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Abstract: For any odd prime p such that pm ≡ 1 (mod 4) , the class of Λ -constacyclic codes of length 4ps over the

finite commutative chain ring Ra =
Fpm [u]

⟨ua⟩ = Fpm + uFpm + · · · + ua−1Fpm , for all units Λ of Ra that have the form

Λ = Λ0+uΛ1+ · · ·+ua−1Λa−1 , where Λ0,Λ1, . . . ,Λa−1 ∈ Fpm , Λ0 ̸=0, Λ1 ̸=0 , is investigated. If the unit Λ is a square,
each Λ -constacyclic code of length 4ps is expressed as a direct sum of a −λ -constacyclic code and a λ -constacyclic
code of length 2ps . In the main case that the unit Λ is not a square, we show that any nonzero polynomial of degree

< 4 over Fpm is invertible in the ambient ring Ra[x]

⟨x4ps−Λ⟩ and use it to prove that the ambient ring Ra[x]

⟨x4ps−Λ⟩ is a chain

ring with maximal ideal ⟨x4 − λ0⟩ , where λps

0 = Λ0. As an application, the number of codewords and the dual of each
λ -constacyclic code are provided. Furthermore, we get the Rosenbloom–Tsfasman (RT) distance and weight distributions
of such codes. Using these results, the unique MDS code with respect to the RT distance is identified.
Key words: RT distance, constacyclic codes, dual codes, chain rings

1. Introduction
Let p be a prime number and Fpm the finite field. An [n,k] linear code C over Fpm is a k -dimensional subspace
of Fn

pm . A linear code C of length n over Fpm is called a λ-constacyclic code if it is an ideal of the quotient ring
Fpm [x]
⟨xn−λ⟩ , where the generator polynomial g(x) is the unique monic polynomial of minimum degree in the code,

which is a divisor of xn − λ. In the case of λ = 1, those λ -constacyclic codes are called cyclic codes, and when
λ = −1, such λ -constacyclic codes are called negacyclic codes. Cyclic and negacyclic codes are interesting from
both theoretical and practical perspectives, which have been well studied since the late 1960s.

When the code of length n is relatively prime to the characteristic of the field F, these codes are said to
be simple root codes; otherwise, they are called repeated-root codes, which were first studied in 1967 by Berman
[5]. Many authors studied repeated-root codes over finite fields ([28, 33, 44]). However, repeated-root codes were
∗dinhquanghai@tdtu.edu.vn
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investigated in the most generality in the 1990s by Castagnoli et al. [11] and van Lint [47], where they showed
that repeated-root cyclic codes have a concatenated construction and are asymptotically bad. Nevertheless,
such codes are optimal in a few cases, which motivates researchers to further study this class of codes (see, for
example, [36]).

Codes over finite rings have been intensively studied since the 1990s because of their new role in algebraic
coding theory and their successful applications. In an important paper [29], Hammons et al. proved that certain
good nonlinear codes such as Kerdock and Preparata codes can be constructed from linear codes over Z4 via
the Gray map. Since then, codes over finite chain rings have received attention. Since 2003, special classes of
repeated-root codes over certain classes of finite chain rings have been studied by numerous other authors (see,
for example, [1, 6, 22]).

After the realization in the 1990s [10, 29, 35] that many important yet seemingly nonlinear codes over
finite fields are actually closely related to linear codes over the ring of integers modulo four, codes over Z4 in
particular and codes over finite commutative chain rings in general have developed rapidly in recent decade
years. Constacyclic codes over a finite commutative chain ring have been studied by many authors (see, for
example, [2, 9, 37, 46]). The structure of constacyclic codes is also investigated over a special family of finite

chain rings of the form Fpm + uFpm . For example, the structure of F2[u]
⟨u2⟩ is interesting, because this ring lies

between F4 and Z4 in the sense that it is additively analogous to F4 and multiplicatively analogous to Z4 .
Codes over F2[u]

⟨u2⟩ have been extensively studied by many researchers, whose works include cyclic and self-dual

codes [7], decoding of cyclic codes [8], type II codes [26], duadic codes [32], and repeated-root constacyclic codes
[15].

Recently, Dinh, in a series of papers ([17–19]), determined the generator polynomials of all constacyclic
codes of lengths 2ps , 3ps , and 6ps over finite fields Fpm . The class of finite rings of the form Fpm + uFpm

has been widely used as alphabets of certain constacyclic codes. Therefore, certain classes of repeated-root
constacyclic codes over finite chain rings are studied in some of our papers. For example, Dinh [16] classified all
constacyclic codes of length ps over Fpm + uFpm . Moreover, in 2015, Dinh et al. [25] studied negacyclic codes
of length 2ps over the ring Fpm + uFpm . Recently, Chen et al. [12] determined the algebraic structures of all
λ -constacyclic codes of length 2ps over the finite commutative chain ring Fpm +uFpm and provided the number
of codewords and the dual of every λ -constacyclic code. As a generalization of finite chain rings Fpm + uFpm

(u2 = 0) , finite chain rings of the form Ra =
Fpm [u]
⟨ua⟩ = Fpm + uFpm + · · · + ua−1Fpm (ua = 0) have been

developed as code alphabet as well. In [20], we partitioned the units of the chain ring Ra into a distinct types
and studied Type 1 constacyclic codes of length ps over Ra in detail. From this, we showed that self-dual
Λ -constacyclic codes of length ps over Ra exist if and only if a is even, and in such case, it is unique.

In a recent paper [23], we studied the algebraic structures of Type 1 Λ -constacyclic codes of length 2ps

over Ra. Moreover, Rosenbloom–Tsfasman distances and weight distributions of these codes were considered.
The aim of this paper is to generalize the study in [23] of codes of length 2ps to the case of codes of length

4ps over Ra =
Fpm [u]
⟨ua⟩ = Fpm + uFpm + · · ·+ ua−1Fpm (ua = 0). We can show that any nonzero polynomial of

degree < 4 over Fpm is invertible in the ambient ring R
⟨x4ps−Λ⟩ . Using this important result, the ambient ring

R
⟨x4ps−Λ⟩ will be proven to be a chain ring, whose maximal ideal is ⟨x4 − λ0⟩ , and the nilpotency of (x4 − λ0)

is aps.
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In 1997, Rosenbloom and Tsfasman [43] introduced a new metric, which was later named after them as
the RT metric, for vectors over a finite field as a generalization of the classical Hamming metric. Therefore,
the study of this RT metric is very significant from both a theoretical and a practical viewpoint. In recent
decades, the RT metric received the attention of many researchers. The codes on this metric were considered
with various bounds, weight distributions, MacWilliams identities, maximum distance separability, and groups
of automorphisms. In this paper, as an application, the structure of Type 1 Λ -constacyclic codes is used to
determine the RT distance and weight distributions of all such codes. From this, the unique MDS code with
respect to the RT distance is also obtained.

The rest of this paper is organized as follows. Preliminary concepts and some properties of constacyclic
codes over finite commutative rings are shown in Section 2. We introduce some results about the rings

Ra =
Fpm [u]
⟨ua⟩ and their units studied in [20] in this section. We provide the algebraic structures of Type 1

Λ -constacyclic codes of length 4ps over Ra and their duals in Section 3. In Section 4, these structures are used
to obtain the RT distance and weight distributions of all such codes. The only MDS code, with respect to the
RT distance, among these constacyclic codes is also identified.

2. Constacyclic codes over finite commutative rings

An ideal I of a ring R is called principal if there is an element a of R such that I = aR = {ar : r ∈ R}. A
ring R is a principal ideal ring if its ideals are principal. A commutative ring with identity is called a chain
ring if all its ideals form a chain under inclusion. By [22, Proposition 2.1], we have some characterizations of
chain rings as follows.

Proposition 2.1 [22, Proposition 2.1] Let R be a finite commutative ring. Then the following conditions are
equivalent:

(i) R is a local ring and the maximal ideal M of R is principal, i.e. M = ⟨γ⟩ for some γ ∈ R ;
(ii) R is a local principal ideal ring;
(iii) R is a chain ring whose ideals are ⟨γi⟩ , 0 ≤ i ≤ ϖ , where ϖ is the nilpotency of γ .
For a unit λ of R , the λ -constacyclic (λ -twisted) shift τλ on Rn is the shift

τλ(x0, x1, . . . , xn−1) = (λxn−1, x0, x1, . . . , xn−2),

and a code C is said to be λ -constacyclic if τλ(C) = C , i.e. if C is closed under the the λ -constacyclic shift
τλ .

The codeword c = (c0, c1, . . . , cn−1) is represented by its polynomial representation c(x) = c0+c1x+· · ·+

cn−1x
n−1 , using the obvious one-to-one correspondence, so multiplication by x in the ring Fpm [x]

⟨xn−λ⟩ corresponds

to a λ -constacyclic shift of c(x). From this, we have the following result that appeared in [30].

Proposition 2.2 A linear code C of length n is λ-constacyclic over R if and only if C is an ideal of R[x]
⟨xn−λ⟩ .

The inner product of vectors x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) ∈ Rn is defined by

x · y = x0y0 + x1y1 + · · ·+ xn−1yn−1.

Once we have specified a family of codes called the dual of a code C to be

C⊥ = {x | x · y = 0,∀y ∈ C},
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a code C is called self-orthogonal if C ⊆ C⊥ , and it is called self-dual if C = C⊥ . An important result is cited
here to use later on.

Proposition 2.3 Let p be a prime and R be a finite chain ring of size pλ . The number of codewords in any
linear code C of length n over R is pk for some integer k ∈ {0, 1, . . . , λn} . Moreover, the dual code C⊥ has
pl codewords, where k + l = λn , i.e. |C| · |C⊥| = |R|n .

The Hamming weight of x is the number of nonzero components of x denoted by wtH(x) for every word
x = (x0, x1, . . . , xn−1) ∈ Rn . The Hamming distance d(x, y) of two words x, y is the number of components
in which they differ, which is the Hamming weight wtH(x − y) of x − y . For a nonzero linear code C , the
Hamming weight and the Hamming distance d(C) are the same. They are defined as the smallest Hamming
weight of nonzero codewords of C :

d(C) = min{wtH(x) | x ̸= 0, x ∈ C}.

The zero code is conventionally said to have Hamming distance 0.
For a unit λ of R , the λ -constacyclic (λ -twisted) shift τλ on Rn is the shift

τλ(x0, x1, . . . , xn−1) = (λxn−1, x0, x1, . . . , xn−2),

and a code C is said to be λ -constacyclic if τλ(C) = C , i.e. if C is closed under the the λ -constacyclic shift τλ .
In the case of λ = 1 , those λ -constacyclic codes are called cyclic codes, and when λ = −1 , such λ -constacyclic
codes are called negacyclic codes.

Each codeword c = (c0, c1, . . . , cn−1) is customarily identified with its polynomial representation c(x) =

c0 + c1x + · · · + cn−1x
n−1 , and the code C is in turn identified with the set of all polynomial representations

of its codewords. Then in the ring R[x]
⟨xn−λ⟩ , xc(x) corresponds to a λ -constacyclic shift of c(x) . From this, the

following fact is straightforward:

Proposition 2.4 A linear code C of length n is λ-constacyclic over R if and only if C is an ideal of R[x]
⟨xn−λ⟩ .

We know that the dual of a cyclic code is a cyclic code, and the dual of a negacyclic code is a negacyclic
code. In general, the dual of a λ -constacyclic code is a λ−1 -constacyclic code (see, for example, [16, 18]).

The following result is also a fact that appeared in [16, 18].

Proposition 2.5 Let R be a finite commutative ring, λ be a unit of R , and

a(x) = a0 + a1x+ · · ·+ an−1x
n−1, b(x) = b0 + b1x+ · · ·+ bn−1x

n−1 ∈ R[x].

Then a(x)b(x) = 0 in R[x]
⟨xn−λ⟩ if and only if (a0, a1, . . . , an−1) is orthogonal to (bn−1, bn−2, . . . , b0) and all its

λ−1 -constacyclic shifts.
For a nonempty subset S of the ring R , the annihilator of S , denoted by ann(S) , is the set

ann(S) = {f | fg = 0, for all g ∈ S }.

Then ann(S) is an ideal of R .
For a polynomial f of degree k , the polynomial xkf(x−1) is called the reciprocal polynomial of polynomial

f , and it is denoted by f∗ . Suppose that f(x) = a0 + a1x + · · · + ak−1x
k−1 + akx

k. Then f∗(x) =
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xk(a0 + a1x
−1 + · · ·+ ak−1x

−(k−1) + akx
−k) = ak + ak−1x+ · · ·+ a1x

k−1 + a0x
k. Note that (f∗)∗ = f if and

only if the constant term of f is nonzero, if and only if deg(f) = deg(f∗) . We denote A∗ = {f∗(x) | f(x) ∈ A} .
It is easy to see that if A is an ideal, then A∗ is also an ideal. Since the dual of a λ -constacyclic code is a
λ−1 -constacyclic code, C⊥ is a λ−1 -constacyclic code of length n over R and hence C⊥ is an ideal of the
ring R[x]

⟨xn−λ−1⟩ , by Proposition 2.4. It is clear that ann∗(C) is also an ideal of R[x]
⟨xn−λ−1⟩ . Therefore, applying

Proposition 2.5, we can conclude that g(x) ∈ ann∗(C) if and only if g(x) = f∗(x) for some f(x) ∈ ann(C) , if
and only if g(x) ∈ C⊥ . Then we have the following result.

Proposition 2.6 Let R be a finite commutative ring and λ be a unit of R . Assume that C is a λ-constacyclic
code of length n over R . Then the dual C⊥ of C is ann∗(C) .

In [20], the units of Ra are separated into a distinct types. A unit λ = λ0+uλ1+ · · ·+ua−1λa−1 of Ra

is said to be of type k if k is the smallest index such that λk ̸=0 for an integer k ∈ {1, . . . , a− 1} . Moreover,
if λ0 = 1 , then 1 + uλ1 + · · · + ua−1λa−1 is said to be of type k∗ . If λi = 0 for all 1 ≤ i ≤ a − 1 , i.e. the
unit is of the form λ = λ0 ∈ Fpm , we say that λ is of type 0 (or type 0∗ if λ0 = 1). Ra has pm − 1 units of
type 0 and (pm − 1)2pm(a−k−1) units of type k, showing that Ra has pm − 1 type 0 constacyclic codes and
(pm − 1)2pm(a−k−1) type k constacyclic codes.

We now suppose that Λ is a unit of type k of Ra . Then Λ can be expressed as follows:

Λ = Λ0 + ukΛk + · · ·+ ua−1Λa−1,

where Λ0,Λk, . . . ,Λa−1 ∈ Fpm , Λ0 ̸=0, Λk ̸=0 , and 1 ≤ k ≤ a − 1 . Let λ = 1 + ukλk + · · · + ua−1λa−1 , for
k ≤ i ≤ a− 1 , λi = ΛiΛ

−1
0 ∈ Fpm . Then we can see that λ is a unit of type k∗ such that Λ = Λ0λ . It is easy

to verify that in the case of Λ being a unit of type 0 and λ of type 0∗ , we also have Λ = Λ0λ . The unit of Λ

is determined in the following proposition.

Proposition 2.7 [20] Let Λ = Λ0 + uΛ1 + · · · + ua−1Λa−1 be a unit of Ra and t be the smallest positive
integer such that ptm ≥ a . Then:

(a) Λ−1 = Λptm−1Λ−1
0 .

(b) If Λ is of type k , for 1 ≤ k ≤ a − 1 , i.e. Λ = Λ0 + ukΛk + · · · + ua−1Λa−1 , where Λ0 ̸=0, Λk ̸=0 , then
Λ−1 is also of type k . More precisely,

Λ−1 = Λ−1
0 + ukΛ′

k + · · ·+ ua−1Λ′
a−1,

where Λ′
k ̸=0 . If Λ is of type 0 , i.e. Λ = Λ0 , then Λ−1 = Λ−1

0 , which is of type 0 . In particular, for
0 ≤ ℓ ≤ a− 1 , Λ is of type ℓ (resp. type ℓ∗ ) if and only if Λ−1 is of type ℓ (resp. type ℓ∗ ).

(c) Let Λ be of type k for 1 ≤ k ≤ a−1 . If Λ = Λ−1 then p = 2 , and k ≥ a/2 (if a is even) or k ≥ ⌊a/2⌋+1

(if a is odd). More precisely, in such a case, the units Λ such that Λ = Λ−1 are precisely units of the
form

Λ = 1 +

a−1∑
i=a/2

uiΛi
i if a is even, or
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Λ = 1 +

a−1∑
i=⌊a/2⌋+1

uiΛi
i if a is odd,

where Λi ∈ F2m

3. Type 1 Λ-constacyclic codes of length 4ps over Ra

In this paper, we study Λ -constacyclic codes of length 4ps over Ra and its dual, where Λ is a unit of Type 1

of Ra, i.e. Λ has the following form:

Λ = Λ0 + uΛ1 + · · ·+ ua−1Λa−1,

where Λ0,Λ1, . . . ,Λa−1 ∈ Fpm , Λ0 ̸=0, Λ1 ̸=0 . It is well known from Proposition 2.4 that these codes are ideals
of the ring

Sa(s,Λ) =
Ra[x]

⟨x4ps − Λ⟩
.

Applying Proposition 2.7, if Λ is a unit of Type 1, then Λ−1 is also a unit of Type 1 . Hence, Λ−1 can be
expressed as follows:

Λ−1 = Λ−1
0 + uΛ′

1 + · · ·+ ua−1Λ′
a−1,

where Λ′
1 ̸=0 .

Suppose that unit Λ is a square in Ra . It implies that there exists a unit λ ∈ Ra such that Λ = λ2, i.e.
Λ = (λ0 + uλ1 + · · · + ua−1λa−1)

2. Since Λ0 ̸= 0 and Λ1 ̸= 0, it is easy to see that λ0 ̸= 0 and λ1 ̸= 0. This
means that λ is also a unit of Type 1. Then we have

x4ps

− Λ = x4ps

− λ2 = (x2ps

+ λ)(x2ps

− λ).

Hence, by the Chinese remainder theorem, we can express Sa(s,Λ) as follows:

Sa(s,Λ) =
Ra[x]

⟨x2ps + λ⟩
⊕ Ra[x]

⟨x2ps − λ⟩
.

This shows that all ideals of Sa(s,Λ) are of the form A⊕B , where A and B are ideals of Ra[x]
⟨x2ps+λ⟩ and Ra[x]

⟨x2ps−λ⟩ ,

respectively. It is clear that they are −λ - and λ -constacyclic codes of length 2ps over Ra . Therefore, a Type
1 Λ -constacyclic code of length 4ps over Ra can be written as a direct sum of C+ and C− :

C = C+ ⊕ C−,

where C+ and C− are ideals of Ra[x]
⟨x2ps+λ⟩ and Ra[x]

⟨x2ps−λ⟩ , respectively. Hence, we can obtain Λ -constacyclic codes

C of length 4ps over Ra from that of the direct summands C+ and C− because the classification, detailed
structure, and number of codewords of λ and −λ constacyclic codes of length 2ps were investigated in [23].
This implies that the dual code C⊥ of C is also a direct sum of the dual codes of the direct summand C⊥

+ and
C⊥

− . The following results allow us to determine the dual code C⊥ of C when Λ is a square in Ra :
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Theorem 3.1 Let the unit Λ = λ2 ∈ Ra , and let C = C+ ⊕C− be a constacyclic code of length 4ps over Ra ,

where C+ , C− are ideals of Ra[x]
⟨x2ps+λ⟩ , Ra[x]

⟨x2ps−λ⟩ , respectively. Then

C⊥ = C⊥
+ ⊕ C⊥

− .

In particular, C is a self-dual constacyclic code of length 4ps over Ra if and only if C+ , C− are a self-dual
−λ-constacyclic code and self-dual λ-constacyclic code of length 2ps over Ra , respectively.

Proof It is simple to check that C⊥
+ ⊕ C⊥

− ⊆ C⊥ . On the other hand,

|C⊥
+ ⊕ C⊥

− | = |C⊥
+ | · |C⊥

− | = |Ra|2p
s

|C+|
· |Ra|2p

s

|C−|
=

|Ra|4p
s

|C+| · |C−|
=

|Ra|4p
s

|C|
= |C⊥|.

This implies that C⊥ = C⊥
+ ⊕ C⊥

− . 2

We consider on the main case where Λ is not a square in Ra . We need an important observation given
in [23].

Proposition 3.2 [23, Proposition 3.2] Let Λ = Λ0 + uΛ1 + · · · + ua−1Λa−1 , Λ0,Λ1, . . . ,Λa−1 ∈ Fpm ,
Λ0 ̸=0, Λ1 ̸=0 , be a unit of Type 1 of Ra . Then Λ is not a square if and only if Λ0 is not a square.

Applying this, we have the following result.

Theorem 3.3 If Λ is not a square, then any nonzero polynomial of degree less than 4 in Fpm [x] is invertible
in Sa(a,Λ) .

Proof Let f(x) = ax3 + bx2 + cx + d be a nonzero polynomial in Fpm [x] , i.e. a, b, c, d ∈ Fpm such that not
all of them are 0 . We must show that f(x) is invertible in Sa(s,Λ) . It is easy to see that if a = b = c = 0 ,
then f(x) = d ̸=0 , which is invertible. We need to consider three cases where deg(f) = 1, 2 , and 3 .

Case 1: deg(f) = 1 , i.e. a = b = 0 , c ̸=0 , and f(x) = cx+ d .

In Sa(s,Λ) , we can see that

(x+ d)p
s

(x− d)p
s

(x2 + d2)p
s

= (x4 − d4)p
s

= x4ps

− d4p
s

= (Λ0 − d4p
s

) + uΛ1 + · · ·+ ua−1Λa−1.

Since Λ0 is not a square in Fpm , Λ0 − d4p
s is invertible in Fpm . This implies that (Λ0 − d4p

s

) + uΛ1 +

· · ·+ ua−1Λa−1 is invertible in R . Hence,

(x+ d)−1 = (x+ d)p
s−1(x− d)p

s

(x2 + d2)p
s

(Λ0 − d4p
s

+ uΛ1 + · · ·+ ua−1Λa−1)
−1.

From this, for any c ̸=0 in Fpm , x+ c−1d is invertible, and

(cx+ d)−1 = c−1(x+ c−1d)−1

= c−1(x+ c−1d)p
s−1(x− c−1d)p

s

(x2 + c−2d2)p
s

(Λ0 − c−4ps

d4p
s

+ uΛ1 + · · ·+ ua−1Λa−1)
−1.

Case 2: deg(f) = 2 , i.e. a = 0 , b ̸=0 , and f(x) = bx2 + cx + d . Since Λ0 ∈ Fpm , Λpm

0 = Λ0 , and

so Λptm

0 = Λ0 , for any positive integer t . By the division algorithm, there exist nonnegative integers
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Λq , Λr such that s = Λ0m + Λr , and 0 ≤ Λr ≤ m − 1 . Let λ0 = Λp(Λ+1)m−s

0 = Λpm−Λr

0 . Then

λps

0 = Λp(Λq+1)m

0 = Λ0 . Clearly, Λ0 is not a square if and only if λ0 is not a square. In Sa(s,Λ) , f(x)−1

can be expressed as follows:

f(x)−1 = (bx2 + cx+ d)−1 = b−1(x2 + b−1cx+ b−1d)−1

= b−1(x2 + c2x+ d2)
−1, where c2 = b−1c, d2 = b−1d,

= b−1(g(x))p
s−1(g(x))−ps

(x2 − c2x− d2 + c22)
−ps

(x2 − c2x− d2 + c22)
ps

, where g(x) = x2 + c2x+ d2,

= b−1(g(x))p
s−1(x2 − c2x− d2 + c22)

ps [
(g(x))(x2 − c2x− d2 + c22)

]−ps

= b−1(g(x))p
s−1(x2 − c2x− d2 + c22)

ps [
x4 + (c32 − 2c2d2)x+ (c22d2 − d22)

]−ps

= b−1(g(x))p
s−1(x2 − c2x− d2 + c22)

ps
[
x4ps

+ (c32 − 2c2d2)
ps

xps

+ (c22d2 − d22)
ps
]−1

= b−1(g(x))p
s−1(x2 − c2x− d2 + c22)

ps
[
Λ0 + uΛ1 + · · ·+ ua−1Λa−1 + (c32 − 2c2d2)

ps

xps

+ (c22d2 − d22)
ps
]−1

= b−1(g(x))p
s−1(x2 − c2x− d2 + c22)

ps
[(
λ0 + c22d2 − d22 + (c32 − 2c2d2)x

)ps

+ uΛ1 + · · ·+ ua−1Λa−1

]−1

.

This shows that f(x) is invertible if and only if λ0 + c22d2 − d22 +(c32 − 2c2d2)x is invertible. By Case 1, it
is equivalent to λ0 + c22d2 − d22 + (c32 − 2c2d2)x ̸= 0. It is routine to check that c32 − 2c2d2 = 0 if and only
if c2 = 0 or c22 = 2d2 . This implies that λ0 + c22d2 − d22 = 0 if and only if λ0 = d22 − c22d2 , i.e. λ0 = d22

(if c2 = 0), or λ0 = −d22 (if c22 = 2d2 ). This is a contradiction because −1 is a square and λ0 is not a
square. Therefore, f(x) is invertible.

Case 3: deg(f) = 3 , i.e. a ̸=0 , and f(x) = ax3 + bx2 + cx+ d .

In Sa(s,Λ) , f(x) being invertible means

f(x)−1 = (ax3 + bx2 + cx+ d)−1 = a−1(x3 + a−1bx2 + a−1cx+ a−1d)−1

= a−1(x3 + b3x
2 + c3x+ d3)

−1, where b3 = a−1b, c3 = a−1c, d3 = a−1d,

= a−1(h(x))p
s−1(h(x))−ps

(x− b3)
ps

(x− b3)
−ps

, where h(x) = x3 + b3x
2 + c3x+ d3,

= a−1(h(x))p
s−1(x− b3)

ps

[(h(x))(x− b3)]
−ps

= a−1(h(x))p
s−1(x− b3)

ps [
x4 + (c3 − b23)x

2 + (d3 − b3c3)x− b3d3
]−ps

= a−1(h(x))p
s−1(x− b3)

ps
[
x4ps

+ (c3 − b23)
ps

x2ps

+ (d3 − b3c3)
ps

xps

− bp
s

3 dp
s

3

]−1

= a−1(h(x))p
s−1(x− b3)

ps
[
Λ0 + uΛ1 + · · ·+ ua−1Λa−1 + (c3 − b23)

ps

x2ps

+ (d3 − b3c3)
ps

xps

− bp
s

3 dp
s

3

]−1

= a−1(h(x))p
s−1(x− b3)

ps
[(
(c3 − b23)x

2 + (d3 − b3c3)x+ (λ0 − b3d3)
)ps

+ uΛ1 + · · ·+ ua−1Λa−1

]−1

.

Therefore, f(x) is invertible if and only if (c3 − b23)x
2 + (d3 − b3c3)x+ (λ0 − b3d3) is invertible, which is,

by Case 2, equivalent to
(c3 − b23)x

2 + (d3 − b3c3)x+ (λ0 − b3d3) ̸= 0.

568



DINH et al./Turk J Math

In order for (c3−b23)x
2+(d3−b3c3)x+(λ0−b3d3) = 0 , we must have c3−b23 = d3−b3c3 = λ0−b3d3 = 0 ,

i.e. c3 = b23 , d3 = b3c3 , and λ0 = b3d3 . It follows that λ0 = b3d3 = b23c3 = b43 , which is impossible since
λ0 is not a square. Hence, f(x) is invertible.

2

Note that in Sa(s,Λ) , (x4 − λ0)
ps

= x4ps − Λ0 = uΛ1 + · · ·+ ua−1Λa−1, and hence we get:

Lemma 3.4 In Sa(s,Λ) , we have ⟨(x4 − λ0)
ps⟩ = ⟨u⟩ . In particular, x4 − λ0 is nilpotent with nilpotency

index aps .
Any element f(x) of Rλ,β can be viewed as a polynomial of degree up to 4ps − 1 of R[x] , and so

f(x) = f1(x)+uf2(x)+ · · ·+ua−1fa(x) , where f1(x), f2(x), . . . , fa(x) are polynomials of degrees up to 4ps− 1

of Fpm [x] . Thus, f(x) can be uniquely expressed as

f(x) =

ps−1∑
i=0

(a0ix
3 + b0ix

2 + c0ix+ d0i)(x
4 − λ0)

i + u

ps−1∑
i=0

(a1ix
3 + b1ix

2 + c1ix+ d1i)(x
4 − λ0)

i + . . .

+ ua−1

ps−1∑
i=0

(a(a−1)ix
3 + b(a−1)ix

2 + c(a−1)ix+ d(a−1)i)(x
4 − λ0)

i

= (a00x
3 + b00x

2 + c00x+ d00) + (x4 − λ0)

ps−1∑
i=1

(a0ix
3 + b0ix

2 + c0ix+ d0i)(x
4 − λ0)

i−1+

+ u

ps−1∑
i=0

(a1ix
3 + b1ix

2 + c1ix+ d1i)(x
4 − λ0)

i + · · ·+

+ ua−1

ps−1∑
i=0

(a(a−1)ix
3 + b(a−1)ix

2 + c(a−1)ix+ d(a−1)i)(x
4 − λ0)

i,

where aji, bji, cji, dji ∈ Fpm for all j = 0, . . . , a− 1 .
By Lemma 3.4, u ∈ ⟨x4 − λ0⟩ , and so f(x) can be written as

f(x) = (a00x
3 + b00x

2 + c00x+ d00) + (x4 − λ0)g(x).

Thus, f(x) is noninvertible if and only if a00 = b00 = c00 = d00 = 0 , i.e. f(x) ∈ ⟨x4 − λ0⟩ . It means that
⟨x4 − λ0⟩ forms the set of all noninvertible elements of Ra . Thus, Sa(s,Λ) is a local ring with maximal ideal
⟨x4 − λ0⟩ , and hence, by Proposition 2.1, Sa(s,Λ) is a chain ring. We summarize the discussion above in the
following theorem.

Theorem 3.5 The ring Sa(s,Λ) is a chain ring with maximal ideal ⟨x4 − λ0⟩ , whose ideals are

Sa(s,Λ) = ⟨1⟩ ⊋ ⟨x4 − λ0⟩ ⊋ · · · ⊋ ⟨(x4 − λ0)
aps−1⟩ ⊋ ⟨(x4 − λ0)

aps

⟩ = ⟨0⟩.

By using Theorem 3.5, we can now give the structure of Type 1 Λ -constacyclic codes of length 4ps over
Ra and their sizes as follows.
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Theorem 3.6 Type 1 Λ-constacyclic codes of length 4ps over Ra are precisely the ideals ⟨(x4 − λ0)
i⟩ ⊆ Ra ,

where 0 ≤ i ≤ aps . Each Type 1 Λ-constacyclic code ⟨(x4 − λ0)
i⟩ has p4m(aps−i) codewords.

For a Type 1 Λ -constacyclic code C = ⟨(x4−λ0)
i⟩ ⊆ Ra of length 4ps over Ra , by Proposition 2.5 and

Proposition 2.7, its dual C⊥ is a Type 1 Λ−1 -constacyclic code of length 4ps over Ra . This means

C⊥ ⊆ Sa(s,Λ
−1) =

Ra[x]

⟨x4ps − Λ−1⟩
.

Hence, Lemma 3.4 and Theorem 3.5 are applicable for C⊥ and Sa(s,Λ
−1). Therefore, similar to the case of

Sa(s,Λ) , we can prove that Sa(s,Λ
−1) is also a chain ring.

Theorem 3.7 The ring Sa(s,Λ
−1) is a chain ring with maximal ideal ⟨x4 − λ−1

0 ⟩ , whose ideals are

Sa(s,Λ
−1) = ⟨1⟩ ⊋ ⟨x4 − λ−1

0 ⟩ ⊋ · · · ⊋ ⟨(x4 − λ−1
0 )ap

s−1⟩ ⊋ ⟨(x4 − λ−1
0 )ap

s

⟩ = ⟨0⟩.

In other words, Type 1 Λ−1 -constacyclic codes of length 4ps over Ra are precisely the ideals ⟨(x4 − λ−1
0 )i⟩ ⊆

Sa(s,Λ
−1) , where 0 ≤ i ≤ aps . Each Type 1 Λ−1 -constacyclic code ⟨(x4 − λ−1

0 )i⟩ ⊆ Sa(s,Λ
−1) has p4mi

codewords.
Applying Theorem 3.7, we now can describe the duals of Type 1 Λ -constacyclic codes.

Corollary 3.8 Let C be a Type 1 Λ-constacyclic code of length 4ps over Ra . Then C = ⟨(x4 − λ0)
i⟩ ⊆ Ra ,

for some i ∈ {0, 1, . . . , aps} , and its dual C⊥ is the Type 1 Λ−1 -constacyclic code

C⊥ =
⟨
(x4 − λ−1

0 )ap
s−i

⟩
⊆ Ra.

Proof Let C = ⟨(x4 − λ0)
i⟩ ⊆ Sa(s,Λ) be a Type 1 Λ -constacyclic code of length 4ps over Ra . Then C⊥

is an ideal of Sa(s,Λ
−1) . By Theorem 3.7, |C| = p4m(aps−i) , and hence, by Proposition 2.3,

|C⊥| = |Ra|4p
s

|C|
=

p4maps

p4m(aps−i)
= p4mi.

From Theorem 3.7, we have C⊥ =
⟨
(x4 − λ−1

0 )4p
s−i

⟩
⊆ Sa(s,Λ

−1). 2

4. Rosenbloom–Tsfasman distance
The RT distance was first introduced in 1997 by Rosenbloom and Tsfasman. The RT distance gives a new
distance on linear spaces over finite fields in coding theory. Well-known bounds for distances such as the
Singleton bound, the Plotkin bound, the Hamming bound, and the Gilbert bound were derived for the RT
distance. Recently, many authors have studied codes with respect to this RT metric (see, for example,
[13, 27, 31, 45]).

Let R be a finite commutative ring. Then the Rosenbloom-Tsfasman weight (RT weight) (see [43]) of an
n -tuple x = (x0, x1, . . . , xn−1) ∈ Rn is defined as follows:

wtHRT(x) =
{
1 + max{j |xj ̸= 0}, if x ̸= 0;
0, if x = 0.
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The RT distance of any two n -tuples x,y of Rn is defined as:

dRT(x,y) = wtHRT(x − y).

Suppose that C is a code of length n over R . Then we have

dRT(C) = min{dRT(c, c′) | c ̸= c′ ∈ C},

which is called the RT distance of C .
In this section the RT distances of all Λ -constacyclic codes of length 4ps over the ring Ra for any unit

Λ of Type 1 of Ra are investigated when Λ is not a square. The following result is straightforward from the
definition of the RT weight.

Proposition 4.1 Let c = (c0, c1, . . . , cn−1) ∈ Rn be a word of length n over R , and let c(x) be its polynomial
presentation. Then

wtHRT(c) =
{
1 + deg(c(x)), if c ̸= 0;
0, if c = 0.

The RT distances of Type 1 Λ -constacyclic codes of length 4ps over Ra can be completely determined.

Theorem 4.2 Let Λ be a unit of Type 1 of Ra such that Λ is not a square. Assume that C is a Λ-constacyclic
code of length 4ps over Ra , i.e. C = ⟨(x4 − λ0)

i⟩ ⊆ Sa(s,Λ) , for some i ∈ {0, 1, . . . , aps} . Then the RT
distance dRT(C) of C is completely determined as follows:

dRT(C) =


0 if i = aps

1 if 0 ≤ i ≤ (a− 1)ps

4i− 4(a− 1)ps + 1 if (a− 1)ps + 1 ≤ i ≤ aps − 1.

Proof If i = aps , it is clear that the code C is the zero code. From the definition of RT distance, we have
dRT (C) = 0. Using Lemma 3.4 and Theorem 3.5, when 0 ≤ i ≤ (a− 1)ps , we have

⟨
(x4 − λ0)

i
⟩
⊇

⟨
(x4 − λ0)

(a−1)ps
⟩
=

⟨
ua−1

⟩
.

This shows that the RT distance of the code
⟨
(x4 − λ0)

i
⟩

is 1. We now consider the case (a− 1)ps + 1 ≤ i ≤
aps − 1 . By simple calculation, we have

⟨
(x4 − λ0)

i
⟩
=

⟨
(x4 − λ0)

(a−1)ps

(x4 − λ0)
i−(a−1)ps

⟩
=

⟨
ua−1(x4 − λ0)

i−(a−1)ps
⟩
.

To prove dRT (C) = 4i − 4(a − 1)ps + 1 if (a− 1)ps + 1 ≤ i ≤ aps − 1 , we must prove that, in each ideal⟨
ua−1(x4 − λ0)

i−(a−1)ps⟩ , the generator polynomial ua−1(x4 − λ0)
i−(a−1)ps is of smallest degree, which is

4i − 4(a − 1)ps . By applying Proposition 4.1, its RT distance is 4i − 4(a − 1)ps + 1 . Assume that f(x)

is a nonzero polynomial in
⟨
ua−1(x4 − λ0)

i−(a−1)ps⟩ of degree 0 ≤ k < 4i − 4(a − 1)ps . From this, f(x) can
be expressed as

f(x) =

k∑
j=0

(ajx
3 + bjx

2 + cjx+ dj)(x
4 − λ0)

j ,
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where aj , bj , cj , dj ∈ Ra . Let ℓ (0 ≤ ℓ ≤ k) be the smallest index such that ajx
3 + bjx

2 + cjx+ dj ̸=0 . Then

f(x) = (x4−λ0)
ℓ

k∑
j=ℓ

(ajx
3+bjx

2+cjx+dj)(x
4−λ0)

j−ℓ = (x4−λ0)
ℓ(aℓx

3+bℓx
2+cℓx+dℓ)

[
1 + (x4 − λ0)g(x)

]
,

where

g(x) =


0, if ℓ = k,

(aℓx
3 + bℓx

2 + cℓx+ dℓ)
−1

k∑
j=ℓ+1

(ajx
3 + bjx

2 + cjx+ dj)(x
4 − λ0)

j−ℓ−1, if 0 ≤ ℓ < k,
∈ Sa(s,Λ).

Using Lemma 3.4 again, x4 − λ0 is nilpotent in Sa(s,Λ) , and then there is an odd integer t such that
(x4 − λ0)

t = 0 . From this, we have

1 = 1 +
[
(x4 − λ0)g(x)

]t
=

[
1 + (x4 − λ0)g(x)

] [
1− (x4 − λ0)g(x) + (x4 − λ0)

2g(x)2 − · · ·+ (x4 − λ0)
t−1g(x)t−1

]
.

This means that 1+(x4−λ0)g(x) is invertible in Sa(s,Λ) . Hence, f(x) = (x4−λ0)
ℓh(x) for some unit h(x) of

Sa(s,Λ) . It is equivalent to the statement that f(x) ∈ ⟨(x4−λ0)
ℓ⟩ , but f(x) ̸∈ ⟨(x4−λ0)

ℓ+1⟩ , and in particular,
f(x) ̸∈C . This proves that any nonzero polynomial of degree less than 4i − 4(a − 1)ps is not in C , i.e. the
smallest degree of nonzero polynomials in C is 4i− 4(a− 1)ps , as desired. 2

We can determine the RT weight distributions of the Type 1 Λ -constacyclic code.

Proposition 4.3 For (a−1)ps+1 ≤ i ≤ aps−1 , we get the RT weight distribution of the Type 1 Λ-constacyclic
code ⟨(x4 − λ0)

i⟩ ⊆ Sa(s,Λ) :

Aj =


1 if j = 0

0 if 1 ≤ j ≤ 4i− 4(a− 1)ps

(pm − 1)pmk if j = 4i− 4(a− 1)ps + 1 + k, for 0 ≤ k ≤ 4aps − 4i− 1,

where Aj is the number of codewords of RT weight j of ⟨(x4 − λ0)
i⟩ .

Proof Similar to the proof of Theorem 4.2, if (a − 1)ps + 1 ≤ i ≤ aps − 1 , then
⟨
(x4 − λ0)

i
⟩

=⟨
ua−1(x4 − λ0)

i−(a−1)ps⟩ . It follows that Aj = 0 for 1 ≤ j ≤ 4i−4(a−1)ps . When 4i−4(a−1)ps+1 ≤ j ≤ 4ps ,
say, j = 4i − 4(a − 1)ps + 1 + k , for 0 ≤ k ≤ 4aps − 4i − 1 , we can see that Aj is the number of distinct
polynomials of degree k in Fpm [x] . Therefore, Aj = (pm − 1)pmk . 2

When i = pst , 0 ≤ t ≤ a− 1 , by Lemma 3.4, the ideals ⟨(x4 − λ0)
i⟩ = ⟨ut⟩ ⊆ Sa(s,Λ) . Then the weight

distributions of such codes are given in the following proposition.

Proposition 4.4 For i = pst , 0 ≤ t ≤ a − 1 , the RT weight distribution of the Λ-constacyclic code
⟨(x4 − λ0)

i⟩ ⊆ Sa(s,Λ) is as follows:

Aj =

{
1 if j = 0(
pm(a−t) − 1

)
pm(a−t)(j−1) if 1 ≤ j ≤ 4ps,

where Aj is the number of codewords of RT weight j of ⟨(x4 − λ0)
i⟩ .
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Proposition 4.5 Let 1 ≤ b ≤ a − 1 . For (b − 1)ps + 1 ≤ i ≤ bps − 1 , we can determine the RT weight
distribution of the Λ-constacyclic code ⟨(x4 − λ0)

i⟩ ⊆ Sa(s,Λ) as follows:

Aj =


1 if j = 0(
pm(a−b) − 1

)
pm(a−b)(j−1) if 1 ≤ j ≤ 4i− 4(b− 1)ps

p4m(a−b)ps

(pm − 1)pmk +
(
pm(a−b) − 1

)
pm(a−b)(j−1) if j = 4i− 4(b− 1)ps + 1 + k,

for 0 ≤ k ≤ 4bps − 4i− 1,

where Aj is the number of codewords of RT weight j of ⟨(x4 − λ0)
i⟩ .

Proof By assumption, we have (b− 1)ps+1 ≤ i ≤ (b− 1)ps+ ps− 1 , i.e. 1 ≤ i− (b− 1)ps ≤ ps− 1 . Applying
Lemma 3.4 again, we have

⟨
ub−1(x4 − λ0)

⟩
⊇

⟨
(x4 − λ0)

i
⟩
=

⟨
ub−1(x4 − λ0)

i−ps(b−1)
⟩
⊇

⟨
ub−1(x4 − λ0)

ps−1
⟩
⊋

⟨
ub
⟩
.

Let Bj be the number of codewords of RT weight j of ⟨(x4 − λ0)
i⟩ , which are not in ⟨ub⟩ , and B′

j be the

number of codewords of RT weight j of ⟨ub⟩ . Then, for all j , Aj = Bj + B′
j . Similar to Proposition 4.3, we

get

Bj =


0 if j = 0

0 if 1 ≤ j ≤ 4i− 4(b− 1)ps

p4m(a−b)ps

(pm − 1)pmk if j = 4i− 4(b− 1)ps + 1 + k,
for 0 ≤ k ≤ 4bps − 4i− 1.

From Proposition 4.4, it is easy to see that

B′
j =

{
1 if j = 0(
pm(a−b) − 1

)
pm(a−b)(j−1) if 1 ≤ j ≤ 4ps.

This implies that

Aj =


1 if j = 0(
pm(a−b) − 1

)
pm(a−b)(j−1) if 1 ≤ j ≤ 4i− 4(b− 1)ps

p4m(a−b)ps

(pm − 1)pmk +
(
pm(a−b) − 1

)
pm(a−b)(j−1) if j = 4i− 4(b− 1)ps + 1 + k,

for 0 ≤ k ≤ 4bps − 4i− 1.

2

Remark 4.6 Propositions 4.3, 4.4, and 4.5 give us the RT weight distributions for all λ -constacyclic codes

Ci = ⟨(x4−λ0)
i⟩ ⊆ Sa(s,Λ) of length 4ps over Ra . By Theorem 3.5, |Ci| = p4m(aps−i) . Since |Ci| =

∑4ps

j=0 Aj ,
we can see that these RT weight distributions can be used to verify the size |Ci| of such codes.
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• If (a− 1)ps + 1 ≤ i ≤ aps − 1 , then

|Ci| =
4ps∑
j=0

Aj

= 1 +

4aps−4i−1∑
k=0

(pm − 1)pmk

= 1 + (pm − 1)

4aps−4i−1∑
k=0

(pm)k

= 1 + (pm − 1)
pm(4aps−4i) − 1

pm − 1

= p4m(aps−i).

• If i = pst , 0 ≤ t ≤ a− 1 , then

|Ci| =
4ps∑
j=0

Aj

= 1 +

4ps∑
j=1

(
pm(a−t) − 1

)
pm(a−t)(j−1)

= 1 +
(
pm(a−t) − 1

) 4ps−1∑
j=0

pm(a−t)j

= 1 +
(
pm(a−t) − 1

) pm(a−t)4ps − 1

pm(a−t) − 1

= p4m(a−t)ps

= p4m(aps−i).

• If (b− 1)ps + 1 ≤ i ≤ bps − 1 , where 1 ≤ b ≤ a− 1 , then

|Ci| =
4ps∑
j=0

Aj

= 1 +

4i−4(b−1)ps∑
j=1

(
pm(a−b) − 1

)
pm(a−b)(j−1)+

+

4bps−4i−1∑
k=0

p4m(a−b)ps

(pm − 1)pmk +

4ps∑
j=4i−4(b−1)ps+1

(
pm(a−b) − 1

)
pm(a−b)(j−1)

= 1 +
(
pm(a−b) − 1

) 4ps−1∑
j=0

pm(a−b)j + p4m(a−b)ps

(pm − 1)

4bps−4i−1∑
k=0

pmk
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= 1 +
(
pm(a−b) − 1

) pm(a−b)4ps − 1

pm(a−b) − 1
+ p4m(a−b)ps

(pm − 1)
pm(4bps−4i) − 1

pm − 1

= 1 +
(
pm(a−b)4ps

− 1
)
+ p4m(a−b)ps

(
pm(4bps−4i) − 1

)
= p4m(aps−i).

Maximum distance separable (MDS) codes form an optimal class of codes. A MDS code has a very strong
error correction capability, especially when the code length is not very long. To determine a MDS code with
respect to RT distance, we need to give the Singleton bound of the RT distance first. Let C be a linear code
of length n over Ra with RT distance dRT(C) . Mark the first dRT(C)− 1 entries of each codeword of C , and
then two different codewords of C cannot coincide in all other n − dRT(C) + 1 entries. Otherwise, C would
have a nonzero codeword of RT weight less than or equal to dRT(C) − 1 . Therefore, C can contain at most
pam(n−dRT(C)+1) codewords. Then the Singleton bound for the RT distance is given by the following result.

Theorem 4.7 (Singleton bound for RT distance) Let C be a linear code of length n over Fpm with RT distance
dRT(C) . Then |C| ≤ pam(n−dRT(C)+1) .

When a code C attains this Singleton bound, i.e. |C| = pam(n−dRT+1) , it is said to be a MDS code (with
respect to the RT distance). We now point out the unique MDS Type 1 constacyclic codes of length 4ps over
Ra with respect to the RT distance.

Theorem 4.8 The only MDS Type 1 Λ-constacyclic code of length 4ps over Ra , with respect to the RT
distance, is the whole ambient ring Sa(s,Λ) .

Proof Let C be a nonzero Type 1 Λ -constacyclic code of length 4ps over Ra . By Theorem 3.5, C =

⟨(x4 − λ0)
i⟩ ⊆ Sa(s,Λ) , for some integer i ∈ {0, 1, . . . , aps − 1} , and |C| = p4m(aps−i) . Applying Theorem 4.2,

we can see that if 0 ≤ i ≤ (a− 1)ps , then dRT(C) = 1 , and 4ps − dRT(C) + 1 = 4ps . This shows that

C is MDS ↔ |C| = pam(4ps−dRT(C)+1)

↔ p4m(aps−i) = p4amps

↔ aps − i = aps

↔ i = 0.

If (a− 1)ps +1 ≤ i ≤ aps − 1 , then, using Theorem 4.2 again, we get dRT(C) = 4i− 4(a− 1)ps +1 , and
4ps − dRT(C) + 1 = 4aps − 4i . Therefore,

C is MDS ↔ |C| = pam(4ps−dRT(C)+1)

↔ p4m(aps−i) = pam(4aps−4i)

↔ aps − i = a4ps − ai

↔ (a− 1)i = (a4 − a)ps

↔ i = aps,

which is impossible since (a− 1)ps + 1 ≤ i ≤ aps − 1 .
Therefore, the code C = ⟨(x4 − λ0)

i⟩ ⊆ Sa(s,Λ) is MDS if and only if i = 0 , i.e., C = Sa(s,Λ) . 2
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5. Conclusion
In this paper, assuming pm ≡ 1 (mod 4), we investigate Type 1 Λ -constacyclic codes of length 4ps over the
Ra, i.e. the unit Λ has the form

Λ = Λ0 + uΛ1 + · · ·+ ua−1Λa−1,

where Λ0,Λ1, . . . ,Λa−1 ∈ Fpm , Λ0 ̸=0, Λ1 ̸=0 . If Λ is a square, each Λ -constacyclic code of length 4ps is
expressed as a direct sum of a -λ -constacyclic code and a λ -constacyclic code of length 2ps . In the main
consideration when Λ is not a square, we first prove an important observation that any nonzero polynomial of
degree less than 4 in Fpm [x] is invertible in Sa(a,Λ). This key result is then used to obtain that the ambient
ring Sa(a,Λ) is a chain ring with maximal ideal ⟨x4 − λ0⟩ . From this, we give the number of codewords and
the dual of each Λ -constacyclic code. In addition, the RT distances and weight distributions of such codes are
also determined. These results allow us to provide the only MDS Type 1 Λ -constacyclic code of length 4ps

over Ra , with respect to the RT distance.
The condition that pm ≡ 1 (mod 4) is critical in our consideration. In fact, if pm ≡ 3 (mod 4) , the key

result that all nonzero polynomials of degree less than 4 in Fpm [x] are invertible in Sa(a,Λ) is no longer true.
It can be shown that, in that case, the polynomial x4 − λ0 can be decomposed as a product of 2 quadratic
irreducible factors. We illustrate that in the following example.

Example 5.1 We consider the finite commutative chain ring R4 = F11 + uF11 + u2F11 + u3F11(u
4 = 0) and

Λ = 7+u. It is clear that Λ0 = 7 is not a square in F11, and by applying Proposition 3.2, 7+u is not a square.
The ambient ring of the (7 + u)-constacyclic codes of length 4 · 112 over F11 + uF11 + u2F11 + u3F11 is

S4(4, 7 + u) =
(F11 + uF11 + u2F11 + u3F11)[x]

⟨x4·112 − (7 + u)⟩
.

Observe that 75 ≡ (−1) (mod 11), and hence 710 ≡ 1 (mod 11). This implies that 711
2

= 7121 ≡ 7 (mod 11).

Therefore, in S4(4, 7 + u), we have

0 = x4·112 − (7 + u) = x4·112 − 711
2

− u = (x4 − 7)11
2

− u,

i.e. (x4 − 7)11
2

= u, implying x4 − 7 is nilpotent. However, x4 − 7 can be decomposed as a product of 2

quadratic irreducible factors as follows:

x4 − 7 = x4 + 4

= (x4 + 4x2 + 4)− 4x2

= (x2 + 2)2 − (2x)2

= (x2 + 2x+ 2)(x2 − 2x+ 2).

In fact, suppose that (x2 + 2x + 2) and (x2 − 2x + 2) are reducible polynomials. Then (x2 + 2x + 2) and
(x2 − 2x + 2) can be expressed as a product of 2 nonzero linear polynomials. Because any nonzero linear
polynomial is invertible in S4(4, 7 + u), we conclude that x4 − 7 is invertible in S4(4, 7 + u) , which is a
contradiction. This implies that (x2 + 2x + 2) and (x2 − 2x + 2) are irreducible polynomials in S4(4, 7 + u).

Thus, Theorem 3.3 is not true when pm ≡ 3 (mod 4) .
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This paper considered the Type 1 Λ -constacyclic codes of length 4ps over R , where pm ≡ 1 (mod 4) .
The class of Type 1 Λ -constacyclic codes of length 4ps over R , where pm ≡ 3 (mod 4) is investigated in our
other paper [24].
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