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Abstract: In this paper we derive some properties of multivalent functions belonging to the classes Rp,q(α) , Bp,q(α) ,
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1. Introduction
Let U := {z ∈ C : |z| < 1} be the open unit disc of the complex plane, and let Ap denote the class of analytic
and multivalent functions in U of the form

f(z) = zp +

∞∑
k=p+1

akz
k, z ∈ U (p ∈ N := {1, 2, . . . }) .

Also, denote A := A1 .
For two functions f and g analytic in U , we say that the function f is subordinate to g , written as

f(z) ≺ g(z) , or simply f ≺ g , if there exists a Schwarz function ω ; that is, ω is analytic U , with ω(0) = 0

and |ω(z)| < 1 , z ∈ U , such that f(z) = g(ω(z)) for all z ∈ U . If the function g is univalent in U , the above
subordination is equivalent to f(0) = g(0) and f(U) ⊂ g(U) (see [8, 15]).

For 0 ≤ α < p− q , p > q , p ∈ N , and q ∈ N0 := N ∪ {0} , we say that f ∈ Ap is in the class S∗
p,q(α) if

it satisfies the inequality

Re zf (q+1)(z)

f (q)(z)
> α, z ∈ U.

Also, we say that f ∈ Ap is in the class Kp,q(α) if the following inequality holds:

Re
[
1 +

zf (q+2)(z)

f (q+1)(z)

]
> α, z ∈ U.
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The classes S∗
p,q(α) and Kp,q(α) were introduced and studied by Aouf [3, 5, 6], and we note that S∗

p,0(α) =:

S∗
p(α) and Kp,0(α) =: Kp(α) are, respectively, the class of p-valently starlike functions of order α and the class

of p-valently convex functions of order α (0 ≤ α < p) (see Owa [20] and Aouf [1, 2]).

Definition 1.1 For 0 ≤ α < p − q , p > q , p ∈ N , and q ∈ N0 , we say the function f ∈ Ap is in the class
Cp,q(α) if there exists a function g ∈ S∗

p,q(α) such that

Re zf (q+1)(z)

g(q)(z)
> α, z ∈ U.

The class Cp,q(α) was introduced and studied by Aouf [4], and we note that Cp,0(α) =: Cp(α) (see Aouf
[7]).

Definition 1.2 Let Rp,q(α) be the subclass of Cp,q(α) obtained by choosing g(z) = zp ; that is, the function
f ∈ Ap belongs to the class Rp,q(α) if and only if it satisfies

Re f (q+1)(z)

δ(p, q)zp−q−1
> α, z ∈ U (0 ≤ α < p− q), (1.1)

where δ(p, q) =
p!

(p− q)!
(p ≥ q) .

Remark 1.1 (i) It is easy to check that if the function f ∈ Ap satisfies the inequality

∣∣∣∣f (q+1)(z)

zp−q−1
− δ(p, q + 1)

∣∣∣∣ < (p− q − α)δ(p, q), z ∈ U (0 ≤ α < p− q), (1.2)

then f ∈ Rp,q(α) . Thus, if we denote by Sp,q(α) the class of functions f ∈ Ap that satisfies (1.2), then
Sp,q(α) ⊂ Rp,q(α) .

(ii) We will denote by Bp,q(α) (0 ≤ α < δ(p, q)) the class Bp,q(α) := Sp,q−1

(
α

δ(p,q−1)

)
. Therefore, the

function f ∈ Ap belongs to the class Bp,q(α) (0 ≤ α < δ(p, q)) if and only if it satisfies

∣∣∣∣f (q)(z)

zp−q
− δ(p, q)

∣∣∣∣ < δ(p, q)− α, z ∈ U (0 ≤ α < δ(p, q)). (1.3)

For q := p− 1 and β := p!α , the inequality (1.2) reduces to∣∣∣f (p)(z)− p!
∣∣∣ < p! = β, z ∈ U (0 ≤ β < p!),

and the subclass Sp(β) of functions satisfying the above relation was introduced and studied by Saitoh [26].
Moreover, we note the special cases Rp,0(α) =: Rp(α) (0 ≤ α < p) (see Lee and Owa [11]) and R1,0(α) =: R(α)

(0 ≤ α < 1) (see Owa et al. [23]). Also, the classes Rp,q−1(α) are connected with the results obtained by Saitoh
in [27].

By using the differential higher-order differential operators we define the following class of functions:
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Definition 1.3 A function f ∈ Ap is said to be a p-valently α-convex function of higher-order derivatives if
it satisfies the inequality

Re
[
(1− α)

zf (q+1)(z)

f (q)(z)
+ α

(
1 +

zf (q+2)(z)

f (q+1)(z)

)]
> 0, z ∈ U,

for some α (α ≥ 0) , and we will denote this class by Mp,q(α) .

We note that Mp,q(0) =: S∗
p,q(0) and Mp,q(1) =: Kp,q(0) . The class Mp,0(α) =: Mp(α) was introduced

and studied by Owa and Ren [24] and extends the class M1,0(α) =: M(α) defined by Mocanu [17] (see also
Mocanu and Reade [18], Miller [14], and Miller et al. [16]). Moreover, the class Mp,1−p(α) =: A(p, α) was
introduced and studied by Nunokawa [19], and subsequently studied by Fukui et al. [9].

Definition 1.4 (i) Let G(α) be the class of functions g of the form

g(z) = 1 +

∞∑
n=1

gnz
n, z ∈ U, (1.4)

which are analytic in the unit disk U and satisfy

Re g(z) > α, z ∈ U,

for some α (0 ≤ α < 1) .
(ii) Further, let Gb(α) be the subclass of G(α) consisting of functions g of the form (1.4) and satisfying

g1 = 2b(1− α) = g′(0) (0 ≤ b ≤ 1).

2. Preliminaries
In order to prove our main results we need the following lemmas.

Lemma 2.1 [10] Let ω be regular in U with ω(0) = 0 . Then, if |ω| attains its maximum value on the circle
|z| = r at a point z0 ∈ U , we have z0ω(z0) = kω(z0) , where k ≥ 1 .

Lemma 2.2 [16] If f ∈ M(α) (α ≥ 0) , then f ∈ S∗(β(α)) , where

β(α) :=


0, if 0 ≤ α < 1,

Γ

(
1

2
+

1

α

)
√
π Γ

(
1 +

1

α

) , if α ≥ 1.
(2.1)

The result is sharp.

Lemma 2.3 [17] If f ∈ M(α) (α ≥ 0) , then f ∈ M(β) for 0 ≤ β ≤ α .
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Lemma 2.4 [14] If f ∈ M(α) (α > 0) , then

−K(α,−r) ≤ |f(z)| ≤ K(α, r), |z| = r, 0 < r < 1, (2.2)

where

K(α, r) :=

 1

α

r∫
0

t
1
α−1(1− t)−

2
α dt

α

. (2.3)

The equality holds in (2.2) for the function fθ(α, z) given by

fθ(α, z) =

 1

α

z∫
0

ζ
1
α−1(1− ζeiθ)−

2
α dζ

α

, (2.4)

where θ is real and the powers appearing in (2.3) and (2.4) are meant as principal values.

Lemma 2.5 [17] The function f ∈ M(α) (α > 0) if and only if there exists a function F starlike in U , such
that

f(z) =

[
1

α

∫ z

0

(F (ζ))
1
α

ζ
dζ

]α
, z ∈ U,

where the powers appearing in the formula are meant as principal values.

A function f ∈ A is said to be in the class R(α) if and only if it satisfies the inequality

Re f ′(z) > α, z ∈ U,

for some α (0 ≤ α < 1) .

Lemma 2.6 [23] If f ∈ R(α) (0 ≤ α < 1) , then

f(z)

z
≺ 2α− 1− 2(1− α)

z
log(1− z).

For g ∈ Gb(α) , McCarty [12, 13] proved the next results:

Lemma 2.7 [12] If g ∈ Gb(α) , then∣∣∣∣g′(z)g(z)

∣∣∣∣ ≤ 2(1− α)

1− r2
b+ 2r + br2

1 + 2b(1− α)r + (1− 2α)r2
, |z| = r, 0 < r < 1.

Lemma 2.8 [13] If g ∈ Gb(α) , then

Re zg′(z)

g(z)
≥


−2(1− α)r

(
b+ 2r + br2

)
[1 + 2bαr + (2α− 1)r2] (1 + 2br + r2)

, if R′ ≤ Rb,

2
√
αA1 −A1 − α

1− α
, if R′ ≥ Rb,
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for |z| = r , 0 < r < 1 , with Rb := Ab −Db , where

Ab :=
(1 + br)2 − (2α− 1)(b+ r)2r2

(1− r2) (1 + 2br + r2)
, Db :=

2(1− α)r(b+ r)(1 + br)r

(1− r2) (1 + 2br + r2)
,

and
R′ :=

√
αA1.

3. Some properties of the class Mp,q(α)

The following result deals with an implication involving similar relations that appear in the definition of the
classes Rp,q(α) and Kp,q(α) .

Theorem 3.1 If the function f ∈ Ap satisfies

Re
[

f (q+1)(z)

δ(p, q + 1)zp−q−1
+ α

zf (q+2)(z)

f (q+1)(z)

]
> α(p− q − 1), z ∈ U,

for some α (α ≥ 0) and p > q , then

Re f (q+1)(z)

zp−q−1
> δ(p, q + 1)β(α), z ∈ U;

that is, f ∈ Rp,q ((p− q)β(α)) , where β(α) is given by (2.1). The result is sharp.

Proof Let us define the function g ∈ A by

zg′(z)

g(z)
=

f (q+1)(z)

δ(p, q + 1)zp−q−1
, z ∈ U. (3.1)

Differentiating (3.1) logarithmically with respect to z we obtain

zf (q+2)(z)

f (q+1)(z)
− (p− q − 1) = 1 +

zg′′(z)

g′(z)
− zg′(z)

g(z)
, z ∈ U, (3.2)

and from (3.1) and (3.2) we have

Re
[

f (q+1)(z)

δ(p, q + 1)zp−q−1
+ α

zf (q+2)(z)

f (q+1)(z)
− α(p− q − 1)

]
= Re

[
(1− α)

zg′(z)

g(z)
+ α

(
1 +

zg′′(z)

g′(z)

)]
> 0, z ∈ U.

This implies that g ∈ M(α) , and by using Lemma 2.1 we have

Re zg′(z)

g(z)
= Re f (q+1)(z)

δ(p, q + 1)zp−q−1
> β(α), z ∈ U;

that is,

Re f (q+1)(z)

δ(p, q)zp−q−1
> (p− q)β(α), z ∈ U, (3.3)
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where β(α) is given by (2.1). Since the result of Lemma 2.1 is sharp, the value (p − q)β(α) is the best lower
bound for (3.3). 2

For q = 0 , Theorem 3.1 is reduced to the next result:

Corollary 3.2 If the function f ∈ Ap satisfies

Re
[
f ′(z)

pzp−1
+ α

zf ′′(z)

f ′(z)

]
> α(p− 1), z ∈ U,

for some α (α ≥ 0) , then

Re f ′(z)

zp−1
> pβ(α), z ∈ U,

where β(α) is given by (2.1). The result is sharp.

Remark 3.1 Putting q = j − 1 (1 ≤ j ≤ p− 1, p ∈ N) in Theorem 3.1, we get the result obtained by Fukui et
al. [9].

Theorem 3.3 If f ∈ Mp,q(α) (α ≥ 0) , then f ∈ S∗
p,q(β(α; p, q)) , where

β̃(α; p, q) := (p− q)β

(
α

p− q

)
=


0, if 0 ≤ α < p− q,

(p− q)Γ

(
1

2
+

p− q

α

)
√
π Γ

(
1 +

p− q

α

) , if α ≥ p− q;

that is, Mp,q(α) ⊂ S∗
p,q

(
β̃(α; p, q)

)
. The result is sharp.

Proof If f ∈ Mp,q(α) it follows that f (q)(z) ̸= 0 for all z ∈ U \ {0} . For f ∈ Mp,q(α) , let us define the
function g ∈ A by

g(z) = z

(
f (q)(z)

δ(p, q)zp−q

) 1
p−q

, z ∈ U, (3.4)

where the power is meant as the principal value. Differentiating (3.4) logarithmically with respect to z , we get

zf (q+1)(z)

(p− q)f (q)(z)
=

zg′(z)

g(z)
, z ∈ U, (3.5)

and

1 +
zf (q+2)(z)

f (q+1)(z)
= 1 +

zg′′(z)

g′(z)
+ (p− q − 1)

zg′(z)

g(z)
, z ∈ U. (3.6)

From (3.5) and (3.6) we deduce that

(1− α)
zf (q+1)(z)

f (q)(z)
+ α

(
1 +

zf (q+2)(z)

f (q+1)(z)

)
= (p− q − α)

zg′(z)

g(z)
+ α

(
1 +

zg′′(z)

g′(z)

)

= (p− q)

[(
1− α

p− q

)
zg′(z)

g(z)
+

α

p− q

(
1 +

zg′′(z)

g′(z)

)]
, z ∈ U,
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and hence

1

p− q
Re
[
(1− α)

zf (q+1)(z)

f (q)(z)
+ α

(
1 +

zf (q+2)(z)

f (q+1)(z)

)]

= Re
[(

1− α

p− q

)
zg′(z)

g(z)
+

α

p− q

(
1 +

zg′′(z)

g′(z)

)]
, z ∈ U.

This implies that f ∈ Mp,q(α) if and only if g ∈ M
(

α
p−q

)
. Since g ∈ M

(
α

p−q

)
, from Lemma 2.2 we get

g ∈ S∗
(
β
(

α
p−q

))
, and according to (3.5) this last relation is equivalent to f ∈ S∗

p,q

(
(p− q)β

(
α

p−q

))
; that is,

f ∈ S∗
p,q

(
β̃(α; p, q)

)
. Using the fact that the result of Lemma 2.2 is sharp, the bound β̃(α; p, q) from the last

relation is the best possible. 2

For α = 1 , Theorem 3.3 reduces to the next special case:

Corollary 3.4 If f ∈ Kp,q(0) , then f ∈ S∗
p,q

(
β̂(p, q)

)
, where

β̂(p, q) := β̃(1; p, q);

that is, Kp,q(0) ⊂ S∗
p,q

(
β̂(p, q)

)
. The result is sharp.

Theorem 3.5 If f ∈ Mp,q(α) (α ≥ 0) , then f ∈ Mp,q(β) for 0 ≤ β ≤ α ; that is,

Mp,q(α) ⊂ Mp,q(β), for 0 ≤ β ≤ α.

Proof Like in the proof of Theorem 3.3, f ∈ Mp,q(α) (α ≥ 0) if and only if g ∈ M
(

α
p−q

)
, where the function

g is given by (3.4). Since 0 ≤ β ≤ α , according to Lemma 2.3 it follows that g ∈ M
(

β
p−q

)
, and this last

relation is equivalent to f ∈ Mp,q(β) , which proves the assertion of Theorem 3.5. 2

Theorem 3.6 A function f ∈ Ap belongs to the class Mp,q(α) (α > 0) if and only if there exists a function
F ∈ S∗ := S∗

1,0(0) , such that

f (q)(z) = δ(p, q)

p− q

α

z∫
0

(F (ζ))
p−q
α

ζ
dζ

α

, z ∈ U, (3.7)

where the powers appearing in the formula are meant as principal values.

Proof If we define the function g as in (3.4), from the proof of Theorem 3.3 we have that f ∈ Mp,q(α) (α ≥ 0)

if and only if g ∈ M
(

α
p−q

)
. Then, from Lemma 2.5, we get that g ∈ M

(
α

p−q

)
if and only if there exists a

function F ∈ S∗ , such that

g(z) =

p− q

α

z∫
0

(F (ζ))
p−q
α

ζ
dζ

 α
p−q

, z ∈ U.
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Using the definition of formula (3.4) we obtain that this last relation is equivalent to (3.7), which proves
our result. 2

Using the fact that f ∈ Mp,q(α) (α ≥ 0) if and only if g ∈ M
(

α
p−q

)
, where the function g is given by

(3.4), from Lemma 2.4 we obtain the following theorem:

Theorem 3.7 If f ∈ Mp,q(α) (α > 0) , then

−Kp,q(α,−r) ≤
∣∣∣f (q)(z)

∣∣∣ ≤ Kp,q(α, r), |z| = r, 0 < r < 1, (3.8)

where

Kp,q(α, r) := δ(p, q)

p− q

α

z∫
0

t
p−q
α −1(1− t)

−2(p−q)
α dt

α

.

The equality holds in (3.8) for

f
(q)
θ;p,q(α, z) = δ(p, q)

p− q

α

z∫
0

ζ
p−q
α −1(1− ζeiθ)

−2(p−q)
α dζ

α

,

where θ is real and all the powers appearing in the formulas are meant as principal values.

4. The subclass Rp.q(α)

Theorem 4.1 If f ∈ Rp,q

(
α

δ(p,q)

)
(0 ≤ α < δ(p, q + 1)) , then

1

z

z∫
0

f (q+1)(ζ)

ζp−q−1
dζ ≺ 2α− δ(p, q + 1)− 2 (δ(p, q + 1)− α)

z
log(1− z). (4.1)

Proof If we define the function F by

F ′(z) =
f (q+1)(z)

δ(p, q + 1)zp−q−1
= 1 + c1z + c2z

2 + . . . , z ∈ U,

and F (0) = 0 , then

F (z) =
1

δ(p, q + 1)

z∫
0

f (q+1)(ζ)

ζp−q−1
dζ, z ∈ U.

The fact that f ∈ Rp,q

(
α

δ(p,q)

)
is equivalent to f ∈ Ap and

Re f (q+1)(z)

zp−q−1
> α, z ∈ U (0 ≤ α < δ(p, q + 1)) . (4.2)

From (4.2) it follows that

ReF ′(z) > β, z ∈ U
(
0 ≤ β < 1, β :=

α

δ(p, q + 1)

)
,
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which, according to Lemma 2.6, implies

1

δ(p, q + 1)z

z∫
0

f (q+1)(ζ)

ζp−q−1
dζ ≺ 2β − 1− 2(1− β)

z
log(1− z),

i.e. (4.1). 2

For q = 0 in Theorem 4.1 we get the next special case:

Corollary 4.2 If f ∈ Ap satisfies

Re f ′(z)

zp−1
> α, z ∈ U (0 ≤ α < p),

then

1

z

z∫
0

f ′(ζ)

ζp−1
dζ ≺ 2α− p− 2(p− α)

z
log(1− z).

Remark 4.1 (i) Putting q = j−1 (1 ≤ j ≤ p) in Theorem 4.1, we get the result obtained by Owa [21, Theorem
1] and Saitoh [27, Theorem 5];

(ii) For p = 1 , Corollary 4.2 reduces to the result of Owa et al. [23].

Putting q = p−1 (p ∈ N) in Theorem 4.1, we obtain the following corollary (see also Saitoh [25, Theorem
3]):

Corollary 4.3 If f ∈ Ap satisfies

Re f
(p)

(z) > α, z ∈ U (0 ≤ α < p),

then
f

(p−1)

(z)

z
≺ 2α− p!− 2(p!− α)

z
log(1− z).

If we consider p = 1 in Corollary 4.3, we have the following corollary (see also Owa et al. [23] and Saitoh
[25, Corollary 4]):

Corollary 4.4 If f ∈ A satisfies

Re f ′(z) > α, z ∈ U (0 ≤ α < 1),

then
f(z)

z
≺ 2α− 1− 2(1− α)

z
log(1− z).

Theorem 4.5 If f ∈ Sp,q(α) and

|β| ≤ π

2
− sin−1 p− q − α

p− q
, (4.3)
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then

Re
(
eiβ

f
(q)

(z)

zp−q

)
> 0, z ∈ U.

Proof From the definition of the class Sp,q(α) we have that f ∈ Sp,q(α) if and only if f ∈ Ap and (1.2) is
satisfied. Using the fact that

|ζ − ω| < r, ζ ∈ C (r < ω) ⇒ | arg ζ| < sin−1 r

ω
,

from (1.2) we obtain ∣∣∣∣arg f (q+1)(z)

zp−q−1

∣∣∣∣ < sin−1 (p− q − α)δ(p, q)

δ(p, q + 1)
= sin−1 p− q − α

p− q
, z ∈ U. (4.4)

From (4.3) and (4.4) it follows that∣∣∣∣∣arg
(
eiβ

f
(q+1)

(z)

zp−q−1

)∣∣∣∣∣ ≤ |β|+

∣∣∣∣∣arg f
(q+1)

(z)

zp−q−1

∣∣∣∣∣ < π

2
, z ∈ U;

that is,

Re
(
eiβ

f
(q+1)

(z)

zp−q−1

)
> 0, z ∈ U. (4.5)

If we define the function ω by

eiβ
f

(q)

(z)

δ(p, q)zp−q
− i sinβ = cosβ 1 + ω(z)

1− ω(z)
, z ∈ U, (4.6)

with ω(z) ̸= 1 for all z ∈ U , we see that ω is analytic in U and ω(0) = 0 . It follows that

eiβf
(q)

(z)− iδ(p, q) sinβzp−q = δ(p, q) cosβ 1 + ω(z)

1− ω(z)
zp−q, z ∈ U,

and differentiating the above relation with respect to z we obtain

eiβf
(q+1)

(z)− iδ(p, q + 1) sinβzp−q−1

= δ(p, q) cosβ
[
(p− q)zp−q−1 1 + ω(z)

1− ω(z)
+ zp−q−1 2zω′(z)

(1− ω(z))
2

]
, z ∈ U.

Therefore,

eiβ
f

(q+1)

(z)

zp−q−1
− iδ(p, q + 1) sinβ = δ(p, q) cosβ

[
(p− q)

1 + ω(z)

1− ω(z)
+

2zω′(z)

(1− ω(z))
2

]
, z ∈ U.

If we suppose that there exists a point z0 ∈ U such that

max
|z|≤|z0|

|ω(z)| = |ω(z0)| = 1,
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then ω(z0) = eiθ for some θ ∈ (0, 2π) . Since cosβ > 0 , by using Lemma 2.1 we get

Re
(
eiβ

f
(q+1)

(z0)

zp−q−1

)
= Re

[
eiβ

f
(q+1)

(z0)

zp−q−1
0

− iδ(p, q + 1) sinβ

]

= δ(p, q) cosβ Re
[
(p− q)

1 + eiθ

1− eiθ
+

2keiθ

(1− eiθ)
2

]
= δ(p, q) cosβ k

cos θ − 1
< 0,

where k ≥ 1 . The above inequality contradicts (4.5), and therefore |ω(z)| < 1 for all z ∈ U . From (4.6), since
cosβ > 0 , we conclude that

Re
(
eiβ

f
(q)

(z)

δ(p, q)zp−q

)
= Re

(
eiβ

f
(q)

(z)

δ(p, q)zp−q
− i sinβ

)
> 0, z ∈ U.

2

Putting q = 0 in Theorem 4.5, we have:

Corollary 4.6 If f ∈ Sp,0(α) and

|β| ≤ π

2
− sin−1 p− α

p
,

then

Re
(
eiβ

f(z)

zp

)
> 0, z ∈ U.

Remark 4.2 We note that the result of Corollary 4.6 for p = 1 was obtained by Owa et al. [22].

If we take q = j − 1 (1 ≤ j ≤ p) in Theorem 4.5, we deduce the next result:

Corollary 4.7 If f ∈ Sp,j−1(α) (1 ≤ j ≤ p) and

|β| ≤ π

2
− sin−1 p− j + 1− α

p− j + 1
,

then

Re
(
eiβ

f (j−1)(z)

zp−j+1

)
> 0, z ∈ U.

Remark 4.3 Our result in Corollary 4.7 corrects the result obtained by Owa [21, Theorem 3].

We will add at the end of this section the following inclusion theorem:

Theorem 4.8 If f ∈ Rp,q(α) , then f ∈ Rp,q−1

(
β̂
)

(1 ≤ q < p) , where

β̂ =
α(p− q + 1)

p− q
; (4.7)

that is, Rp,q(α) ⊂ Rp,q−1

(
α(p−q+1)

p−q

)
.
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Proof For the function f ∈ Ap , according to inequality (1.1) we have

f ∈ Rp,q(α) ⇔ Re
[

f (q+1)(z)

δ(p, q)zp−q−1
− α

]
> 0, z ∈ U (0 ≤ α < p− q). (4.8)

We will determine the biggest value of β̂ ∈ R such that f ∈ Rp,q−1

(
β̂
)

; that is,

Re
[

f (q)(z)

δ(p, q − 1)zp−q
− β̂

]
> 0, z ∈ U.

Let us define the function w , analytic in U , with w(0) = 0 and w(z) ̸= 1 for all z ∈ U , such that

f (q)(z)

δ(p, q − 1)zp−q
− β =

(
p− q + 1− β̂

) 1 + w(z)

1− w(z)
, z ∈ U. (4.9)

Differentiating the above relation we get

f (q+1)(z)

δ(p, q)zp−q−1
− α = −α+

β̂(p− q)

p− q + 1

+
p− q + 1− β̂

p− q + 1

[
(p− q)

1 + w(z)

1− w(z)
+

2zw′(z)

(1− w(z))2

]
, z ∈ U.

Supposing that there exists a point z0 ∈ U such that

max
|z|≤|z0|

|w(z)| = |w(z0)| = 1,

by using Lemma 2.1, and letting w(z0) = eiθ for some θ ∈ (0, 2π) , we get

f (q+1)(z0)

δ(p, q)zp−q−1
0

− α = −α+
β̂(p− q)

p− q + 1
+

p− q + 1− β̂

p− q + 1

[
(p− q)

1 + eiθ

1− eiθ
+

2keiθ

(1− eiθ)2

]
,

and therefore

Re
[

f (q+1)(z0)

δ(p, q)zp−q−1
0

− α

]
= −α+

β̂(p− q)

p− q + 1

+
p− q + 1− β̂

p− q + 1
Re
[
(p− q)

1 + eiθ

1− eiθ
+

2keiθ

(1− eiθ)2

]
.

This last relation is equivalent to

Re
[

f (q+1)(z0)

δ(p, q)zp−q−1
0

− α

]
= −α+

β̂(p− q)

p− q + 1
+

p− q + 1− β̂

p− q + 1

(
− 2

4 sin2 θ
2

)
,

and assuming that β̂ ≤ p− q + 1 , from the above identity we deduce that

Re
[

f (q+1)(z0)

δ(p, q)zp−q−1
0

− α

]
≤ −α+

β̂(p− q)

p− q + 1
= 0,
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if β̂ is given by (4.7). Moreover, this value of β̂ satisfies the inequality β̂ < p− q + 1 , and therefore the above
inequality contradicts assumption (4.8).

It follows that |w(z)| < 1 for all z ∈ U , and using the fact that β̂ < p− q + 1 , from (4.9) we obtain our
conclusion. 2

5. The subclass Bp,q(b, α)

Let Bp,q(b, α) be the subclass of Bp,q(α) consisting of functions f ∈ Bp,q(α) satisfying

ap+1 = 2b (δ(p, q)− α)
(p− q + 1)!

(p+ 1)!
, (p > q, 0 ≤ α < δ(p, q), 0 ≤ b ≤ 1).

For f ∈ Bp,q(α) we prove the next result:

Theorem 5.1 If f ∈ Bp,q(b, α) , then ∣∣∣∣zf (q+1)(z)

f (q)(z)

∣∣∣∣ ≤ (p− q)

+
2 (δ(p, q)− α) r

1− r2
b+ 2r + br2

δ(p, q) + 2b (δ(p, q)− α) r + (δ(p, q)− 2α) r2
, (5.1)

where |z| = r , 0 < r < 1 .

Proof If f ∈ Bp,q(b, α) , then

f(z) = zp + 2b (δ(p, q)− α)
(p− q + 1)!

(p+ 1)!
zp+1 + . . . , z ∈ U,

and we obtain that
f

(q)

(z)

δ(p, q)zp−q
= 1 + 2b

(
1− α

δ(p, q)

)
z + . . . , z ∈ U, (5.2)

with 0 ≤ α

δ(p, q)
< 1 and 0 ≤ b ≤ 1 . Since f ∈ Bp,q(b, α) , from (1.3) and (5.2) it follows that

f
(q)

(z)

δ(p, q)zp−q
∈ Gb

(
α

δ(p, q)

)
.

Using Lemma 2.7 for the function f
(q)

(z)

δ(p, q)zp−q
we conclude that

∣∣∣∣zf (q+1)(z)

f (q)(z)
− (p− q)

∣∣∣∣ ≤
2(δ(p, q)− α)r

1− r2
b+ 2r + br2

δ(p, q) + 2b(δ(p, q)− α)r + (δ(p, q)− 2α) r2
, |z| = r, 0 < r < 1,

which implies the conclusion (5.1). 2

For q = 0 Theorem 5.1 reduces to the next special case:
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Corollary 5.2 If f ∈ Bp,0(b, α) , then∣∣∣∣zf ′(z)

f(z)

∣∣∣∣ ≤ p+
2(1− α)r

1− r2
b+ 2r + br2

1 + 2b(1− α)r + (1− 2α)r2
, |z| = r, 0 < r < 1.

With a similar proof as for Theorem 5.1, using Lemma 2.8 we obtain the following theorem:

Theorem 5.3 If f ∈ Bp,q(b, α) , then

Re zf (q+1)(z)

f (q)(z)
≥



(p− q)− 2 (δ(p, q)− α) r(b+ 2r + br2)

(δ(p, q) + 2bαr + (2α− δ(p, q))r2) (1 + 2br + r2)
,

if R′ ≤ Rb,

(p− q) +
2
√
δ(p, q)αM1 − δ(p, q)M1 − α

δ(p, q)− α
,

if R′ ≥ Rb,

for |z| = r , 0 < r < 1 , with Rb := Mb −Nb , where

Mb :=
δ(p, q)(1 + br)2 − (2α− δ(p, q))(b+ r)2r2

δ(p, q)(1− r2) (1 + 2br + r2)
,

Nb :=
2 (δ(p, q)− α) r(b+ r)(1 + br)r

δ(p, q)(1− r2) (1 + 2br + r2)
,

and

R′ :=

√
α

δ(p, q)
M1.

Taking q = 0 in Theorem 5.3 we obtain the next special case:

Corollary 5.4 If f ∈ Bp,0(b, α) , then

Re zf ′(z)

f(z)
≥


p− 2(1− α)r(b+ 2r + br2)

(1 + 2bαr + (2α− 1)r2) (1 + 2br + r2)
, if R′ ≤ Rb,

p+
2
√
αM1 −M1 − α

1− α
, if R′ ≥ Rb,

for |z| = r , 0 < r < 1 , with Rb := Mb −Nb , where

Mb :=
(1 + br)2 − (2α− 1)(b+ r)2r2

(1− r2) (1 + 2br + r2)
, Nb :=

2(1− α)r(b+ r)(1 + br)r

(1− r2) (1 + 2br + r2)
,

and
R′ :=

√
αM1.

Remark 5.1 (i) Putting q = j (1 ≤ j ≤ p) in Theorems 5.1 and 5.3, we get the results obtained by Owa
[21, Theorems 5 and 6];

(ii) For p = 1 Corollaries 5.2 and 5.4 reduce to the results of McCarty [12, 13].
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