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Abstract: We introduce the class of so-called regularly nil clean rings and systematically study their fundamental
characteristic properties accomplished with relationships among certain classical sorts of rings such as exchange rings,
Utumi rings etc. These rings of ours naturally generalize the long-known classes of π -regular and strongly π -regular
rings. We show that the regular nil cleanness possesses a symmetrization which extends the corresponding one for
strong π -regularity that was visualized by Dischinger [10]. Likewise, our achieved results substantially improve on
establishments presented in two recent papers by Danchev and Šter [8] and Danchev [6].
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1. Introduction and conventions
Everywhere in the text of the present paper, all our rings R are assumed to be associative, containing the
identity element 1 , which in general differs from the zero element 0 of R , and all proper subrings are unital
(i.e. containing the same identity as that of the former ring). Our standard terminology and notation are
mainly in agreement with those in [17]. For instance, to be more exact, U(R) denotes the set of all units in R ,
Id(R) the set of all idempotents in R , Nil(R) the set of all nilpotents in R , J(R) the Jacobson radical of R ,
and C(R) the center of R . The newly defined notions will be explicitly stated herein.

Reminding these fundamentals unambiguously emphasizes that here we shall mainly deal with nilpotent
and idempotent elements, which sometimes will be central and sometimes will be arbitrary. Likewise, here is
the place to recall the classical result of Drazin from [11, Theorem 1] stating that all idempotents of a given
ring are always central exactly when all its nilpotents are always central.

A retrospective plan of some major ring classes which are critical for our presentation to make the article
more nearly self-contained and friendly to the reader is as follows: Concerned with some questions from the
functional analysis, in a connection with the continuous geometry, in [19], a ring R was called regular (or
presently, in the modern terminology, a von Neumann regular) if, for every x ∈ R , there exists y ∈ R such
that x = xyx – this also is a successful generalization of the classical Boolean rings, that are rings for which
x2 = x . Regular rings have also the interesting property, a detailed analysis of which will lead to our major
motivating omnibus, that is, Definition 1.1 stated below, namely that x = xe = fx for e = yx ∈ Rx ∩ Id(R)

and f = xy ∈ xR ∩ Id(R) , so that x(1− e) = (1− f)x = 0 .
On the other hand, strongly regular rings was defined in [1] as another enlargement of the Boolean rings
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so that x = x2y . It is principally known that strongly regular rings are themselves reduced regular rings in
which all idempotents are central (see, e.g., [12] and [26]). In fact, since strongly regular rings are obviously
free of nilpotent elements, x = x2y yields that (x− xyx)2 = 0 and therefore x = xyx , as required.

Furthermore, for applicability purposes and as a common generalization of von Neumann regular rings, it
was introduced by McCoy in [18] the class of π -regular rings as those rings R for which, for every a ∈ R , there
exists a positive integer n such that an ∈ anRan . Important examples of such rings, besides the von Neumann
regular ones, include Artinian and perfect rings, that are, left or right perfect. Moreover, the class of strongly
π -regular rings was introduced by Kaplansky in [13] as rings R for which an ∈ an+1R . Dischinger proved in [10]
that this concept is left-right symmetric, that is, an ∈ an+1R∩Ran+1 and, consequently, it follows immediately
that strongly π -regular rings are themselves π -regular (see [2] as well). Also, von Neumann regular rings in
general are not strongly π -regular, but Artinian and perfect rings are so. Nevertheless, these two defined classes
of rings do coincide when all idempotents are central.

On the other side, it was recently defined in [9] the class of nil clean rings whose elements are sums of a
nilpotent and an idempotent; if these two elements commute, the rings are said to be strongly nil clean. This
was extended respectively in [8] to the so-called weakly nil clean rings R for which, for each a ∈ R , there exist
e ∈ Id(R) and q ∈ Nil(R) such that a − q − e ∈ eRa (see [6] and [24]). The latter class is strictly contained
in the class of exchange rings in terms of Goodearl-Nicholson (cf. [20]) which are rings R such that, for any
a ∈ R , there exists e ∈ Ra with 1− e ∈ R(1− a) – notice that this notion is left-right symmetric as something
more than an ordinary symmetrization was obtained in [14].

Sixty years ago, in order to enlarge the above kinds of rings, Utumi [27] dealt with such rings R for
which, for any x ∈ R , there exists y ∈ R depending on x with the property x − x2y ∈ C(R) . He proved
a structural theorem for these rings, namely [27, Theorem 1]; this theorem shows that the symmetrization
x − yx2 ∈ C(R) holds equivalently (see, for more account, Corollary in [27]) as well that in such rings,
the containment Nil(R) ⊆ C(R) is valid, where Nil(R) forms a two-sided ideal of R . In view of these
considerations, we call a ring R an Utumi ring if, for every x ∈ R , there exists y ∈ R depending on x such that
x− x2y ∈ Nil(R) (it is still unknown at this stage whether, for a reason of symmetry, x− yx2 ∈ Nil(R) holds
or not). If, in addition, xy = yx , the ring R will be called strongly Utumi, whereas if x−x2y ∈ Nil(R)∩C(R) ,
the ring R will be called centrally Utumi. If y = 1 in the initial situation, i.e. x2 − x ∈ Nil(R) for all x ∈ R ,
then we exactly obtain the above-defined strongly nil clean rings which, subsuming, means that strongly nil
clean rings are always Utumi’s rings. In that aspect, strongly nil clean rings were completely characterized
in [7] and [16] as those rings R for which J(R) is nil and the quotient R/J(R) is a Boolean ring. Since in
terms of Definition 1.1 listed below Boolean rings are obviously regularly nil clean, according to Theorem 2.9
listed below, strongly nil clean rings are necessarily regularly nil clean. Certainly, on the other vein, it is well
known that strongly nil clean rings are strongly π -regular (see, e.g., [9]) and thus they are π -regular, so that,
in accordance with Proposition 2.1 stated below the implication follows once again. Some special cases of rings
of the types presented above were also considered in [5].

In the style of the last paragraph, using the notations above, it is reasonably adequate to consider rings in
which x−xyx ∈ C(R) or x−xyx ∈ C(R)∩Nil(R) as well as the more restricted version in which x(1−e) ∈ C(R)

or (1− f)x ∈ C(R) with e = yx ∈ Rx ∩ Id(R) and f = xy ∈ xR ∩ Id(R) . However, this will be the theme of
some other research exploration, where a new approach might work.

Analyzing all stated above, our aim is to find some more special transversal between the above-mentioned
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classes of rings. With this goal, we shall find a new and very attractive class of rings, which are both exchange
and Utumi rings and which are a common extension of the classical π -regular rings, possessing many valuable
properties. Some close relationships are extracted as well.

Hence, the next concept is our key point of view.

Definition 1.1 A ring R is said to be regularly nil clean if, for each a ∈ R , there exists e ∈ Id(R) ∩Ra such
that a(1− e) = a− ae ∈ Nil(R) . The element a will also be called regularly nil clean.

If, in addition, ae = ea , then a and R are called strong regularly nil clean. If, however, the existing
above idempotent e is unique, R is called unique regularly nil clean.

It is self-evident by virtue of a direct check that for idempotents, nilpotents, and units, a regularity of
this type always holds. That is why the triangular matrix ring T2(Z2) is strong regularly nil clean because it
consists only of such elements as its unique nontrivial nilpotent has index at most 2 and as its unique nontrivial
unit is an involution which is also a unipotent.

We shall show now that this notion is somewhat left-right symmetric, which will be our crucial tool in
the sequel. Specifically, the following equivalent condition holds:

Proposition 1.2 Regularly nil clean rings R are left-right symmetric in the sense that, for any a ∈ R , there
exists e ∈ Id(R) ∩Ra such that (1− e)a = a− ea ∈ Nil(R) .

Proof It relies on the obvious fact that (1− e)a is nilpotent precisely when a(1− e) is nilpotent, as required.
2

Although the equivalence above between Definition 1.1 and Proposition 1.2, it is nevertheless interesting
whether the inclusion a− af ∈ Nil(R) for some f ∈ aR∩ Id(R) amounts to our initial definition of regular nil
cleanness. It is worthwhile noticing that the answer is absolutely positive as well as our above and subsequent
”symmetric” results from Propositions 1.2 and 1.3 somewhat refine that of [10].

Proposition 1.3 Regularly nil clean rings R are left-right symmetric in the sense that, for any a ∈ R , there
exists f ∈ Id(R) ∩ aR such that a(1− f) = a− af ∈ Nil(R) and such that (1− f)a = a− fa ∈ Nil(R) .

Proof In view of Definition 1.1 above, we write that a(1−e) = a−ae ∈ Nil(R) for some e = ra ∈ Ra∩Id(R)

with r ∈ R . By a direct inspection, it follows that f = (ar)2 ∈ aR ∩ Id(R) . Also, one derives that f = aer

and that fa = ae . This allows us to obtain that (1 − f)a = a − fa = a − ae = a(1 − e) ∈ Nil(R) . That
a(1− f) ∈ Nil(R) follows now immediately. 2

At the beginning of some simple observations, it is pretty obvious that strongly regular rings are regularly
nil clean. Also, it is not too hard to check that local rings with nil Jacobson radical are regularly nil clean;
indeed, this follows according to the fact that any element is either invertible or nilpotent.

Our motivation for writing up this article was to promote a nontrivial generalization of the π -regular
rings in the classes of exchange and Utumi rings. The ideas developed here somewhat shed further light on the
complete characterization of large sorts of the aforementioned nil clean rings and they also give further strategy
for obtaining interesting relationships between the studied classes.
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2. Main results and examples

We start here with a series of preliminaries which is of importance for our further considerations. The first few
of them show that there is an abundance of regularly nil clean rings in different aspects.

We are now ready to discover some characteristic properties of the newly defined class of regularly nil
clean rings.

Proposition 2.1 Every π -regular ring is regularly nil clean.

Proof Letting R be a π -regular ring, fix a ∈ R , and then there is some r ∈ R and n ∈ N such that
an = anran . Therefore, ran is obviously an idempotent in Ra . Since a direct check shows that an(1−ran) = 0

and (1− ran)a(1− ran) = a(1− ran) , it follows that [a(1− ran)]n+1 = 0 , as required. 2

A ring R is said to have bounded index of nilpotence if there exists a fixed natural number i such that
xi = 0 for every nilpotent x ∈ R . In [2], it was established that π -regular rings of bounded index of nilpotence
are strongly π -regular. In that direction, it is a good chance to note here that our proof, in conjunction with
[8, Proposition 3.10] and Proposition 2.1, actually provides us with a little more information, namely that a
regularly nil clean ring of bounded index of nilpotence is strongly π -regular.

In the case of strong π -regularity, the last assertion could be slightly improved in a rather surprising way:

Proposition 2.2 Strongly π -regular rings are strong regularly nil clean, and vice versa.

Proof ”Necessity”. Let a be an element in the strongly π -regular ring R . Referring to [21, Proposition 1]
(see also [3, Theorem 2.1]), one can write that an = fw = wf for some n ∈ N and some f ∈ Id(R) , w ∈ U(R)

such that af = fa . Hence, it follows from this that f = w−1an ∈ Ra and that (a − af)n = [a(1 − f)]n =

an(1− f) = wf(1− f) = 0 , as required.
”Sufficiency”. Knowing that Proposition 1.2 holds, for any a ∈ R assume that there is e ∈ Id(R) ∩Ra

such that ae = ea and (1− e)a ∈ Nil(R) . Consequently, [(1− e)a]n = (1− e)an = 0 for some n ∈ N whence
an = ean = ran+1 for some existing r ∈ R , as needed. 2

Recall that, mimicking [8], a ring R is termed weakly nil clean if, for each a ∈ R , there are e ∈ Id(R)

and q ∈ Nil(R) such that a− e− q ∈ eRa . If, in addition, eq = qe , R is called weakly nil clean with the strong
property. While regularly nil clean rings are always weakly nil clean (see the proof of Proposition 2.4 stated in
what follows) and the weakly nil clean rings with central idempotents are themselves strongly π -regular (see
[8]), that is, in virtue of Proposition 2.2, strong regularly nil clean, we can say even something more:

Proposition 2.3 Weakly nil clean rings with the strong property are regularly nil clean.

Proof In the presence of notations above, we write a = e + q + exa for some x ∈ R . Denoting u := 1 + q ,
one sees that ue = eu because qe = eq and that e + u − 1 = e + q = a − exa ∈ Ra . Moreover,
e = u−1eu = u−1e(e + u − 1) ∈ Ra and thus with the application of Proposition 1.2, one infers that
(1− e)a = (1− e)q ∈ Nil(R) , as q and e commute, which substantiates our assertion. 2

Notice also that it is not obvious whether weakly nil clean rings having the strong property are strongly
π -regular; just as aforementioned by [8, Proposition 3.8] weakly nil clean rings (and thus regularly nil clean
rings owing to the subsequent Proposition 2.4) with central idempotents are always strongly π -regular. That is
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why it is interesting to find a weakly nil clean ring which is not regularly nil clean itself. If such a construction
eventually exists, it should be quite curious.

Proposition 2.4 Every regularly nil clean ring is an exchange ring.

Proof We shall prove even a lot more, namely that regularly nil clean rings are themselves weakly nil clean
in the sense of [8], as we already have stated above, namely imitating [8, Definition 2.1] a ring R is weakly nil
clean if, for each a ∈ R , there are e ∈ Id(R) and q ∈ Nil(R) with a− e− q ∈ eRa . In fact, by what we have
just proved in Proposition 1.2, for any element a from the regularly nil clean ring R there is e ∈ Id(R) ∩ Ra

such that a− ea ∈ Nil(R) , say a− ea = q . Thus, a− e− q = ea− e = ea− ee = ea− eda = e(1− d)a ∈ eRa ,
for some d ∈ R , as expected.

Furthermore, since it was established in [8, Proposition 2.5] that weakly nil clean rings are exchange, we
are done. 2

Proposition 2.5 Every regularly nil clean ring is an Utimi ring.

Proof This follows immediately by application of Proposition 1.3 since in the notations from there it must be
that f = ax for some x ∈ R and hence a− af = a− a2x ∈ Nil(R) , as needed. 2

Combining Propositions 2.1, 2.4, and 2.5, the next diagram showing the relationships between various
classes of rings holds:

π -regular ⇒ regularly nil clean ⇒ Utumi + exchange.

Our next property demonstrates that the regular nil cleanness is closed for taking corners as it is preserved
by the same token and for exchange rings (compare with [20]). As usual, Mn(R) will denote the full n × n

matrix ring, where n ∈ N .

Proposition 2.6 If R is a regularly nil clean ring, then so is the corner ring eRe for any e ∈ Id(R) . In
particular, if Mn(R) is regularly nil clean, then R is regularly nil clean.

Proof Given an arbitrary element ere ∈ eRe for some r ∈ R , it follows that ere ∈ R and hence, there
is an idempotent f ∈ Rere ⊆ R such that (1 − f)ere is a nilpotent in R . But, this can be written as
ere− fere = (e− f)ere = (e− fe)ere = t for some t ∈ Nil(R) . However, this assures that (e− efe)ere = et =

ete ∈ Nil(eRe) , as needed. In fact, we foremost observe that fe = f and thus, by a simple check, that efe is
an idempotent in eRe . Moreover, te = t and hence, an induction guarantees that (et)m = etm for all m ∈ N ,
as expected.

As for the second part, it is well known that there is an idempotent f ∈ Mn(R) such that R ∼= fMn(R)f .
Thus, the first part applies to get the wanted implication. 2

Although it has been long known that the center of an exchange ring need not to be again exchange, the
following statement is somewhat surprising.

Proposition 2.7 The center of a regularly nil clean ring is also regularly nil clean.

Proof Let R be a regularly nil clean ring. We intend to prove that C(R) remains regularly nil clean. For
that purpose, given c ∈ C(R) , we write c− ec = q for some e ∈ Id(R) ∩ (Rc) and q ∈ Nil(R) . Thus, there is
n ∈ N such that [(1− e)c]n = (1− e)cn = 0 .
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We claim that e is a central idempotent, that is, eR(1 − e) = (1 − e)Re = {0} . In fact, for all r ∈ R ,
one sees that er(1 − e) ∈ Rcn(1 − e) = R(1 − e)cn = {0} because e ∈ Rc implies that e ∈ Rcn . So, er = ere

and, by a way of similarity, we also have that re = ere . Finally, er = re illustrating that e ∈ C(R) and hence,
q ∈ C(R) .

What remains to be established is that e ∈ C(R)c . Indeed, write e = bc for some b ∈ R . This forces
that e = bce = bec = (be)c = yc , where y = be = eb . However, one observes that y ∈ C(R) , as required, since
e being central ensures that R = Re⊕R(1− e) and thus, yR(1− e) = (1− e)Ry = R(1− e)y = {0} . 2

As a parallel more conceptual confirmation of this fact, we can process like this: It was shown in the
proof of Proposition 2.4 that R is weakly nil clean. However, [8, Proposition 3.19] implies that C(R) is weakly
nil clean and hence strongly π -regular. Finally, Proposition 2.2 tells us that C(R) is regularly nil clean, as
desired.

Lemma 2.8 Suppose that R is a ring and a ∈ R . If there exists e2 = e = 1 − f ∈ Ra such that faf is
regularly nil clean in fRf , then a is regularly nil clean in R .

Proof Writing faf−hfaf = q for some h ∈ Id(fRf) and q ∈ Nil(fRf) , we detect that (1−f)q = q(1−f) = 0

because qf = fq = q . Thus, defining t = q+fae , we directly verify that t ∈ Nil(R) . Letting g = 1− (f−h) =

e + h , so g ∈ Id(R) since eh = he = 0 . Furthermore, one needs to check that a − ga is a nilpotent in R . In
doing that, we observe that tf = qf = q = fq = ft and that a− ga = (1− g)a = (f − h)a . But hf = h = fh

whence, by assumption, q := faf − haf = (f − h)af ∈ Nil(R) . However, (f − h)a(1 − f) = (f − h)a − q

insuring that (f − h)a = q+ (f − h)a(1− f) because q(f − h) = qf − qh = q− qh = q(1− h) . In fact, knowing
that (1− f)q = (1− f)(f − h) = (1− f)h = 0 , it follows by use of an induction that

[q + (f − h)a(1− f)]k = qk + qk−1(f − h)a(1− f),

for all k ∈ N , as previously claimed. 2

The following, concerning a certain lifting of idempotents modulo a nil ideal, is critical for our next
theorem: If R is a ring with a nil ideal I , c ∈ R and c + I ∈ Id(R/I) , then c + I = e + I for some
e ∈ Id(R) ∩Rc with ce = ec .

Hence, we now have all the information needed to prove our main reduction result.

Theorem 2.9 A ring R is regularly nil clean if, and only if, J(R) is nil and R/J(R) is regularly nil clean.
Moreover, in particular, if I is a nil ideal of R , then R is regularly nil clean if, and only if, R/I is regularly
nil clean.

Proof ”⇒”. Take an arbitrary element z ∈ J(R) . Then, by definition, there is e ∈ Rz ∩ Id(R) such that
z(1 − e) ∈ Nil(R) , but then e ∈ J(R) ∩ Id(R) = {0} and hence e = 0 . Finally, z ∈ Nil(R) , as required.
Moreover, since it is not too hard to verify that an epimorphic image of a regularly nil clean ring retains the same
property, it follows that both R/J(R) and R/I are regularly nil clean by taking into account the epimorphisms
R → R/I → R/J(R) because I ⊆ J(R) .

”⇐”. We shall restrict our attention to the regularly nil clean factor-ring R/I , bearing in mind that
R/J(R) ∼= R/I/J(R)/I = R/I/J(R/I) . To show that R is also regularly nil clean, choose an arbitrary element
a ∈ R . Hence, by assuming the validity of Definition 1.1, there exists b ∈ R with b+I ∈ Id(R/I)∩(R/I)(a+I)
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such that (a + I)(1 + I − (b + I)) ∈ Nil(R/I) . However, owing to the above-listed folklore fact on special
lifting of idempotents, one observes that there is r ∈ R with b+ I = (r + I)(a+ I) = ra+ I = e+ I for some
e ∈ Id(R) ∩R(ra) ⊆ Id(R) ∩Ra . Furthermore,

(a+ I)(1 + I − (e+ I)) = (a+ I)((1− e) + I) = a(1− e) + I ∈ Nil(R/I)

and therefore, there exists m ∈ N such that [a(1 − e)]m ∈ I ⊆ Nil(R) implying that a(1 − e) ∈ Nil(R) , as
required. 2

A long-standing question regarding whether or not a ring R is (strongly) π -regular, provided I is a
nil ideal of R whose factor-ring R/I is strongly (von Neumann) regular. An unsuccessful proof attempt was
made in [15, Theorem 4.8], where unfortunately there is a serious gap in the given proof. In the case of central
idempotents, it was established in [4] that a ring R is (strongly) π -regular if and only if Nil(R) = J(R)

and R/J(R) is (strongly) regular. Besides, [25, Examples 3.1 and 3.2] guarantee that there exists a nil clean
ring which is not π -regular containing a nilpotent ideal I such that I2 = {0} and the quotient R/I is (von
Neumann) regular but not strongly π -regular. However, surprisingly, the so-constructed by Šter example of a
nil clean ring will definitely be regularly nil clean (compare with Example 2.13 stated below).

So, what we can currently offer in order to resolve this outstanding problem, is the following statement
which also strengthens [8, Proposition 3.6] and the corresponding result from [24].

Proposition 2.10 Let R be a ring with an ideal I . Then the following two items are true:
(1) If both I and R/I are π -regular, then R is regularly nil clean.

(2) If I is nil and R/I is π -regular, then R is regularly nil clean.

Proof (1) With Proposition 2.1 and Lemma 2.8 at hand, the evidence goes on the same argumentation as
that in [8, Proposition 3.6], as we leave the details to the interested reader for a precise check.

(2) It follows by a plain combination of Proposition 2.1 and Theorem 2.9. 2

Notice that the rings of point (2) need not be in general π -regular as well. Also, (2) follows directly from
(1) since any nilpotent is π -regular.

We now explore how the uniqueness of the existing idempotent will affect the structure of regularly nil
clean rings. Unfortunately, as in [8, Proposition 4.1], we are unable to say something new.

Proposition 2.11 A ring R is unique regularly nil clean if, and only if, R is strongly π -regular with central
idempotents.

Proof To prove left-to-right implication, in accordance with [8, Proposition 3.8], it suffices to show that
all idempotents are central. In view of Definition 1.1 and Proposition 1.2, one writes that e(1 − e) =

e(1− (e+ (1− e)re)) and that (1− e)e = (1− (e+ er(1− e)))e , where it is readily checked that e+ (1− e)re

and e+ er(1− e) are both idempotents. Therefore, e+(1− e)re = e = e+ er(1− e) giving that re = ere = er ,
as desired.

As for the proof of the right-to-left implication, consulting with [21, Proposition 1], let, for an arbitrary
a ∈ R , there exist a natural number n such that an = we = uf for some w, u ∈ U(R) and e, f ∈ Id(R)∩C(R)

as well as let simultaneously (1− e)a, (1− f)a ∈ Nil(R) be fulfilled exploiting Proposition 1.2. We claim that
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e = f . In fact, we see that (1 − f)am = 0 for some m ≥ n . Consequently, (1 − f)ewm−n = 0 . Canceling by
wm−n ∈ U(R) , it must be that (1− f)e = 0 , i.e. e = fe . By the same token, joining this with (1− e)f = 0 ,
we get that f = ef = fe = e , as wanted, and the claim is sustained. 2

The next comments are clarifications of the results obtained so far.

Remark 2.12 All of our statements quoted above demonstrate that the newly introduced regularly nil clean
rings are (perhaps properly) situated between the classes of π -regular rings and weakly nil clean rings as defined
in [8]. We, thereby, conjecture that there will exist a weakly nil clean ring which is not regularly nil clean.

We are now in a position to exhibit a few more examples pertaining to the suitability and the independence
of the new definition of regularly nil clean rings. In sharp contrast to strongly nil clean rings, the following is
true:

Example 2.13 There exists a nil clean ring which is regularly nil clean but not π -regular.

Proof Imitating [25, Examples 3.1,3.2], we consider the nil clean (von Neumann) regular ring P =∏∞
n=1 Mn(Z2) which is not strongly π -regular as well as the nil clean ring R =

∏∞
n=1 Mn(Z4) which is not

π regular. It was shown there that there is a nil ideal I of R such that R/I ∼= P . We hereafter can apply
Proposition 2.1 and Theorem 2.9 to conclude the claim. 2

Another example of a regularly nil clean ring which is not π -regular can be extracted from [8, Examples
3.4 and 3.5] with the aid of some basic results on semiperfect rings from [22] and [23], respectively.

The next less exotic example than the preceding one will make the class of regularly nil clean rings more
compelling.

Example 2.14 There exists a regularly nil clean ring which is neither nil clean nor π -regular.

Proof Based on the example by Rowen, whose construction of a semiperfect ring S is posed as in [8, Example
3.4] (see also [22, 23]), we can infer that this ring is regularly nil clean but hardly π -regular (cf. [22]), as
expected.

Concerning nil cleanness, we found that the constructed ring S need not be also nil clean (see [9]). The
reason for deducing this is that we can select 2 ̸∈ Nil(S) . 2

It is also worthwhile to notice that [8, Corollary 3.12] establishes that nil clean rings having bounded
index of nilpotency (respectively, nil clean rings of nil-clean index 2 as posed in [25, Proposition 4.3]) are
themselves strongly π -regular.

3. Left-open problems
We end our work with the following six questions of some interest and importance:

Problem 3.1 Does it follow that a ring R is regularly nil clean if and only if ∀a ∈ R , ∃e ∈ (aRa) ∩ Id(R)

: a(1− e) ∈ Nil(R) and (1− e)a ∈ Nil(R)?

Problem 3.2 If R is a ring with e ∈ Id(R) such that both eRe and (1 − e)R(1 − e) are regularly nil clean
rings, is it true that R is regularly nil clean, too?
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Problem 3.3 Are (centrally) Utumi’s rings exchange?

Let us now remember that a ring R is said to have a bounded index of nilpotence provided that there is
a fixed integer k ≥ 1 such that tk = 0 for all t ∈ Nil(R) . It was established in [8, Corollary 3.12] that a nil
clean ring of bounded index of nilpotence is strongly π -regular. A similar notion of a finite nil-clean index was
defined in [25, Definition 2.3] in the following manner: There exists an integer k ≥ 1 such that for every a ∈ R

there is e ∈ Id(R) with (a − e)k = 0 and k is the smallest possible having that property. Hence, what quite
naturally arises is the following:

Problem 3.4 Is it true that nil clean rings of finite nil-clean index are regularly nil clean? Does there exist a
nil clean ring which is not regularly nil clean?

Note that the nil clean ring from Example 2.13 has nil-clean index 4.
The following somewhat enlarges Definition 1.1.

Problem 3.5 Describe those rings R , calling them weakly regularly nil clean, for which, for every a ∈ R , there
exists e ∈ Id(R) ∩ Ra such that a(1 − e) = a − ae ∈ Nil(R) or a(1 + e) = a + ae ∈ Nil(R) . Are they still
exchange rings?

We now will treat some mechanical variations of π -regularity, which is closely related to our considerations
alluded to above. As stated above, let us recall that a ring R is strongly π -regular if, for any element a ∈ R ,
there exists n ∈ N such that an ∈ an+1R . This is tantamount to an ∈ a2nRn , where Rn = {rn | r ∈ R} , but
what can be said if we require the stronger inclusion an ∈ an+1Rn ? As in the classical version, is this left-right
symmetric in the sense that an ∈ Rnan+1 ?

On the same vein, π -regular rings are these for which an ∈ anRan and, as we already have noted above,
it is well known that strongly π -regular rings are always π -regular. The reverse is untrue in general, but in
the case of central idempotents, these two notions coincide. However, if we modify the requested condition to
the stronger one an ∈ anRnan , what can be said for R? As in the classical situation, does the first condition
imply the second and are they equivalent in the abelian case?

And so, we close with our final query.

Problem 3.6 Are Artinian rings and/or perfect rings equipped with the shared above new stronger π -regular
properties?

Notice just for completeness that both classes are strongly π -regular.
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