϕ(X̂) , and after applying the complete differential,
the weight function is obtained [2, 11]:

d̂j = (
dF

dX̂
)0dX̂ = GT

XdX̂, (3.3)

where GT
X =

[
( ∂ϕ

∂X̂1
)0 ( ∂ϕ

∂X̂2
)0 ... ( ∂ϕ

∂X̂t
)0

]
; according to the propagation rule coordinated factor,

Qφ̂ = GT
XQX̂GX

. (3.4)

The variance estimation of the unknown function is:

σ̂φ̂2 = σ̂2
0Qφ̂. (3.5)

4. Recursive equations of multiple-group adjustment

For multiple-group adjustment, the result of the indirect grouping adjustment can always be taken as the
relative observation value to the next group. The adjustment method is exactly the same as the principle of
the two-group adjustment described above. Thus, it is not difficult to derive the recurrence formula of the
multiple-group adjustment under different conditions. Only considering the uncorrelated observation vectors in
each group, the recurrence equations of multiple-group adjustment are expressed as follows.

Set the error equation V = Bx̂− f to be divided into m groups:
V1 = B1x̂− f1
V2 = B2x̂− f2

...
Vm = Bmx̂− fm

(4.1)

The posteriori weight inverse matrix and the weight matrix of the observation vector are:

{
Q = diag[Q1, Q2, ..., Qm]
P = Q−1 = diag[P1, P2, ..., Pm]

(4.2)

if

Vm−1 =


V1

V2

...
Vm−1

 , Bm−1 =


B1

B2

...
Bm−1

 , fm−1 =


V1

V2

...
Vm−1

 . (4.3)
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Then equation (4.3) can be rewritten as: {
Vm−1 = Bm−1x̂− fm−1

Vm = Bmx̂− fm
(4.4)

According to Eqs. (3.2) and (4.4),  QX̂m−1 = (
m−1∑
i=1

BT
i PiBi)

−1

PX̂m−1 = Q−1

X̂m−1

(4.5)

The error equation at the m time adjustments is:

V (m)
m = Bx̂(m)

m − f ′
m, (4.6)

where −f ′
m = Fm(x̂m−1)− Lm = Bmx̂m−1 − fm .

If using the second method, the normal equation is:

(PX̂(m−1) +BT
mPmBm)x̂(m) −BT

mPmf ′
m = 0, (4.7)

which can be used to obtain 
x̂(m) = (PX̂(m−1) +BT

mPmBm)−1BT
mPmf ′

m

V
(m)
m = Bmx̂(m)− f ′

m

V
(m)
m−1 = Bm−1x̂

(m)

(4.8)

The results by the m time adjustment are:
L̇
(m)
m−1 = L̇

(m−1)
m−1 + V̇

(m)
m−1

L̂
(m)
m = Lm + V

(m)
m

X̂(m) = x̂(m−1) + x̂(m)

QX̂(m) = (PX̂(m) +BT
mPmBm)−1

(4.9)

From the above recursion results, it is clearly known that the recursion equations need to make a new adjustment
when adding a set of new observations every time an adjustment is made. However, the coefficient matrix of
the normal equation and the constant term are simultaneously scalar, which makes the solution of the normal
equation easy and feasible. Thus, the advantage of multiple-group adjustment is obvious.

5. Discussion and application analysis
In order to analyze and verify the improved multiple-group adjustment method in indirect grouping adjustment,
the goniometric triangular network of a bridge control survey is taken as the research object (Figure 1). Points
A, B, and C are the known points; initial data are listed in Table 1 and angle observations are listed in Table
2. The anglesL1 to L4 are the first-period observed values, angles L5 and L6 are second-period observations,
and the variance-covariance matrix of observations is:

Q =


2 0 0 0 0 0
0 2 −1 0 0 0
0 −1 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 −1
0 0 0 0 −1 2

 .
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Figure 1. The goniometric triangular network.

Table 1. The known point information.

Point X/m Y /m S/m α/◦′′′ To point
A 2000.00 1000.00

√
2 225 00 00 B

B 1000.00 0.00
√
2 135 00 00 C

C 0.00 1000.00

Table 2. The observation data information.

Angle L/◦′′′ Angle L/◦′′′

1 99 00 06 4 89 59 57
2 44 59 57 5 44 59 58
3 45 00 02 6 45 00 04

The coordinates’ approximate value of point P is X0
p = 1000.0(m), Y 0

p = 2000.0(m) . Based on the
method of indirect group adjustment, the calculation process of the coordinate adjustment of point P and the
observation correction is as follows:

1) First adjustment: Based on the coordinate approximate values of point P, approximate coordinate
azimuths can be obtained for each edge (see equation (5.1)) and coefficients aij and bij are as shown in
Table 3.  α0

PA = 315◦00′00′′

α0
PB = 270◦00′00′′

α0
PC = 225◦00′00′′

(5.1)

Table 3. The coefficients of error equations.

Point ∆Y 0/m ∆Y 0/m (S0)2 × 100 aij bij

P-A –1000 1000 2× 108 –1.0313 –1.0313
P-B –2000 0 4× 108 –1.0313 0
P-C –1000 –1000 2× 108 –1.0313 –1.0313
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Setting the error equation of observations V ′
1 = BT

1 x̂
′ − f1 , the coefficients and constants are listed in

Table 4.

Table 4. The coefficients and constants of error equation for observations.

Angle a/X̂p b/X̂p f1/′′ V ′
1/′′ V ′′

1 /′′ V1/′′

1 1.0313 1.0313 6.0 –1.60 –1.67 –3.3
2 –1.0313 0 –3.0 0.10 0 0.1
3 1.0313 0 2.0 0.90 0 0.9
4 –1.0313 1.0313 –3.0 1.60 –1.67 –0.1

2) Second adjustment: the normal equation of the second adjustment is expressed as:

(NX +BT
2 P2B2)x̂

′′ −BT
2 P2f2 = 0, (5.2)

where NX = BT
1 P1B1 =

[
1.7728 0

0 1.9636

]
, BT

2 P2B2 =

[
0 0
0 2.1272

]
, BT

2 P2f2 =

[
0

−5.1565

]
, f2 =

f2 −B2x̂
′ =

[
−0.50
5.50

]
.

By x̂′′ and the equation V ′′
1 = B1x̂

′′ , we can obtain V ′′
1 , and the results are shown in Table 4. From the

preceding calculation results, the coordinate result of point P is:

{
X̂P = 1000.028(m)

ŶP = 1999.998(m)
(5.3)

In order to facilitate a comparison with the results of multiple-group adjustment, the coordinates of point P are
calculated with the indirect adjustment method, giving:

{
X̂P = 1000.032(m)

ŶP = 1999.994(m)
(5.4)

From the above results for point P, it is known that the errors of approximate value and indirect adjustment
results in X and Y, respectively, are 0.032m and −0.006m , and the errors of approximate value and multiple-
group adjustment in the indirect grouping adjustment in X and Y, respectively, are 0.028m and −0.002m ;
the error curves are shown in Figure 2 and Figure 3. It can be seen from the figures that the accuracy of
the multiple-group adjustment in the indirect group adjustment (the method proposed in this paper) is higher
than that of the indirect adjustment method and approximate values. Thus, it can be seen that the proposed
multiple-group adjustment method is more feasible and advantageous.

6. Conclusions
In this paper, we propose a multiple-group adjustment in indirect grouping adjustment. It is not difficult to see
from the recursion formula presented above that the coefficient matrix of the normal equation and the constant
term are simultaneously scalar, which makes the solution of the normal equation easy and feasible. Compared
with the traditional indirect adjustment method, the method of multiple-group adjustment in indirect grouping
adjustment has greater advantages. It is also worth noting that the accuracy of multiple-group adjustment
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Figure 2. Error curve of approximate value and indirect adjustment result.

Figure 3. Error curve of approximate value and multiple adjustment in indirect grouping adjustment result.

in the indirect grouping adjustment will be more accurate than the traditional indirect adjustment method.
Moreover, this paper provides important ideas and techniques for handling the goniometric triangular network
of control surveys.
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