Turk J Math
(2019) 43: $712-727$

Certain classes of multivalent functions defined with higher-order derivatives

Mohamed K. AOUF ${ }^{1}$, Abdel Moneim LASHIN ${ }^{1, *}{ }^{(1)}$, Teodor BULBOACĂ ${ }^{\text {© }}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt
${ }^{2}$ Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania

Received: 05.11.2018 • Accepted/Published Online: 23.01.2019 \quad Final Version: 27.03 .2019

Abstract: In this paper we derive some properties of multivalent functions belonging to the classes $R_{p, q}(\alpha), B_{p, q}(\alpha)$, and $M_{p, q}(\alpha)$. The results obtained generalize the related works of some authors, and many other new results are obtained.

Key words: Multivalent functions, p-valently starlike and convex functions, higher-order derivatives, differential subordinations, α-convex functions

1. Introduction

Let $\mathbb{U}:=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disc of the complex plane, and let \mathcal{A}_{p} denote the class of analytic and multivalent functions in \mathbb{U} of the form

$$
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}, z \in \mathbb{U} \quad(p \in \mathbb{N}:=\{1,2, \ldots\}) .
$$

Also, denote $\mathcal{A}:=\mathcal{A}_{1}$.
For two functions f and g analytic in \mathbb{U}, we say that the function f is subordinate to g, written as $f(z) \prec g(z)$, or simply $f \prec g$, if there exists a Schwarz function ω; that is, ω is analytic \mathbb{U}, with $\omega(0)=0$ and $|\omega(z)|<1, z \in \mathbb{U}$, such that $f(z)=g(\omega(z))$ for all $z \in \mathbb{U}$. If the function g is univalent in \mathbb{U}, the above subordination is equivalent to $f(0)=g(0)$ and $f(\mathbb{U}) \subset g(\mathbb{U})$ (see $[8,15]$).

For $0 \leq \alpha<p-q, p>q, p \in \mathbb{N}$, and $q \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$, we say that $f \in \mathcal{A}_{p}$ is in the class $S_{p, q}^{*}(\alpha)$ if it satisfies the inequality

$$
\operatorname{Re} \frac{z f^{(q+1)}(z)}{f^{(q)}(z)}>\alpha, z \in \mathbb{U}
$$

Also, we say that $f \in \mathcal{A}_{p}$ is in the class $K_{p, q}(\alpha)$ if the following inequality holds:

$$
\operatorname{Re}\left[1+\frac{z f^{(q+2)}(z)}{f^{(q+1)}(z)}\right]>\alpha, z \in \mathbb{U}
$$

*Correspondence: ylashin@mans.edu.eg
2010 AMS Mathematics Subject Classification: 30C45, 30C80

The classes $S_{p, q}^{*}(\alpha)$ and $K_{p, q}(\alpha)$ were introduced and studied by Aouf $[3,5,6]$, and we note that $S_{p, 0}^{*}(\alpha)=$: $S_{p}^{*}(\alpha)$ and $K_{p, 0}(\alpha)=: K_{p}(\alpha)$ are, respectively, the class of p-valently starlike functions of order α and the class of p-valently convex functions of order $\alpha(0 \leq \alpha<p)$ (see Owa [20] and Aouf [1, 2]).

Definition 1.1 For $0 \leq \alpha<p-q, p>q, p \in \mathbb{N}$, and $q \in \mathbb{N}_{0}$, we say the function $f \in \mathcal{A}_{p}$ is in the class $C_{p, q}(\alpha)$ if there exists a function $g \in S_{p, q}^{*}(\alpha)$ such that

$$
\operatorname{Re} \frac{z f^{(q+1)}(z)}{g^{(q)}(z)}>\alpha, z \in \mathbb{U}
$$

The class $C_{p, q}(\alpha)$ was introduced and studied by Aouf [4], and we note that $C_{p, 0}(\alpha)=: C_{p}(\alpha)$ (see Aouf [7]).

Definition 1.2 Let $R_{p, q}(\alpha)$ be the subclass of $C_{p, q}(\alpha)$ obtained by choosing $g(z)=z^{p}$; that is, the function $f \in \mathcal{A}_{p}$ belongs to the class $R_{p, q}(\alpha)$ if and only if it satisfies

$$
\begin{equation*}
\operatorname{Re} \frac{f^{(q+1)}(z)}{\delta(p, q) z^{p-q-1}}>\alpha, z \in \mathbb{U} \quad(0 \leq \alpha<p-q) \tag{1.1}
\end{equation*}
$$

where $\delta(p, q)=\frac{p!}{(p-q)!} \quad(p \geq q)$.

Remark 1.1 (i) It is easy to check that if the function $f \in \mathcal{A}_{p}$ satisfies the inequality

$$
\begin{equation*}
\left|\frac{f^{(q+1)}(z)}{z^{p-q-1}}-\delta(p, q+1)\right|<(p-q-\alpha) \delta(p, q), z \in \mathbb{U} \quad(0 \leq \alpha<p-q) \tag{1.2}
\end{equation*}
$$

then $f \in R_{p, q}(\alpha)$. Thus, if we denote by $S_{p, q}(\alpha)$ the class of functions $f \in \mathcal{A}_{p}$ that satisfies (1.2), then $S_{p, q}(\alpha) \subset R_{p, q}(\alpha)$.
(ii) We will denote by $B_{p, q}(\alpha)(0 \leq \alpha<\delta(p, q))$ the class $B_{p, q}(\alpha):=S_{p, q-1}\left(\frac{\alpha}{\delta(p, q-1)}\right)$. Therefore, the function $f \in \mathcal{A}_{p}$ belongs to the class $B_{p, q}(\alpha)(0 \leq \alpha<\delta(p, q))$ if and only if it satisfies

$$
\begin{equation*}
\left|\frac{f^{(q)}(z)}{z^{p-q}}-\delta(p, q)\right|<\delta(p, q)-\alpha, z \in \mathbb{U} \quad(0 \leq \alpha<\delta(p, q)) \tag{1.3}
\end{equation*}
$$

For $q:=p-1$ and $\beta:=p!\alpha$, the inequality (1.2) reduces to

$$
\left|f^{(p)}(z)-p!\right|<p!=\beta, z \in \mathbb{U} \quad(0 \leq \beta<p!)
$$

and the subclass $\mathbf{S}_{p}(\beta)$ of functions satisfying the above relation was introduced and studied by Saitoh [26]. Moreover, we note the special cases $R_{p, 0}(\alpha)=: R_{p}(\alpha)(0 \leq \alpha<p)$ (see Lee and Owa [11]) and $R_{1,0}(\alpha)=: R(\alpha)$ $(0 \leq \alpha<1)$ (see Owa et al. [23]). Also, the classes $R_{p, q-1}(\alpha)$ are connected with the results obtained by Saitoh in [27].

By using the differential higher-order differential operators we define the following class of functions:

Definition 1.3 A function $f \in \mathcal{A}_{p}$ is said to be a p-valently α-convex function of higher-order derivatives if it satisfies the inequality

$$
\operatorname{Re}\left[(1-\alpha) \frac{z f^{(q+1)}(z)}{f^{(q)}(z)}+\alpha\left(1+\frac{z f^{(q+2)}(z)}{f^{(q+1)}(z)}\right)\right]>0, z \in \mathbb{U}
$$

for some $\alpha(\alpha \geq 0)$, and we will denote this class by $M_{p, q}(\alpha)$.
We note that $M_{p, q}(0)=: S_{p, q}^{*}(0)$ and $M_{p, q}(1)=: K_{p, q}(0)$. The class $M_{p, 0}(\alpha)=: M_{p}(\alpha)$ was introduced and studied by Owa and Ren [24] and extends the class $M_{1,0}(\alpha)=: M(\alpha)$ defined by Mocanu [17] (see also Mocanu and Reade [18], Miller [14], and Miller et al. [16]). Moreover, the class $M_{p, 1-p}(\alpha)=: A(p, \alpha)$ was introduced and studied by Nunokawa [19], and subsequently studied by Fukui et al. [9].

Definition 1.4 (i) Let $G(\alpha)$ be the class of functions g of the form

$$
\begin{equation*}
g(z)=1+\sum_{n=1}^{\infty} g_{n} z^{n}, z \in \mathbb{U} \tag{1.4}
\end{equation*}
$$

which are analytic in the unit disk \mathbb{U} and satisfy

$$
\operatorname{Re} g(z)>\alpha, z \in \mathbb{U}
$$

for some $\alpha \quad(0 \leq \alpha<1)$.
(ii) Further, let $G_{b}(\alpha)$ be the subclass of $G(\alpha)$ consisting of functions g of the form (1.4) and satisfying

$$
g_{1}=2 b(1-\alpha)=g^{\prime}(0) \quad(0 \leq b \leq 1)
$$

2. Preliminaries

In order to prove our main results we need the following lemmas.

Lemma 2.1 [10] Let ω be regular in \mathbb{U} with $\omega(0)=0$. Then, if $|\omega|$ attains its maximum value on the circle $|z|=r$ at a point $z_{0} \in \mathbb{U}$, we have $z_{0} \omega\left(z_{0}\right)=k \omega\left(z_{0}\right)$, where $k \geq 1$.

Lemma 2.2[16] If $f \in M(\alpha)(\alpha \geq 0)$, then $f \in S^{*}(\beta(\alpha))$, where

$$
\beta(\alpha):= \begin{cases}0, & \text { if } 0 \leq \alpha<1 \tag{2.1}\\ \frac{\Gamma\left(\frac{1}{2}+\frac{1}{\alpha}\right)}{\sqrt{\pi} \Gamma\left(1+\frac{1}{\alpha}\right)}, & \text { if } \alpha \geq 1\end{cases}
$$

The result is sharp.

Lemma 2.3 [17] If $f \in M(\alpha)(\alpha \geq 0)$, then $f \in M(\beta)$ for $0 \leq \beta \leq \alpha$.

Lemma 2.4 [14] If $f \in M(\alpha)(\alpha>0)$, then

$$
\begin{equation*}
-K(\alpha,-r) \leq|f(z)| \leq K(\alpha, r),|z|=r, 0<r<1, \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
K(\alpha, r):=\left[\frac{1}{\alpha} \int_{0}^{r} t^{\frac{1}{\alpha}-1}(1-t)^{-\frac{2}{\alpha}} d t\right]^{\alpha} . \tag{2.3}
\end{equation*}
$$

The equality holds in (2.2) for the function $f_{\theta}(\alpha, z)$ given by

$$
\begin{equation*}
f_{\theta}(\alpha, z)=\left[\frac{1}{\alpha} \int_{0}^{z} \zeta^{\frac{1}{\alpha}-1}\left(1-\zeta e^{i \theta}\right)^{-\frac{2}{\alpha}} d \zeta\right]^{\alpha} \tag{2.4}
\end{equation*}
$$

where θ is real and the powers appearing in (2.3) and (2.4) are meant as principal values.
Lemma 2.5 [17] The function $f \in M(\alpha)(\alpha>0)$ if and only if there exists a function F starlike in \mathbb{U}, such that

$$
f(z)=\left[\frac{1}{\alpha} \int_{0}^{z} \frac{(F(\zeta))^{\frac{1}{\alpha}}}{\zeta} d \zeta\right]^{\alpha}, z \in \mathbb{U}
$$

where the powers appearing in the formula are meant as principal values.
A function $f \in \mathcal{A}$ is said to be in the class $R(\alpha)$ if and only if it satisfies the inequality

$$
\operatorname{Re} f^{\prime}(z)>\alpha, z \in \mathbb{U}
$$

for some $\alpha(0 \leq \alpha<1)$.
Lemma 2.6 [23] If $f \in R(\alpha)(0 \leq \alpha<1)$, then

$$
\frac{f(z)}{z} \prec 2 \alpha-1-\frac{2(1-\alpha)}{z} \log (1-z) .
$$

For $g \in G_{b}(\alpha)$, McCarty $[12,13]$ proved the next results:
Lemma 2.7 [12] If $g \in G_{b}(\alpha)$, then

$$
\left|\frac{g^{\prime}(z)}{g(z)}\right| \leq \frac{2(1-\alpha)}{1-r^{2}} \frac{b+2 r+b r^{2}}{1+2 b(1-\alpha) r+(1-2 \alpha) r^{2}},|z|=r, 0<r<1 .
$$

Lemma 2.8 [13] If $g \in G_{b}(\alpha)$, then

$$
\operatorname{Re} \frac{z g^{\prime}(z)}{g(z)} \geq \begin{cases}\frac{-2(1-\alpha) r\left(b+2 r+b r^{2}\right)}{\left[1+2 b \alpha r+(2 \alpha-1) r^{2}\right]\left(1+2 b r+r^{2}\right)}, & \text { if } \quad R^{\prime} \leq R_{b} \\ \frac{2 \sqrt{\alpha A_{1}}-A_{1}-\alpha}{1-\alpha}, & \text { if } \quad R^{\prime} \geq R_{b}\end{cases}
$$

for $|z|=r, 0<r<1$, with $R_{b}:=A_{b}-D_{b}$, where

$$
A_{b}:=\frac{(1+b r)^{2}-(2 \alpha-1)(b+r)^{2} r^{2}}{\left(1-r^{2}\right)\left(1+2 b r+r^{2}\right)}, \quad D_{b}:=\frac{2(1-\alpha) r(b+r)(1+b r) r}{\left(1-r^{2}\right)\left(1+2 b r+r^{2}\right)}
$$

and

$$
R^{\prime}:=\sqrt{\alpha A_{1}}
$$

3. Some properties of the class $M_{p, q}(\alpha)$

The following result deals with an implication involving similar relations that appear in the definition of the classes $R_{p, q}(\alpha)$ and $K_{p, q}(\alpha)$.

Theorem 3.1 If the function $f \in \mathcal{A}_{p}$ satisfies

$$
\operatorname{Re}\left[\frac{f^{(q+1)}(z)}{\delta(p, q+1) z^{p-q-1}}+\alpha \frac{z f^{(q+2)}(z)}{f^{(q+1)}(z)}\right]>\alpha(p-q-1), z \in \mathbb{U}
$$

for some $\alpha(\alpha \geq 0)$ and $p>q$, then

$$
\operatorname{Re} \frac{f^{(q+1)}(z)}{z^{p-q-1}}>\delta(p, q+1) \beta(\alpha), z \in \mathbb{U}
$$

that is, $f \in R_{p, q}((p-q) \beta(\alpha))$, where $\beta(\alpha)$ is given by (2.1). The result is sharp.
Proof Let us define the function $g \in \mathcal{A}$ by

$$
\begin{equation*}
\frac{z g^{\prime}(z)}{g(z)}=\frac{f^{(q+1)}(z)}{\delta(p, q+1) z^{p-q-1}}, z \in \mathbb{U} \tag{3.1}
\end{equation*}
$$

Differentiating (3.1) logarithmically with respect to z we obtain

$$
\begin{equation*}
\frac{z f^{(q+2)}(z)}{f^{(q+1)}(z)}-(p-q-1)=1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}, z \in \mathbb{U} \tag{3.2}
\end{equation*}
$$

and from (3.1) and (3.2) we have

$$
\begin{aligned}
& \operatorname{Re}\left[\frac{f^{(q+1)}(z)}{\delta(p, q+1) z^{p-q-1}}+\alpha \frac{z f^{(q+2)}(z)}{f^{(q+1)}(z)}-\alpha(p-q-1)\right] \\
& =\operatorname{Re}\left[(1-\alpha) \frac{z g^{\prime}(z)}{g(z)}+\alpha\left(1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right)\right]>0, z \in \mathbb{U}
\end{aligned}
$$

This implies that $g \in M(\alpha)$, and by using Lemma 2.1 we have

$$
\operatorname{Re} \frac{z g^{\prime}(z)}{g(z)}=\operatorname{Re} \frac{f^{(q+1)}(z)}{\delta(p, q+1) z^{p-q-1}}>\beta(\alpha), z \in \mathbb{U}
$$

that is,

$$
\begin{equation*}
\operatorname{Re} \frac{f^{(q+1)}(z)}{\delta(p, q) z^{p-q-1}}>(p-q) \beta(\alpha), z \in \mathbb{U} \tag{3.3}
\end{equation*}
$$

where $\beta(\alpha)$ is given by (2.1). Since the result of Lemma 2.1 is sharp, the value $(p-q) \beta(\alpha)$ is the best lower bound for (3.3).

For $q=0$, Theorem 3.1 is reduced to the next result:
Corollary 3.2 If the function $f \in \mathcal{A}_{p}$ satisfies

$$
\operatorname{Re}\left[\frac{f^{\prime}(z)}{p z^{p-1}}+\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]>\alpha(p-1), z \in \mathbb{U}
$$

for some $\alpha(\alpha \geq 0)$, then

$$
\operatorname{Re} \frac{f^{\prime}(z)}{z^{p-1}}>p \beta(\alpha), z \in \mathbb{U}
$$

where $\beta(\alpha)$ is given by (2.1). The result is sharp.

Remark 3.1 Putting $q=j-1(1 \leq j \leq p-1, p \in \mathbb{N})$ in Theorem 3.1, we get the result obtained by Fukui et al. [9].

Theorem 3.3 If $f \in M_{p, q}(\alpha)(\alpha \geq 0)$, then $f \in S_{p, q}^{*}(\beta(\alpha ; p, q))$, where

$$
\widetilde{\beta}(\alpha ; p, q):=(p-q) \beta\left(\frac{\alpha}{p-q}\right)= \begin{cases}0, & \text { if } \quad 0 \leq \alpha<p-q \\ \frac{(p-q) \Gamma\left(\frac{1}{2}+\frac{p-q}{\alpha}\right)}{\sqrt{\pi} \Gamma\left(1+\frac{p-q}{\alpha}\right)}, & \text { if } \quad \alpha \geq p-q\end{cases}
$$

that is, $M_{p, q}(\alpha) \subset S_{p, q}^{*}(\widetilde{\beta}(\alpha ; p, q))$. The result is sharp.
Proof If $f \in M_{p, q}(\alpha)$ it follows that $f^{(q)}(z) \neq 0$ for all $z \in \mathbb{U} \backslash\{0\}$. For $f \in M_{p, q}(\alpha)$, let us define the function $g \in \mathcal{A}$ by

$$
\begin{equation*}
g(z)=z\left(\frac{f^{(q)}(z)}{\delta(p, q) z^{p-q}}\right)^{\frac{1}{p-q}}, z \in \mathbb{U} \tag{3.4}
\end{equation*}
$$

where the power is meant as the principal value. Differentiating (3.4) logarithmically with respect to z, we get

$$
\begin{equation*}
\frac{z f^{(q+1)}(z)}{(p-q) f^{(q)}(z)}=\frac{z g^{\prime}(z)}{g(z)}, z \in \mathbb{U} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{z f^{(q+2)}(z)}{f^{(q+1)}(z)}=1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}+(p-q-1) \frac{z g^{\prime}(z)}{g(z)}, z \in \mathbb{U} \tag{3.6}
\end{equation*}
$$

From (3.5) and (3.6) we deduce that

$$
\begin{gathered}
(1-\alpha) \frac{z f^{(q+1)}(z)}{f^{(q)}(z)}+\alpha\left(1+\frac{z f^{(q+2)}(z)}{f^{(q+1)}(z)}\right)=(p-q-\alpha) \frac{z g^{\prime}(z)}{g(z)}+\alpha\left(1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right) \\
=(p-q)\left[\left(1-\frac{\alpha}{p-q}\right) \frac{z g^{\prime}(z)}{g(z)}+\frac{\alpha}{p-q}\left(1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right)\right], z \in \mathbb{U}
\end{gathered}
$$

and hence

$$
\begin{aligned}
& \frac{1}{p-q} \operatorname{Re}\left[(1-\alpha) \frac{z f^{(q+1)}(z)}{f^{(q)}(z)}+\alpha\left(1+\frac{z f^{(q+2)}(z)}{f^{(q+1)}(z)}\right)\right] \\
= & \operatorname{Re}\left[\left(1-\frac{\alpha}{p-q}\right) \frac{z g^{\prime}(z)}{g(z)}+\frac{\alpha}{p-q}\left(1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right)\right], z \in \mathbb{U} .
\end{aligned}
$$

This implies that $f \in M_{p, q}(\alpha)$ if and only if $g \in M\left(\frac{\alpha}{p-q}\right)$. Since $g \in M\left(\frac{\alpha}{p-q}\right)$, from Lemma 2.2 we get $g \in S^{*}\left(\beta\left(\frac{\alpha}{p-q}\right)\right)$, and according to (3.5) this last relation is equivalent to $f \in S_{p, q}^{*}\left((p-q) \beta\left(\frac{\alpha}{p-q}\right)\right)$; that is, $f \in S_{p, q}^{*}(\widetilde{\beta}(\alpha ; p, q))$. Using the fact that the result of Lemma 2.2 is sharp, the bound $\widetilde{\beta}(\alpha ; p, q)$ from the last relation is the best possible.

For $\alpha=1$, Theorem 3.3 reduces to the next special case:
Corollary 3.4 If $f \in K_{p, q}(0)$, then $f \in S_{p, q}^{*}(\widehat{\beta}(p, q))$, where

$$
\widehat{\beta}(p, q):=\widetilde{\beta}(1 ; p, q) ;
$$

that is, $K_{p, q}(0) \subset S_{p, q}^{*}(\widehat{\beta}(p, q))$. The result is sharp.
Theorem 3.5 If $f \in M_{p, q}(\alpha)(\alpha \geq 0)$, then $f \in M_{p, q}(\beta)$ for $0 \leq \beta \leq \alpha$; that is,

$$
M_{p, q}(\alpha) \subset M_{p, q}(\beta), \quad \text { for } \quad 0 \leq \beta \leq \alpha .
$$

Proof Like in the proof of Theorem 3.3, $f \in M_{p, q}(\alpha)(\alpha \geq 0)$ if and only if $g \in M\left(\frac{\alpha}{p-q}\right)$, where the function g is given by (3.4). Since $0 \leq \beta \leq \alpha$, according to Lemma 2.3 it follows that $g \in M\left(\frac{\beta}{p-q}\right)$, and this last relation is equivalent to $f \in M_{p, q}(\beta)$, which proves the assertion of Theorem 3.5.

Theorem 3.6 A function $f \in \mathcal{A}_{p}$ belongs to the class $M_{p, q}(\alpha)(\alpha>0)$ if and only if there exists a function $F \in S^{*}:=S_{1,0}^{*}(0)$, such that

$$
\begin{equation*}
f^{(q)}(z)=\delta(p, q)\left[\frac{p-q}{\alpha} \int_{0}^{z} \frac{(F(\zeta))^{\frac{p-q}{\alpha}}}{\zeta} d \zeta\right]^{\alpha}, z \in \mathbb{U}, \tag{3.7}
\end{equation*}
$$

where the powers appearing in the formula are meant as principal values.
Proof If we define the function g as in (3.4), from the proof of Theorem 3.3 we have that $f \in M_{p, q}(\alpha)(\alpha \geq 0)$ if and only if $g \in M\left(\frac{\alpha}{p-q}\right)$. Then, from Lemma 2.5, we get that $g \in M\left(\frac{\alpha}{p-q}\right)$ if and only if there exists a function $F \in S^{*}$, such that

$$
g(z)=\left[\frac{p-q}{\alpha} \int_{0}^{z} \frac{(F(\zeta))^{\frac{p-q}{\alpha}}}{\zeta} d \zeta\right]^{\frac{\alpha}{p-q}}, z \in \mathbb{U} .
$$

Using the definition of formula (3.4) we obtain that this last relation is equivalent to (3.7), which proves our result.

Using the fact that $f \in M_{p, q}(\alpha)(\alpha \geq 0)$ if and only if $g \in M\left(\frac{\alpha}{p-q}\right)$, where the function g is given by (3.4), from Lemma 2.4 we obtain the following theorem:

Theorem 3.7 If $f \in M_{p, q}(\alpha)(\alpha>0)$, then

$$
\begin{equation*}
-K_{p, q}(\alpha,-r) \leq\left|f^{(q)}(z)\right| \leq K_{p, q}(\alpha, r),|z|=r, 0<r<1 \tag{3.8}
\end{equation*}
$$

where

$$
K_{p, q}(\alpha, r):=\delta(p, q)\left[\frac{p-q}{\alpha} \int_{0}^{z} t^{\frac{p-q}{\alpha}-1}(1-t)^{\frac{-2(p-q)}{\alpha}} d t\right]^{\alpha}
$$

The equality holds in (3.8) for

$$
f_{\theta ; p, q}^{(q)}(\alpha, z)=\delta(p, q)\left[\frac{p-q}{\alpha} \int_{0}^{z} \zeta^{\frac{p-q}{\alpha}-1}\left(1-\zeta e^{i \theta}\right)^{\frac{-2(p-q)}{\alpha}} d \zeta\right]^{\alpha}
$$

where θ is real and all the powers appearing in the formulas are meant as principal values.

4. The subclass $R_{p . q}(\alpha)$

Theorem 4.1 If $f \in R_{p, q}\left(\frac{\alpha}{\delta(p, q)}\right) \quad(0 \leq \alpha<\delta(p, q+1))$, then

$$
\begin{equation*}
\frac{1}{z} \int_{0}^{z} \frac{f^{(q+1)}(\zeta)}{\zeta^{p-q-1}} d \zeta \prec 2 \alpha-\delta(p, q+1)-\frac{2(\delta(p, q+1)-\alpha)}{z} \log (1-z) \tag{4.1}
\end{equation*}
$$

Proof If we define the function F by

$$
F^{\prime}(z)=\frac{f^{(q+1)}(z)}{\delta(p, q+1) z^{p-q-1}}=1+c_{1} z+c_{2} z^{2}+\ldots, z \in \mathbb{U}
$$

and $F(0)=0$, then

$$
F(z)=\frac{1}{\delta(p, q+1)} \int_{0}^{z} \frac{f^{(q+1)}(\zeta)}{\zeta^{p-q-1}} d \zeta, z \in \mathbb{U}
$$

The fact that $f \in R_{p, q}\left(\frac{\alpha}{\delta(p, q)}\right)$ is equivalent to $f \in \mathcal{A}_{p}$ and

$$
\begin{equation*}
\operatorname{Re} \frac{f^{(q+1)}(z)}{z^{p-q-1}}>\alpha, z \in \mathbb{U} \quad(0 \leq \alpha<\delta(p, q+1)) \tag{4.2}
\end{equation*}
$$

From (4.2) it follows that

$$
\operatorname{Re} F^{\prime}(z)>\beta, z \in \mathbb{U} \quad\left(0 \leq \beta<1, \beta:=\frac{\alpha}{\delta(p, q+1)}\right)
$$

which, according to Lemma 2.6, implies

$$
\frac{1}{\delta(p, q+1) z} \int_{0}^{z} \frac{f^{(q+1)}(\zeta)}{\zeta^{p-q-1}} d \zeta \prec 2 \beta-1-\frac{2(1-\beta)}{z} \log (1-z)
$$

i.e. (4.1).

For $q=0$ in Theorem 4.1 we get the next special case:
Corollary 4.2 If $f \in \mathcal{A}_{p}$ satisfies

$$
\operatorname{Re} \frac{f^{\prime}(z)}{z^{p-1}}>\alpha, z \in \mathbb{U} \quad(0 \leq \alpha<p)
$$

then

$$
\frac{1}{z} \int_{0}^{z} \frac{f^{\prime}(\zeta)}{\zeta^{p-1}} d \zeta \prec 2 \alpha-p-\frac{2(p-\alpha)}{z} \log (1-z)
$$

Remark 4.1 (i) Putting $q=j-1(1 \leq j \leq p)$ in Theorem 4.1, we get the result obtained by Owa [21, Theorem 1] and Saitoh [27, Theorem 5];
(ii) For $p=1$, Corollary 4.2 reduces to the result of Owa et al. [23].

Putting $q=p-1(p \in \mathbb{N})$ in Theorem 4.1, we obtain the following corollary (see also Saitoh [25, Theorem 3]):

Corollary 4.3 If $f \in \mathcal{A}_{p}$ satisfies

$$
\operatorname{Re} f^{(p)}(z)>\alpha, z \in \mathbb{U} \quad(0 \leq \alpha<p)
$$

then

$$
\frac{f^{(p-1)}(z)}{z} \prec 2 \alpha-p!-\frac{2(p!-\alpha)}{z} \log (1-z) .
$$

If we consider $p=1$ in Corollary 4.3, we have the following corollary (see also Owa et al. [23] and Saitoh [25, Corollary 4]):

Corollary 4.4 If $f \in \mathcal{A}$ satisfies

$$
\operatorname{Re} f^{\prime}(z)>\alpha, z \in \mathbb{U} \quad(0 \leq \alpha<1)
$$

then

$$
\frac{f(z)}{z} \prec 2 \alpha-1-\frac{2(1-\alpha)}{z} \log (1-z) .
$$

Theorem 4.5 If $f \in S_{p, q}(\alpha)$ and

$$
\begin{equation*}
|\beta| \leq \frac{\pi}{2}-\sin ^{-1} \frac{p-q-\alpha}{p-q} \tag{4.3}
\end{equation*}
$$

then

$$
\operatorname{Re}\left(e^{i \beta} \frac{f^{(q)}(z)}{z^{p-q}}\right)>0, z \in \mathbb{U}
$$

Proof From the definition of the class $S_{p, q}(\alpha)$ we have that $f \in S_{p, q}(\alpha)$ if and only if $f \in \mathcal{A}_{p}$ and (1.2) is satisfied. Using the fact that

$$
|\zeta-\omega|<r, \zeta \in \mathbb{C} \quad(r<\omega) \quad \Rightarrow \quad|\arg \zeta|<\sin ^{-1} \frac{r}{\omega}
$$

from (1.2) we obtain

$$
\begin{equation*}
\left|\arg \frac{f^{(q+1)}(z)}{z^{p-q-1}}\right|<\sin ^{-1} \frac{(p-q-\alpha) \delta(p, q)}{\delta(p, q+1)}=\sin ^{-1} \frac{p-q-\alpha}{p-q}, z \in \mathbb{U} \tag{4.4}
\end{equation*}
$$

From (4.3) and (4.4) it follows that

$$
\left|\arg \left(e^{i \beta} \frac{f^{(q+1)}(z)}{z^{p-q-1}}\right)\right| \leq|\beta|+\left|\arg \frac{f^{(q+1)}(z)}{z^{p-q-1}}\right|<\frac{\pi}{2}, z \in \mathbb{U}
$$

that is,

$$
\begin{equation*}
\operatorname{Re}\left(e^{i \beta} \frac{f^{(q+1)}(z)}{z^{p-q-1}}\right)>0, z \in \mathbb{U} \tag{4.5}
\end{equation*}
$$

If we define the function ω by

$$
\begin{equation*}
e^{i \beta} \frac{f^{(q)}(z)}{\delta(p, q) z^{p-q}}-i \sin \beta=\cos \beta \frac{1+\omega(z)}{1-\omega(z)}, z \in \mathbb{U} \tag{4.6}
\end{equation*}
$$

with $\omega(z) \neq 1$ for all $z \in \mathbb{U}$, we see that ω is analytic in \mathbb{U} and $\omega(0)=0$. It follows that

$$
e^{i \beta} f^{(q)}(z)-i \delta(p, q) \sin \beta z^{p-q}=\delta(p, q) \cos \beta \frac{1+\omega(z)}{1-\omega(z)} z^{p-q}, z \in \mathbb{U}
$$

and differentiating the above relation with respect to z we obtain

$$
\begin{gathered}
e^{i \beta} f^{(q+1)}(z)-i \delta(p, q+1) \sin \beta z^{p-q-1} \\
=\delta(p, q) \cos \beta\left[(p-q) z^{p-q-1} \frac{1+\omega(z)}{1-\omega(z)}+z^{p-q-1} \frac{2 z \omega^{\prime}(z)}{(1-\omega(z))^{2}}\right], z \in \mathbb{U} .
\end{gathered}
$$

Therefore,

$$
e^{i \beta} \frac{f^{(q+1)}(z)}{z^{p-q-1}}-i \delta(p, q+1) \sin \beta=\delta(p, q) \cos \beta\left[(p-q) \frac{1+\omega(z)}{1-\omega(z)}+\frac{2 z \omega^{\prime}(z)}{(1-\omega(z))^{2}}\right], z \in \mathbb{U}
$$

If we suppose that there exists a point $z_{0} \in \mathbb{U}$ such that

$$
\max _{|z| \leq\left|z_{0}\right|}|\omega(z)|=\left|\omega\left(z_{0}\right)\right|=1
$$

then $\omega\left(z_{0}\right)=e^{i \theta}$ for some $\theta \in(0,2 \pi)$. Since $\cos \beta>0$, by using Lemma 2.1 we get

$$
\begin{gathered}
\operatorname{Re}\left(e^{i \beta} \frac{f^{(q+1)}\left(z_{0}\right)}{z^{p-q-1}}\right)=\operatorname{Re}\left[e^{i \beta} \frac{f^{(q+1)}\left(z_{0}\right)}{z_{0}^{p-q-1}}-i \delta(p, q+1) \sin \beta\right] \\
=\delta(p, q) \cos \beta \operatorname{Re}\left[(p-q) \frac{1+e^{i \theta}}{1-e^{i \theta}}+\frac{2 k e^{i \theta}}{\left(1-e^{i \theta}\right)^{2}}\right]=\delta(p, q) \cos \beta \frac{k}{\cos \theta-1}<0,
\end{gathered}
$$

where $k \geq 1$. The above inequality contradicts (4.5), and therefore $|\omega(z)|<1$ for all $z \in \mathbb{U}$. From (4.6), since $\cos \beta>0$, we conclude that

$$
\operatorname{Re}\left(e^{i \beta} \frac{f^{(q)}(z)}{\delta(p, q) z^{p-q}}\right)=\operatorname{Re}\left(e^{i \beta} \frac{f^{(q)}(z)}{\delta(p, q) z^{p-q}}-i \sin \beta\right)>0, z \in \mathbb{U}
$$

Putting $q=0$ in Theorem 4.5, we have:
Corollary 4.6 If $f \in S_{p, 0}(\alpha)$ and

$$
|\beta| \leq \frac{\pi}{2}-\sin ^{-1} \frac{p-\alpha}{p}
$$

then

$$
\operatorname{Re}\left(e^{i \beta} \frac{f(z)}{z^{p}}\right)>0, z \in \mathbb{U}
$$

Remark 4.2 We note that the result of Corollary 4.6 for $p=1$ was obtained by Owa et al. [22].
If we take $q=j-1 \quad(1 \leq j \leq p)$ in Theorem 4.5, we deduce the next result:
Corollary 4.7 If $f \in S_{p, j-1}(\alpha)(1 \leq j \leq p)$ and

$$
|\beta| \leq \frac{\pi}{2}-\sin ^{-1} \frac{p-j+1-\alpha}{p-j+1}
$$

then

$$
\operatorname{Re}\left(e^{i \beta} \frac{f^{(j-1)}(z)}{z^{p-j+1}}\right)>0, z \in \mathbb{U}
$$

Remark 4.3 Our result in Corollary 4.7 corrects the result obtained by Owa [21, Theorem 3].
We will add at the end of this section the following inclusion theorem:
Theorem 4.8 If $f \in R_{p, q}(\alpha)$, then $f \in R_{p, q-1}(\widehat{\beta}) \quad(1 \leq q<p)$, where

$$
\begin{equation*}
\widehat{\beta}=\frac{\alpha(p-q+1)}{p-q} \tag{4.7}
\end{equation*}
$$

that is, $R_{p, q}(\alpha) \subset R_{p, q-1}\left(\frac{\alpha(p-q+1)}{p-q}\right)$.

Proof For the function $f \in \mathcal{A}_{p}$, according to inequality (1.1) we have

$$
\begin{equation*}
f \in R_{p, q}(\alpha) \Leftrightarrow \operatorname{Re}\left[\frac{f^{(q+1)}(z)}{\delta(p, q) z^{p-q-1}}-\alpha\right]>0, z \in \mathbb{U} \quad(0 \leq \alpha<p-q) \tag{4.8}
\end{equation*}
$$

We will determine the biggest value of $\widehat{\beta} \in \mathbb{R}$ such that $f \in R_{p, q-1}(\widehat{\beta})$; that is,

$$
\operatorname{Re}\left[\frac{f^{(q)}(z)}{\delta(p, q-1) z^{p-q}}-\widehat{\beta}\right]>0, z \in \mathbb{U}
$$

Let us define the function w, analytic in \mathbb{U}, with $w(0)=0$ and $w(z) \neq 1$ for all $z \in \mathbb{U}$, such that

$$
\begin{equation*}
\frac{f^{(q)}(z)}{\delta(p, q-1) z^{p-q}}-\beta=(p-q+1-\widehat{\beta}) \frac{1+w(z)}{1-w(z)}, z \in \mathbb{U} \tag{4.9}
\end{equation*}
$$

Differentiating the above relation we get

$$
\begin{gathered}
\frac{f^{(q+1)}(z)}{\delta(p, q) z^{p-q-1}}-\alpha=-\alpha+\frac{\widehat{\beta}(p-q)}{p-q+1} \\
+\frac{p-q+1-\widehat{\beta}}{p-q+1}\left[(p-q) \frac{1+w(z)}{1-w(z)}+\frac{2 z w^{\prime}(z)}{(1-w(z))^{2}}\right], z \in \mathbb{U}
\end{gathered}
$$

Supposing that there exists a point $z_{0} \in \mathbb{U}$ such that

$$
\max _{|z| \leq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1
$$

by using Lemma 2.1, and letting $w\left(z_{0}\right)=e^{i \theta}$ for some $\theta \in(0,2 \pi)$, we get

$$
\frac{f^{(q+1)}\left(z_{0}\right)}{\delta(p, q) z_{0}^{p-q-1}}-\alpha=-\alpha+\frac{\widehat{\beta}(p-q)}{p-q+1}+\frac{p-q+1-\widehat{\beta}}{p-q+1}\left[(p-q) \frac{1+e^{i \theta}}{1-e^{i \theta}}+\frac{2 k e^{i \theta}}{\left(1-e^{i \theta}\right)^{2}}\right]
$$

and therefore

$$
\begin{gathered}
\operatorname{Re}\left[\frac{f^{(q+1)}\left(z_{0}\right)}{\delta(p, q) z_{0}^{p-q-1}}-\alpha\right]=-\alpha+\frac{\widehat{\beta}(p-q)}{p-q+1} \\
+\frac{p-q+1-\widehat{\beta}}{p-q+1} \operatorname{Re}\left[(p-q) \frac{1+e^{i \theta}}{1-e^{i \theta}}+\frac{2 k e^{i \theta}}{\left(1-e^{i \theta}\right)^{2}}\right] .
\end{gathered}
$$

This last relation is equivalent to

$$
\operatorname{Re}\left[\frac{f^{(q+1)}\left(z_{0}\right)}{\delta(p, q) z_{0}^{p-q-1}}-\alpha\right]=-\alpha+\frac{\widehat{\beta}(p-q)}{p-q+1}+\frac{p-q+1-\widehat{\beta}}{p-q+1}\left(-\frac{2}{4 \sin ^{2} \frac{\theta}{2}}\right)
$$

and assuming that $\widehat{\beta} \leq p-q+1$, from the above identity we deduce that

$$
\operatorname{Re}\left[\frac{f^{(q+1)}\left(z_{0}\right)}{\delta(p, q) z_{0}^{p-q-1}}-\alpha\right] \leq-\alpha+\frac{\widehat{\beta}(p-q)}{p-q+1}=0
$$

if $\widehat{\beta}$ is given by (4.7). Moreover, this value of $\widehat{\beta}$ satisfies the inequality $\widehat{\beta}<p-q+1$, and therefore the above inequality contradicts assumption (4.8).

It follows that $|w(z)|<1$ for all $z \in \mathbb{U}$, and using the fact that $\widehat{\beta}<p-q+1$, from (4.9) we obtain our conclusion.

5. The subclass $B_{p, q}(b, \alpha)$

Let $B_{p, q}(b, \alpha)$ be the subclass of $B_{p, q}(\alpha)$ consisting of functions $f \in B_{p, q}(\alpha)$ satisfying

$$
a_{p+1}=2 b(\delta(p, q)-\alpha) \frac{(p-q+1)!}{(p+1)!}, \quad(p>q, 0 \leq \alpha<\delta(p, q), 0 \leq b \leq 1)
$$

For $f \in B_{p, q}(\alpha)$ we prove the next result:
Theorem 5.1 If $f \in B_{p, q}(b, \alpha)$, then

$$
\begin{gather*}
\left|\frac{z f^{(q+1)}(z)}{f^{(q)}(z)}\right| \leq(p-q) \\
+\frac{2(\delta(p, q)-\alpha) r}{1-r^{2}} \frac{b+2 r+b r^{2}}{\delta(p, q)+2 b(\delta(p, q)-\alpha) r+(\delta(p, q)-2 \alpha) r^{2}} \tag{5.1}
\end{gather*}
$$

where $|z|=r, 0<r<1$.
Proof If $f \in B_{p, q}(b, \alpha)$, then

$$
f(z)=z^{p}+2 b(\delta(p, q)-\alpha) \frac{(p-q+1)!}{(p+1)!} z^{p+1}+\ldots, z \in \mathbb{U}
$$

and we obtain that

$$
\begin{equation*}
\frac{f^{(q)}(z)}{\delta(p, q) z^{p-q}}=1+2 b\left(1-\frac{\alpha}{\delta(p, q)}\right) z+\ldots, z \in \mathbb{U} \tag{5.2}
\end{equation*}
$$

with $0 \leq \frac{\alpha}{\delta(p, q)}<1$ and $0 \leq b \leq 1$. Since $f \in B_{p, q}(b, \alpha)$, from (1.3) and (5.2) it follows that

$$
\frac{f^{(q)}(z)}{\delta(p, q) z^{p-q}} \in G_{b}\left(\frac{\alpha}{\delta(p, q)}\right)
$$

Using Lemma 2.7 for the function $\frac{f^{(q)}(z)}{\delta(p, q) z^{p-q}}$ we conclude that

$$
\begin{gathered}
\left|\frac{z f^{(q+1)}(z)}{f^{(q)}(z)}-(p-q)\right| \leq \\
\frac{2(\delta(p, q)-\alpha) r}{1-r^{2}} \frac{b+2 r+b r^{2}}{\delta(p, q)+2 b(\delta(p, q)-\alpha) r+(\delta(p, q)-2 \alpha) r^{2}},|z|=r, 0<r<1
\end{gathered}
$$

which implies the conclusion (5.1).
For $q=0$ Theorem 5.1 reduces to the next special case:

Corollary 5.2 If $f \in B_{p, 0}(b, \alpha)$, then

$$
\left|\frac{z f^{\prime}(z)}{f(z)}\right| \leq p+\frac{2(1-\alpha) r}{1-r^{2}} \frac{b+2 r+b r^{2}}{1+2 b(1-\alpha) r+(1-2 \alpha) r^{2}},|z|=r, 0<r<1
$$

With a similar proof as for Theorem 5.1, using Lemma 2.8 we obtain the following theorem:

Theorem 5.3 If $f \in B_{p, q}(b, \alpha)$, then

$$
\operatorname{Re} \frac{z f^{(q+1)}(z)}{f^{(q)}(z)} \geq \begin{cases}(p-q)-\frac{2(\delta(p, q)-\alpha) r\left(b+2 r+b r^{2}\right)}{\left(\delta(p, q)+2 b \alpha r+(2 \alpha-\delta(p, q)) r^{2}\right)\left(1+2 b r+r^{2}\right)}, & \text { if } \quad R^{\prime} \leq R_{b} \\ (p-q)+\frac{2 \sqrt{\delta(p, q) \alpha M_{1}}-\delta(p, q) M_{1}-\alpha}{\delta(p, q)-\alpha}, & \text { if } R^{\prime} \geq R_{b}\end{cases}
$$

for $|z|=r, 0<r<1$, with $R_{b}:=M_{b}-N_{b}$, where

$$
\begin{aligned}
& M_{b}:=\frac{\delta(p, q)(1+b r)^{2}-(2 \alpha-\delta(p, q))(b+r)^{2} r^{2}}{\delta(p, q)\left(1-r^{2}\right)\left(1+2 b r+r^{2}\right)} \\
& N_{b}:=\frac{2(\delta(p, q)-\alpha) r(b+r)(1+b r) r}{\delta(p, q)\left(1-r^{2}\right)\left(1+2 b r+r^{2}\right)}
\end{aligned}
$$

and

$$
R^{\prime}:=\sqrt{\frac{\alpha}{\delta(p, q)} M_{1}}
$$

Taking $q=0$ in Theorem 5.3 we obtain the next special case:
Corollary 5.4 If $f \in B_{p, 0}(b, \alpha)$, then

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)} \geq \begin{cases}p-\frac{2(1-\alpha) r\left(b+2 r+b r^{2}\right)}{\left(1+2 b \alpha r+(2 \alpha-1) r^{2}\right)\left(1+2 b r+r^{2}\right)}, & \text { if } \quad R^{\prime} \leq R_{b} \\ p+\frac{2 \sqrt{\alpha M_{1}}-M_{1}-\alpha}{1-\alpha}, & \text { if } \quad R^{\prime} \geq R_{b}\end{cases}
$$

for $|z|=r, 0<r<1$, with $R_{b}:=M_{b}-N_{b}$, where

$$
M_{b}:=\frac{(1+b r)^{2}-(2 \alpha-1)(b+r)^{2} r^{2}}{\left(1-r^{2}\right)\left(1+2 b r+r^{2}\right)}, \quad N_{b}:=\frac{2(1-\alpha) r(b+r)(1+b r) r}{\left(1-r^{2}\right)\left(1+2 b r+r^{2}\right)}
$$

and

$$
R^{\prime}:=\sqrt{\alpha M_{1}} .
$$

Remark 5.1 (i) Putting $q=j(1 \leq j \leq p)$ in Theorems 5.1 and 5.3, we get the results obtained by Owa [21, Theorems 5 and 6];
(ii) For $p=1$ Corollaries 5.2 and 5.4 reduce to the results of McCarty [12, 13].

Acknowledgment

The authors are grateful to the reviewers of this article, who gave valuable remarks, comments, and advice in order to revise and improve the results of the paper.

References

[1] Aouf MK. On a class of p-valent starlike functions of order α. Int J Math Math Sci 1987; 10: 733-744
[2] Aouf MK. A generalization of multivalent functions with negative coefficients. J Korean Math Soc 1988; 25: 53-66.
[3] Aouf MK. Certain classes of multivalent functions with negative coefficients defined by using a differential operator. J Math Appl 2008; 30: 5-21.
[4] Aouf MK. Certain subclasses of p-valent starlike functions defined by using a differential operator. Appl Math Comput 2008; 206: 867-875.
[5] Aouf MK. Some families of p-valent functions with negative coefficients. Acta Math Univ Comenian (NS) 2009; 78: 121-135.
[6] Aouf MK. Bounded p-valent Robertson functions defined by using a differential operator. J Franklin Inst 2010; 347: 1972-1941.
[7] Aouf MK. Some inclusion relationships associated with Dizok-Srivastava operator. Appl Math Comput 2010; 216: 431-437.
[8] Bulboacă T. Differential Subordinations and Superordinations. New Results. Cluj-Napoca, Romania: House of Scientific Book Publications, 2005.
[9] Fukui S, Ren F, Owa S, Nunokawa M. On certain multivalent functions. Bull Fac Edu Wakayama Univ Nat Sci 1989; 38: 5-8.
[10] Jack IS. Functions starlike and convex of order α. J Lond Math Soc 1971; 2: 469-474.
[11] Lee SK, Owa S. A subclass of p-valently close to convex functions of order α. Appl Math Lett 1992; 5: 3-6.
[12] McCarty CP. Functions with real part greater than α. P Am Math Soc 1972; 35: 211-216.
[13] McCarty CP. Two radius of convexity problems. P Am Math Soc 1974; 42: 153-160.
[14] Miller SS. Distortion properties of alpha-starlike functions. P Am Math Soc 1973; 38: 311-318.
[15] Miller SS, Mocanu PT. Differential Subordinations. Theory and Applications. Series on Monographs and Textbooks in Pure and Applied Mathematics, No. 255. New York, NY, USA: Marcel Dekker, 2000.
[16] Miller SS, Mocanu PT, Reade MO. The order of starlikeness of alpha-convex functions. Mathematica (Cluj) 1978; 20: 25-30.
[17] Mocanu PT. Une propriété de convexité generaliseé dans la théorie de la représentation conforme. Mathematica (Cluj) 1969; 11: 127-133 (in French).
[18] Mocanu PT, Reade MO. On generalized convexity in conformal mappings. Rev Roum Math Pures Appl 1971; 46: 1541-1544.
[19] Nunokawa M. On the theory of multivalent functions. Tsukuba J Math 1987; 11: 273-286.
[20] Owa S. On certain classes of p-valent functions with negative coefficients. Bull Belg Math Soc Simon Stevin 1985; 59: 385-402.
[21] Owa S. Some properties of certain multivalently functions. Math Nachr 1992; 155: 167-185.
[22] Owa S, Aouf MK, Nasr MA. Note on certain subclass of close-to-convex functions of order α. Int J Math Math Sci 1990; 13: 189-192.
[23] Owa S, Ma W, Liu L. On a class of analytic functions satisfying $\operatorname{Re}\left(f^{\prime}(z)\right)>\alpha$. Bull Korean Math Soc 1988; 25: 211-224.
[24] Owa S, Ren F. On a class of p-valently α-convex functions. Math Nachr 1990; 146: 17-21.
[25] Saitoh H. Some properties of certain analytic functions. Topics in Univalent Functions and Its Applications 1990; 714: 160-167.
[26] Saitoh H. Some properties of certain multivalent functions. Tsukuba J Math 1991; 15: 105-111.
[27] Saitoh H. On certain class of multivalent functions. Math Japon 1992; 37: 871-875.

