

http://journals.tubitak.gov.tr/math/

Research Article

Certain classes of multivalent functions defined with higher-order derivatives

Mohamed K. AOUF¹, Abdel Moneim LASHIN^{1,*}, Teodor BULBOACĂ

¹Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt ²Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania

Received: 05.11.2018	•	Accepted/Published Online: 23.01.2019	•	Final Version: 27.03.2019
-----------------------------	---	---------------------------------------	---	----------------------------------

Abstract: In this paper we derive some properties of multivalent functions belonging to the classes $R_{p,q}(\alpha)$, $B_{p,q}(\alpha)$, and $M_{p,q}(\alpha)$. The results obtained generalize the related works of some authors, and many other new results are obtained.

Key words: Multivalent functions, p-valently starlike and convex functions, higher-order derivatives, differential subordinations, α -convex functions

1. Introduction

Let $\mathbb{U} := \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disc of the complex plane, and let \mathcal{A}_p denote the class of analytic and multivalent functions in \mathbb{U} of the form

$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k, \ z \in \mathbb{U} \quad (p \in \mathbb{N} := \{1, 2, \dots\}).$$

Also, denote $\mathcal{A} := \mathcal{A}_1$.

For two functions f and g analytic in \mathbb{U} , we say that the function f is subordinate to g, written as $f(z) \prec g(z)$, or simply $f \prec g$, if there exists a Schwarz function ω ; that is, ω is analytic \mathbb{U} , with $\omega(0) = 0$ and $|\omega(z)| < 1$, $z \in \mathbb{U}$, such that $f(z) = g(\omega(z))$ for all $z \in \mathbb{U}$. If the function g is univalent in \mathbb{U} , the above subordination is equivalent to f(0) = g(0) and $f(\mathbb{U}) \subset g(\mathbb{U})$ (see [8, 15]).

For $0 \leq \alpha , <math>p > q$, $p \in \mathbb{N}$, and $q \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$, we say that $f \in \mathcal{A}_p$ is in the class $S_{p,q}^*(\alpha)$ if it satisfies the inequality

$$\operatorname{Re}\frac{zf^{(q+1)}(z)}{f^{(q)}(z)} > \alpha, \ z \in \mathbb{U}.$$

Also, we say that $f \in \mathcal{A}_p$ is in the class $K_{p,q}(\alpha)$ if the following inequality holds:

$$\operatorname{Re}\left[1+\frac{zf^{(q+2)}(z)}{f^{(q+1)}(z)}\right] > \alpha, \ z \in \mathbb{U}.$$

*Correspondence: ylashin@mans.edu.eg

²⁰¹⁰ AMS Mathematics Subject Classification: 30C45, 30C80

The classes $S_{p,q}^*(\alpha)$ and $K_{p,q}(\alpha)$ were introduced and studied by Aouf [3, 5, 6], and we note that $S_{p,0}^*(\alpha) =:$ $S_p^*(\alpha)$ and $K_{p,0}(\alpha) =: K_p(\alpha)$ are, respectively, the class of p-valently starlike functions of order α and the class of p-valently convex functions of order α ($0 \le \alpha < p$) (see Owa [20] and Aouf [1, 2]).

Definition 1.1 For $0 \leq \alpha , <math>p > q$, $p \in \mathbb{N}$, and $q \in \mathbb{N}_0$, we say the function $f \in \mathcal{A}_p$ is in the class $C_{p,q}(\alpha)$ if there exists a function $g \in S^*_{p,q}(\alpha)$ such that

$$\operatorname{Re}\frac{zf^{(q+1)}(z)}{g^{(q)}(z)} > \alpha, \ z \in \mathbb{U}$$

The class $C_{p,q}(\alpha)$ was introduced and studied by Aouf [4], and we note that $C_{p,0}(\alpha) =: C_p(\alpha)$ (see Aouf [7]).

Definition 1.2 Let $R_{p,q}(\alpha)$ be the subclass of $C_{p,q}(\alpha)$ obtained by choosing $g(z) = z^p$; that is, the function $f \in \mathcal{A}_p$ belongs to the class $R_{p,q}(\alpha)$ if and only if it satisfies

$$\operatorname{Re} \frac{f^{(q+1)}(z)}{\delta(p,q)z^{p-q-1}} > \alpha, \ z \in \mathbb{U} \quad (0 \le \alpha < p-q),$$

$$(1.1)$$

where $\delta(p,q) = \frac{p!}{(p-q)!} \ (p \ge q)$.

Remark 1.1 (i) It is easy to check that if the function $f \in A_p$ satisfies the inequality

$$\left| \frac{f^{(q+1)}(z)}{z^{p-q-1}} - \delta(p,q+1) \right| < (p-q-\alpha)\delta(p,q), \ z \in \mathbb{U} \quad (0 \le \alpha < p-q),$$
(1.2)

then $f \in R_{p,q}(\alpha)$. Thus, if we denote by $S_{p,q}(\alpha)$ the class of functions $f \in \mathcal{A}_p$ that satisfies (1.2), then $S_{p,q}(\alpha) \subset R_{p,q}(\alpha)$.

(ii) We will denote by $B_{p,q}(\alpha)$ $(0 \le \alpha < \delta(p,q))$ the class $B_{p,q}(\alpha) := S_{p,q-1}\left(\frac{\alpha}{\delta(p,q-1)}\right)$. Therefore, the function $f \in \mathcal{A}_p$ belongs to the class $B_{p,q}(\alpha)$ $(0 \le \alpha < \delta(p,q))$ if and only if it satisfies

$$\left|\frac{f^{(q)}(z)}{z^{p-q}} - \delta(p,q)\right| < \delta(p,q) - \alpha, \ z \in \mathbb{U} \quad (0 \le \alpha < \delta(p,q)).$$

$$(1.3)$$

For q := p - 1 and $\beta := p! \alpha$, the inequality (1.2) reduces to

$$\left| f^{(p)}(z) - p! \right| < p! = \beta, \ z \in \mathbb{U} \quad (0 \le \beta < p!),$$

and the subclass $\mathbf{S}_p(\beta)$ of functions satisfying the above relation was introduced and studied by Saitoh [26]. Moreover, we note the special cases $R_{p,0}(\alpha) =: R_p(\alpha)$ $(0 \le \alpha < p)$ (see Lee and Owa [11]) and $R_{1,0}(\alpha) =: R(\alpha)$ $(0 \le \alpha < 1)$ (see Owa et al. [23]). Also, the classes $R_{p,q-1}(\alpha)$ are connected with the results obtained by Saitoh in [27].

By using the differential higher-order differential operators we define the following class of functions:

Definition 1.3 A function $f \in A_p$ is said to be a *p*-valently α -convex function of higher-order derivatives if it satisfies the inequality

$$\operatorname{Re}\left[(1-\alpha)\frac{zf^{(q+1)}(z)}{f^{(q)}(z)} + \alpha\left(1 + \frac{zf^{(q+2)}(z)}{f^{(q+1)}(z)}\right)\right] > 0, \ z \in \mathbb{U},$$

for some α ($\alpha \geq 0$), and we will denote this class by $M_{p,q}(\alpha)$.

We note that $M_{p,q}(0) =: S_{p,q}^*(0)$ and $M_{p,q}(1) =: K_{p,q}(0)$. The class $M_{p,0}(\alpha) =: M_p(\alpha)$ was introduced and studied by Owa and Ren [24] and extends the class $M_{1,0}(\alpha) =: M(\alpha)$ defined by Mocanu [17] (see also Mocanu and Reade [18], Miller [14], and Miller et al. [16]). Moreover, the class $M_{p,1-p}(\alpha) =: A(p,\alpha)$ was introduced and studied by Nunokawa [19], and subsequently studied by Fukui et al. [9].

Definition 1.4 (i) Let $G(\alpha)$ be the class of functions g of the form

$$g(z) = 1 + \sum_{n=1}^{\infty} g_n z^n, \ z \in \mathbb{U},$$
 (1.4)

which are analytic in the unit disk \mathbb{U} and satisfy

$$\operatorname{Re} g(z) > \alpha, \ z \in \mathbb{U},$$

for some α $(0 \le \alpha < 1)$.

(ii) Further, let $G_b(\alpha)$ be the subclass of $G(\alpha)$ consisting of functions g of the form (1.4) and satisfying

$$g_1 = 2b(1 - \alpha) = g'(0) \quad (0 \le b \le 1).$$

2. Preliminaries

In order to prove our main results we need the following lemmas.

Lemma 2.1 [10] Let ω be regular in \mathbb{U} with $\omega(0) = 0$. Then, if $|\omega|$ attains its maximum value on the circle |z| = r at a point $z_0 \in \mathbb{U}$, we have $z_0\omega(z_0) = k\omega(z_0)$, where $k \ge 1$.

Lemma 2.2 [16] If $f \in M(\alpha)$ $(\alpha \ge 0)$, then $f \in S^*(\beta(\alpha))$, where

$$\beta(\alpha) := \begin{cases} 0, & \text{if } 0 \le \alpha < 1, \\ \frac{\Gamma\left(\frac{1}{2} + \frac{1}{\alpha}\right)}{\sqrt{\pi}\,\Gamma\left(1 + \frac{1}{\alpha}\right)}, & \text{if } \alpha \ge 1. \end{cases}$$

$$(2.1)$$

The result is sharp.

Lemma 2.3 [17] If $f \in M(\alpha)$ $(\alpha \ge 0)$, then $f \in M(\beta)$ for $0 \le \beta \le \alpha$.

Lemma 2.4 [14] If $f \in M(\alpha)$ $(\alpha > 0)$, then

$$-K(\alpha, -r) \le |f(z)| \le K(\alpha, r), \ |z| = r, \ 0 < r < 1,$$
(2.2)

where

$$K(\alpha, r) := \left[\frac{1}{\alpha} \int_{0}^{r} t^{\frac{1}{\alpha} - 1} (1 - t)^{-\frac{2}{\alpha}} dt\right]^{\alpha}.$$
(2.3)

The equality holds in (2.2) for the function $f_{\theta}(\alpha, z)$ given by

$$f_{\theta}(\alpha, z) = \left[\frac{1}{\alpha} \int_{0}^{z} \zeta^{\frac{1}{\alpha} - 1} (1 - \zeta e^{i\theta})^{-\frac{2}{\alpha}} d\zeta\right]^{\alpha}, \qquad (2.4)$$

where θ is real and the powers appearing in (2.3) and (2.4) are meant as principal values.

Lemma 2.5 [17] The function $f \in M(\alpha)$ ($\alpha > 0$) if and only if there exists a function F starlike in U, such that

$$f(z) = \left[\frac{1}{\alpha} \int_0^z \frac{(F(\zeta))^{\frac{1}{\alpha}}}{\zeta} d\zeta\right]^{\alpha}, \ z \in \mathbb{U},$$

where the powers appearing in the formula are meant as principal values.

A function $f \in \mathcal{A}$ is said to be in the class $R(\alpha)$ if and only if it satisfies the inequality

$$\operatorname{Re} f'(z) > \alpha, \ z \in \mathbb{U},$$

for some $\alpha \ (0 \le \alpha < 1)$.

Lemma 2.6 [23] If $f \in R(\alpha)$ $(0 \le \alpha < 1)$, then

$$\frac{f(z)}{z} \prec 2\alpha - 1 - \frac{2(1-\alpha)}{z}\log(1-z)$$

For $g \in G_b(\alpha)$, McCarty [12, 13] proved the next results:

Lemma 2.7 [12] If $g \in G_b(\alpha)$, then

$$\left|\frac{g'(z)}{g(z)}\right| \le \frac{2(1-\alpha)}{1-r^2} \frac{b+2r+br^2}{1+2b(1-\alpha)r+(1-2\alpha)r^2}, \ |z|=r, \ 0 < r < 1.$$

Lemma 2.8 [13] If $g \in G_b(\alpha)$, then

$$\operatorname{Re} \frac{zg'(z)}{g(z)} \ge \begin{cases} \frac{-2(1-\alpha)r\left(b+2r+br^{2}\right)}{\left[1+2b\alpha r+(2\alpha-1)r^{2}\right]\left(1+2br+r^{2}\right)}, & \text{if } R' \le R_{b}, \\ \frac{2\sqrt{\alpha A_{1}}-A_{1}-\alpha}{1-\alpha}, & \text{if } R' \ge R_{b}, \end{cases}$$

for |z| = r, 0 < r < 1, with $R_b := A_b - D_b$, where

$$A_b := \frac{(1+br)^2 - (2\alpha - 1)(b+r)^2 r^2}{(1-r^2)\left(1+2br+r^2\right)}, \quad D_b := \frac{2(1-\alpha)r(b+r)(1+br)r}{(1-r^2)\left(1+2br+r^2\right)}$$

and

$$R' := \sqrt{\alpha A_1}.$$

3. Some properties of the class $M_{p,q}(\alpha)$

The following result deals with an implication involving similar relations that appear in the definition of the classes $R_{p,q}(\alpha)$ and $K_{p,q}(\alpha)$.

Theorem 3.1 If the function $f \in A_p$ satisfies

$$\operatorname{Re}\left[\frac{f^{(q+1)}(z)}{\delta(p,q+1)z^{p-q-1}} + \alpha \frac{zf^{(q+2)}(z)}{f^{(q+1)}(z)}\right] > \alpha(p-q-1), \ z \in \mathbb{U},$$

for some α ($\alpha \geq 0$) and p > q, then

$$\operatorname{Re} \frac{f^{(q+1)}(z)}{z^{p-q-1}} > \delta(p,q+1)\beta(\alpha), \ z \in \mathbb{U};$$

that is, $f \in R_{p,q}((p-q)\beta(\alpha))$, where $\beta(\alpha)$ is given by (2.1). The result is sharp.

Proof Let us define the function $g \in \mathcal{A}$ by

$$\frac{zg'(z)}{g(z)} = \frac{f^{(q+1)}(z)}{\delta(p,q+1)z^{p-q-1}}, \ z \in \mathbb{U}.$$
(3.1)

Differentiating (3.1) logarithmically with respect to z we obtain

$$\frac{zf^{(q+2)}(z)}{f^{(q+1)}(z)} - (p-q-1) = 1 + \frac{zg''(z)}{g'(z)} - \frac{zg'(z)}{g(z)}, \ z \in \mathbb{U},$$
(3.2)

and from (3.1) and (3.2) we have

$$\operatorname{Re}\left[\frac{f^{(q+1)}(z)}{\delta(p,q+1)z^{p-q-1}} + \alpha \frac{zf^{(q+2)}(z)}{f^{(q+1)}(z)} - \alpha(p-q-1)\right] \\ = \operatorname{Re}\left[(1-\alpha)\frac{zg'(z)}{g(z)} + \alpha\left(1 + \frac{zg''(z)}{g'(z)}\right)\right] > 0, \ z \in \mathbb{U}.$$

This implies that $g \in M(\alpha)$, and by using Lemma 2.1 we have

$$\operatorname{Re} \frac{zg'(z)}{g(z)} = \operatorname{Re} \frac{f^{(q+1)}(z)}{\delta(p,q+1)z^{p-q-1}} > \beta(\alpha), \ z \in \mathbb{U};$$

that is,

$$\operatorname{Re}\frac{f^{(q+1)}(z)}{\delta(p,q)z^{p-q-1}} > (p-q)\beta(\alpha), \ z \in \mathbb{U},$$
(3.3)

where $\beta(\alpha)$ is given by (2.1). Since the result of Lemma 2.1 is sharp, the value $(p-q)\beta(\alpha)$ is the best lower bound for (3.3).

For q = 0, Theorem 3.1 is reduced to the next result:

Corollary 3.2 If the function $f \in A_p$ satisfies

$$\operatorname{Re}\left[\frac{f'(z)}{pz^{p-1}} + \alpha \frac{zf''(z)}{f'(z)}\right] > \alpha(p-1), \ z \in \mathbb{U}.$$

for some α ($\alpha \geq 0$), then

Re
$$\frac{f'(z)}{z^{p-1}} > p\beta(\alpha), \ z \in \mathbb{U},$$

where $\beta(\alpha)$ is given by (2.1). The result is sharp.

Remark 3.1 Putting q = j - 1 $(1 \le j \le p - 1, p \in \mathbb{N})$ in Theorem 3.1, we get the result obtained by Fukui et al. [9].

Theorem 3.3 If $f \in M_{p,q}(\alpha)$ $(\alpha \ge 0)$, then $f \in S_{p,q}^*(\beta(\alpha; p, q))$, where

$$\widetilde{\beta}(\alpha; p, q) := (p - q)\beta\left(\frac{\alpha}{p - q}\right) = \begin{cases} 0, & \text{if } 0 \le \alpha$$

that is, $M_{p,q}(\alpha) \subset S_{p,q}^*\left(\widetilde{\beta}(\alpha;p,q)\right)$. The result is sharp.

Proof If $f \in M_{p,q}(\alpha)$ it follows that $f^{(q)}(z) \neq 0$ for all $z \in \mathbb{U} \setminus \{0\}$. For $f \in M_{p,q}(\alpha)$, let us define the function $g \in \mathcal{A}$ by

$$g(z) = z \left(\frac{f^{(q)}(z)}{\delta(p,q)z^{p-q}}\right)^{\frac{1}{p-q}}, \ z \in \mathbb{U},$$
(3.4)

where the power is meant as the principal value. Differentiating (3.4) logarithmically with respect to z, we get

$$\frac{zf^{(q+1)}(z)}{(p-q)f^{(q)}(z)} = \frac{zg'(z)}{g(z)}, \ z \in \mathbb{U},$$
(3.5)

and

$$1 + \frac{zf^{(q+2)}(z)}{f^{(q+1)}(z)} = 1 + \frac{zg''(z)}{g'(z)} + (p-q-1)\frac{zg'(z)}{g(z)}, \ z \in \mathbb{U}.$$
(3.6)

From (3.5) and (3.6) we deduce that

$$(1-\alpha)\frac{zf^{(q+1)}(z)}{f^{(q)}(z)} + \alpha \left(1 + \frac{zf^{(q+2)}(z)}{f^{(q+1)}(z)}\right) = (p-q-\alpha)\frac{zg'(z)}{g(z)} + \alpha \left(1 + \frac{zg''(z)}{g'(z)}\right)$$
$$= (p-q)\left[\left(1 - \frac{\alpha}{p-q}\right)\frac{zg'(z)}{g(z)} + \frac{\alpha}{p-q}\left(1 + \frac{zg''(z)}{g'(z)}\right)\right], \ z \in \mathbb{U},$$

and hence

$$\frac{1}{p-q}\operatorname{Re}\left[(1-\alpha)\frac{zf^{(q+1)}(z)}{f^{(q)}(z)} + \alpha\left(1 + \frac{zf^{(q+2)}(z)}{f^{(q+1)}(z)}\right)\right]$$
$$= \operatorname{Re}\left[\left(1 - \frac{\alpha}{p-q}\right)\frac{zg'(z)}{g(z)} + \frac{\alpha}{p-q}\left(1 + \frac{zg''(z)}{g'(z)}\right)\right], \ z \in \mathbb{U}$$

This implies that $f \in M_{p,q}(\alpha)$ if and only if $g \in M\left(\frac{\alpha}{p-q}\right)$. Since $g \in M\left(\frac{\alpha}{p-q}\right)$, from Lemma 2.2 we get $g \in S^*\left(\beta\left(\frac{\alpha}{p-q}\right)\right)$, and according to (3.5) this last relation is equivalent to $f \in S^*_{p,q}\left((p-q)\beta\left(\frac{\alpha}{p-q}\right)\right)$; that is, $f \in S^*_{p,q}\left(\widetilde{\beta}(\alpha; p, q)\right)$. Using the fact that the result of Lemma 2.2 is sharp, the bound $\widetilde{\beta}(\alpha; p, q)$ from the last relation is the best possible.

For $\alpha = 1$, Theorem 3.3 reduces to the next special case:

Corollary 3.4 If $f \in K_{p,q}(0)$, then $f \in S_{p,q}^*\left(\widehat{\beta}(p,q)\right)$, where

$$\widehat{\beta}(p,q) := \widetilde{\beta}(1;p,q);$$

that is, $K_{p,q}(0) \subset S_{p,q}^*\left(\widehat{\beta}(p,q)\right)$. The result is sharp.

Theorem 3.5 If $f \in M_{p,q}(\alpha)$ $(\alpha \ge 0)$, then $f \in M_{p,q}(\beta)$ for $0 \le \beta \le \alpha$; that is,

$$M_{p,q}(\alpha) \subset M_{p,q}(\beta), \quad for \quad 0 \le \beta \le \alpha.$$

Proof Like in the proof of Theorem 3.3, $f \in M_{p,q}(\alpha)$ $(\alpha \ge 0)$ if and only if $g \in M\left(\frac{\alpha}{p-q}\right)$, where the function g is given by (3.4). Since $0 \le \beta \le \alpha$, according to Lemma 2.3 it follows that $g \in M\left(\frac{\beta}{p-q}\right)$, and this last relation is equivalent to $f \in M_{p,q}(\beta)$, which proves the assertion of Theorem 3.5.

Theorem 3.6 A function $f \in \mathcal{A}_p$ belongs to the class $M_{p,q}(\alpha)$ $(\alpha > 0)$ if and only if there exists a function $F \in S^* := S^*_{1,0}(0)$, such that

$$f^{(q)}(z) = \delta(p,q) \left[\frac{p-q}{\alpha} \int_{0}^{z} \frac{(F(\zeta))^{\frac{p-q}{\alpha}}}{\zeta} d\zeta \right]^{\alpha}, \ z \in \mathbb{U},$$
(3.7)

where the powers appearing in the formula are meant as principal values.

Proof If we define the function g as in (3.4), from the proof of Theorem 3.3 we have that $f \in M_{p,q}(\alpha)$ ($\alpha \ge 0$) if and only if $g \in M\left(\frac{\alpha}{p-q}\right)$. Then, from Lemma 2.5, we get that $g \in M\left(\frac{\alpha}{p-q}\right)$ if and only if there exists a function $F \in S^*$, such that

$$g(z) = \left[\frac{p-q}{\alpha}\int_{0}^{z} \frac{\left(F(\zeta)\right)^{\frac{p-q}{\alpha}}}{\zeta} d\zeta\right]^{\frac{\alpha}{p-q}}, \ z \in \mathbb{U}.$$

Using the definition of formula (3.4) we obtain that this last relation is equivalent to (3.7), which proves our result.

Using the fact that $f \in M_{p,q}(\alpha)$ $(\alpha \ge 0)$ if and only if $g \in M\left(\frac{\alpha}{p-q}\right)$, where the function g is given by (3.4), from Lemma 2.4 we obtain the following theorem:

Theorem 3.7 If $f \in M_{p,q}(\alpha)$ $(\alpha > 0)$, then

$$-K_{p,q}(\alpha, -r) \le \left| f^{(q)}(z) \right| \le K_{p,q}(\alpha, r), \ |z| = r, \ 0 < r < 1,$$
(3.8)

where

$$K_{p,q}(\alpha,r) := \delta(p,q) \left[\frac{p-q}{\alpha} \int\limits_{0}^{z} t^{\frac{p-q}{\alpha}-1} (1-t)^{\frac{-2(p-q)}{\alpha}} dt \right]^{\alpha}.$$

The equality holds in (3.8) for

$$f_{\theta;p,q}^{(q)}(\alpha,z) = \delta(p,q) \left[\frac{p-q}{\alpha} \int_{0}^{z} \zeta^{\frac{p-q}{\alpha}-1} (1-\zeta e^{i\theta})^{\frac{-2(p-q)}{\alpha}} d\zeta \right]^{\alpha},$$

where θ is real and all the powers appearing in the formulas are meant as principal values.

4. The subclass $R_{p.q}(\alpha)$

Theorem 4.1 If $f \in R_{p,q}\left(\frac{\alpha}{\delta(p,q)}\right)$ $(0 \le \alpha < \delta(p,q+1))$, then $\frac{1}{z} \int_{0}^{z} \frac{f^{(q+1)}(\zeta)}{\zeta^{p-q-1}} d\zeta \prec 2\alpha - \delta(p,q+1) - \frac{2\left(\delta(p,q+1) - \alpha\right)}{z} \log(1-z).$

Proof If we define the function F by

$$F'(z) = \frac{f^{(q+1)}(z)}{\delta(p,q+1)z^{p-q-1}} = 1 + c_1 z + c_2 z^2 + \dots, \ z \in \mathbb{U},$$

and F(0) = 0, then

$$F(z) = \frac{1}{\delta(p, q+1)} \int_{0}^{z} \frac{f^{(q+1)}(\zeta)}{\zeta^{p-q-1}} \, d\zeta, \ z \in \mathbb{U}.$$

The fact that $f \in R_{p,q}\left(\frac{\alpha}{\delta(p,q)}\right)$ is equivalent to $f \in \mathcal{A}_p$ and

$$\operatorname{Re}\frac{f^{(q+1)}(z)}{z^{p-q-1}} > \alpha, \ z \in \mathbb{U} \quad \left(0 \le \alpha < \delta(p,q+1)\right).$$

$$(4.2)$$

From (4.2) it follows that

$$\operatorname{Re} F'(z) > \beta, \ z \in \mathbb{U} \quad \left(0 \le \beta < 1, \ \beta := \frac{\alpha}{\delta(p, q+1)} \right),$$

719

(4.1)

which, according to Lemma 2.6, implies

$$\frac{1}{\delta(p,q+1)z} \int_{0}^{z} \frac{f^{(q+1)}(\zeta)}{\zeta^{p-q-1}} \, d\zeta \prec 2\beta - 1 - \frac{2(1-\beta)}{z} \log(1-z),$$

i.e. (4.1).

For q = 0 in Theorem 4.1 we get the next special case:

Corollary 4.2 If $f \in A_p$ satisfies

$$\operatorname{Re} \frac{f'(z)}{z^{p-1}} > \alpha, \ z \in \mathbb{U} \quad (0 \le \alpha < p),$$

then

$$\frac{1}{z} \int_{0}^{z} \frac{f'(\zeta)}{\zeta^{p-1}} d\zeta \prec 2\alpha - p - \frac{2(p-\alpha)}{z} \log(1-z).$$

Remark 4.1 (i) Putting q = j-1 $(1 \le j \le p)$ in Theorem 4.1, we get the result obtained by Owa [21, Theorem 1] and Saitoh [27, Theorem 5];

(ii) For p = 1, Corollary 4.2 reduces to the result of Owa et al. [23].

Putting q = p-1 ($p \in \mathbb{N}$) in Theorem 4.1, we obtain the following corollary (see also Saitoh [25, Theorem 3]):

Corollary 4.3 If $f \in A_p$ satisfies

$$\operatorname{Re} f^{(p)}(z) > \alpha, \ z \in \mathbb{U} \quad (0 \le \alpha < p),$$

then

$$\frac{f^{(p-1)}(z)}{z} \prec 2\alpha - p! - \frac{2(p! - \alpha)}{z} \log(1 - z).$$

If we consider p = 1 in Corollary 4.3, we have the following corollary (see also Owa et al. [23] and Saitoh [25, Corollary 4]):

Corollary 4.4 If $f \in A$ satisfies

$$\operatorname{Re} f'(z) > \alpha, \ z \in \mathbb{U} \quad (0 \le \alpha < 1),$$

then

$$\frac{f(z)}{z} \prec 2\alpha - 1 - \frac{2(1-\alpha)}{z}\log(1-z).$$

Theorem 4.5 If $f \in S_{p,q}(\alpha)$ and

$$|\beta| \le \frac{\pi}{2} - \sin^{-1} \frac{p - q - \alpha}{p - q},\tag{4.3}$$

then

$$\operatorname{Re}\left(e^{i\beta}\frac{f^{(q)}(z)}{z^{p-q}}\right) > 0, \ z \in \mathbb{U}$$

Proof From the definition of the class $S_{p,q}(\alpha)$ we have that $f \in S_{p,q}(\alpha)$ if and only if $f \in \mathcal{A}_p$ and (1.2) is satisfied. Using the fact that

$$|\zeta - \omega| < r, \ \zeta \in \mathbb{C} \quad (r < \omega) \quad \Rightarrow \quad |\arg \zeta| < \sin^{-1} \frac{r}{\omega},$$

from (1.2) we obtain

$$\left|\arg\frac{f^{(q+1)}(z)}{z^{p-q-1}}\right| < \sin^{-1}\frac{(p-q-\alpha)\delta(p,q)}{\delta(p,q+1)} = \sin^{-1}\frac{p-q-\alpha}{p-q}, \ z \in \mathbb{U}.$$
(4.4)

From (4.3) and (4.4) it follows that

$$\left|\arg\left(e^{i\beta}\frac{f^{(q+1)}(z)}{z^{p-q-1}}\right)\right| \le |\beta| + \left|\arg\frac{f^{(q+1)}(z)}{z^{p-q-1}}\right| < \frac{\pi}{2}, \ z \in \mathbb{U};$$

that is,

$$\operatorname{Re}\left(e^{i\beta}\frac{f^{(q+1)}(z)}{z^{p-q-1}}\right) > 0, \ z \in \mathbb{U}.$$
(4.5)

If we define the function ω by

$$e^{i\beta}\frac{f^{(q)}(z)}{\delta(p,q)z^{p-q}} - i\sin\beta = \cos\beta\frac{1+\omega(z)}{1-\omega(z)}, \ z \in \mathbb{U},$$
(4.6)

with $\omega(z) \neq 1$ for all $z \in \mathbb{U}$, we see that ω is analytic in \mathbb{U} and $\omega(0) = 0$. It follows that

$$e^{i\beta}f^{(q)}(z) - i\delta(p,q)\sin\beta z^{p-q} = \delta(p,q)\cos\beta\frac{1+\omega(z)}{1-\omega(z)}z^{p-q}, \ z \in \mathbb{U},$$

and differentiating the above relation with respect to z we obtain

$$e^{i\beta} f^{(q+1)}(z) - i\delta(p, q+1)\sin\beta z^{p-q-1}$$

= $\delta(p, q)\cos\beta \left[(p-q)z^{p-q-1}\frac{1+\omega(z)}{1-\omega(z)} + z^{p-q-1}\frac{2z\omega'(z)}{(1-\omega(z))^2} \right], \ z \in \mathbb{U}.$

Therefore,

$$e^{i\beta} \frac{f^{(q+1)}(z)}{z^{p-q-1}} - i\delta(p,q+1)\sin\beta = \delta(p,q)\cos\beta \left[(p-q)\frac{1+\omega(z)}{1-\omega(z)} + \frac{2z\omega'(z)}{(1-\omega(z))^2} \right], \ z \in \mathbb{U}.$$

If we suppose that there exists a point $z_0 \in \mathbb{U}$ such that

$$\max_{|z| \le |z_0|} |\omega(z)| = |\omega(z_0)| = 1,$$

then $\omega(z_0) = e^{i\theta}$ for some $\theta \in (0, 2\pi)$. Since $\cos \beta > 0$, by using Lemma 2.1 we get

$$\operatorname{Re}\left(e^{i\beta}\frac{f^{(q+1)}(z_0)}{z^{p-q-1}}\right) = \operatorname{Re}\left[e^{i\beta}\frac{f^{(q+1)}(z_0)}{z_0^{p-q-1}} - i\delta(p,q+1)\sin\beta\right]$$
$$= \delta(p,q)\cos\beta\operatorname{Re}\left[(p-q)\frac{1+e^{i\theta}}{1-e^{i\theta}} + \frac{2ke^{i\theta}}{(1-e^{i\theta})^2}\right] = \delta(p,q)\cos\beta\frac{k}{\cos\theta-1} < 0,$$

where $k \ge 1$. The above inequality contradicts (4.5), and therefore $|\omega(z)| < 1$ for all $z \in \mathbb{U}$. From (4.6), since $\cos \beta > 0$, we conclude that

$$\operatorname{Re}\left(e^{i\beta}\frac{f^{(q)}(z)}{\delta(p,q)z^{p-q}}\right) = \operatorname{Re}\left(e^{i\beta}\frac{f^{(q)}(z)}{\delta(p,q)z^{p-q}} - i\sin\beta\right) > 0, \ z \in \mathbb{U}.$$

Putting q = 0 in Theorem 4.5, we have:

Corollary 4.6 If $f \in S_{p,0}(\alpha)$ and

$$\beta| \le \frac{\pi}{2} - \sin^{-1}\frac{p-\alpha}{p},$$

then

$$\operatorname{Re}\left(e^{i\beta}\frac{f(z)}{z^p}\right) > 0, \ z \in \mathbb{U}.$$

Remark 4.2 We note that the result of Corollary 4.6 for p = 1 was obtained by Owa et al. [22].

If we take q = j - 1 $(1 \le j \le p)$ in Theorem 4.5, we deduce the next result:

Corollary 4.7 If $f \in S_{p,j-1}(\alpha)$ $(1 \le j \le p)$ and

$$|\beta| \le \frac{\pi}{2} - \sin^{-1}\frac{p-j+1-\alpha}{p-j+1}$$

then

$$\operatorname{Re}\left(e^{i\beta}\frac{f^{(j-1)}(z)}{z^{p-j+1}}\right) > 0, \ z \in \mathbb{U}.$$

Remark 4.3 Our result in Corollary 4.7 corrects the result obtained by Owa [21, Theorem 3].

We will add at the end of this section the following inclusion theorem:

Theorem 4.8 If $f \in R_{p,q}(\alpha)$, then $f \in R_{p,q-1}\left(\widehat{\beta}\right)$ $(1 \le q < p)$, where

$$\widehat{\beta} = \frac{\alpha(p-q+1)}{p-q}; \tag{4.7}$$

that is, $R_{p,q}(\alpha) \subset R_{p,q-1}\left(\frac{\alpha(p-q+1)}{p-q}\right)$.

Proof For the function $f \in \mathcal{A}_p$, according to inequality (1.1) we have

$$f \in R_{p,q}(\alpha) \Leftrightarrow \operatorname{Re}\left[\frac{f^{(q+1)}(z)}{\delta(p,q)z^{p-q-1}} - \alpha\right] > 0, \ z \in \mathbb{U} \quad (0 \le \alpha < p-q).$$

$$(4.8)$$

We will determine the biggest value of $\widehat{\beta} \in \mathbb{R}$ such that $f \in R_{p,q-1}\left(\widehat{\beta}\right)$; that is,

$$\operatorname{Re}\left[\frac{f^{(q)}(z)}{\delta(p,q-1)z^{p-q}}-\widehat{\beta}\right]>0,\;z\in\mathbb{U}.$$

Let us define the function w, analytic in \mathbb{U} , with w(0) = 0 and $w(z) \neq 1$ for all $z \in \mathbb{U}$, such that

$$\frac{f^{(q)}(z)}{\delta(p,q-1)z^{p-q}} - \beta = \left(p - q + 1 - \widehat{\beta}\right) \frac{1 + w(z)}{1 - w(z)}, \ z \in \mathbb{U}.$$
(4.9)

Differentiating the above relation we get

$$\begin{aligned} \frac{f^{(q+1)}(z)}{\delta(p,q)z^{p-q-1}} - \alpha &= -\alpha + \frac{\widehat{\beta}(p-q)}{p-q+1} \\ + \frac{p-q+1-\widehat{\beta}}{p-q+1} \left[(p-q)\frac{1+w(z)}{1-w(z)} + \frac{2zw'(z)}{(1-w(z))^2} \right], \ z \in \mathbb{U}. \end{aligned}$$

Supposing that there exists a point $z_0 \in \mathbb{U}$ such that

$$\max_{|z| \le |z_0|} |w(z)| = |w(z_0)| = 1,$$

by using Lemma 2.1, and letting $w(z_0) = e^{i\theta}$ for some $\theta \in (0, 2\pi)$, we get

$$\frac{f^{(q+1)}(z_0)}{\delta(p,q)z_0^{p-q-1}} - \alpha = -\alpha + \frac{\widehat{\beta}(p-q)}{p-q+1} + \frac{p-q+1-\widehat{\beta}}{p-q+1} \left[(p-q)\frac{1+e^{i\theta}}{1-e^{i\theta}} + \frac{2ke^{i\theta}}{(1-e^{i\theta})^2} \right],$$

and therefore

$$\operatorname{Re}\left[\frac{f^{(q+1)}(z_0)}{\delta(p,q)z_0^{p-q-1}} - \alpha\right] = -\alpha + \frac{\widehat{\beta}(p-q)}{p-q+1}$$
$$+ \frac{p-q+1-\widehat{\beta}}{p-q+1}\operatorname{Re}\left[(p-q)\frac{1+e^{i\theta}}{1-e^{i\theta}} + \frac{2ke^{i\theta}}{(1-e^{i\theta})^2}\right].$$

This last relation is equivalent to

$$\operatorname{Re}\left[\frac{f^{(q+1)}(z_0)}{\delta(p,q)z_0^{p-q-1}} - \alpha\right] = -\alpha + \frac{\widehat{\beta}(p-q)}{p-q+1} + \frac{p-q+1-\widehat{\beta}}{p-q+1}\left(-\frac{2}{4\sin^2\frac{\theta}{2}}\right),$$

and assuming that $\widehat{\beta} \leq p - q + 1$, from the above identity we deduce that

$$\operatorname{Re}\left[\frac{f^{(q+1)}(z_0)}{\delta(p,q)z_0^{p-q-1}} - \alpha\right] \le -\alpha + \frac{\widehat{\beta}(p-q)}{p-q+1} = 0,$$

if $\hat{\beta}$ is given by (4.7). Moreover, this value of $\hat{\beta}$ satisfies the inequality $\hat{\beta} , and therefore the above inequality contradicts assumption (4.8).$

It follows that |w(z)| < 1 for all $z \in \mathbb{U}$, and using the fact that $\hat{\beta} , from (4.9) we obtain our conclusion.$

5. The subclass $B_{p,q}(b,\alpha)$

Let $B_{p,q}(b,\alpha)$ be the subclass of $B_{p,q}(\alpha)$ consisting of functions $f \in B_{p,q}(\alpha)$ satisfying

$$a_{p+1} = 2b \left(\delta(p,q) - \alpha\right) \frac{(p-q+1)!}{(p+1)!}, \quad (p > q, \ 0 \le \alpha < \delta(p,q), \ 0 \le b \le 1).$$

For $f \in B_{p,q}(\alpha)$ we prove the next result:

Theorem 5.1 If $f \in B_{p,q}(b, \alpha)$, then

$$\left|\frac{zf^{(q+1)}(z)}{f^{(q)}(z)}\right| \le (p-q) + \frac{2(\delta(p,q)-\alpha)r}{1-r^2} \frac{b+2r+br^2}{\delta(p,q)+2b(\delta(p,q)-\alpha)r+(\delta(p,q)-2\alpha)r^2},$$
(5.1)

where |z| = r, 0 < r < 1.

Proof If $f \in B_{p,q}(b,\alpha)$, then

$$f(z) = z^{p} + 2b \left(\delta(p,q) - \alpha\right) \frac{(p-q+1)!}{(p+1)!} z^{p+1} + \dots, \ z \in \mathbb{U},$$

and we obtain that

$$\frac{f^{(q)}(z)}{\delta(p,q)z^{p-q}} = 1 + 2b\left(1 - \frac{\alpha}{\delta(p,q)}\right)z + \dots, \ z \in \mathbb{U},$$
(5.2)

with $0 \leq \frac{\alpha}{\delta(p,q)} < 1$ and $0 \leq b \leq 1$. Since $f \in B_{p,q}(b,\alpha)$, from (1.3) and (5.2) it follows that

$$\frac{f^{(q)}(z)}{\delta(p,q)z^{p-q}} \in G_b\left(\frac{\alpha}{\delta(p,q)}\right).$$

Using Lemma 2.7 for the function $\frac{f^{^{(q)}}(z)}{\delta(p,q)z^{p-q}}$ we conclude that

$$\begin{split} \left| \frac{zf^{(q+1)}(z)}{f^{(q)}(z)} - (p-q) \right| \leq \\ \frac{2(\delta(p,q) - \alpha)r}{1 - r^2} \frac{b + 2r + br^2}{\delta(p,q) + 2b(\delta(p,q) - \alpha)r + (\delta(p,q) - 2\alpha)r^2}, \ |z| = r, \ 0 < r < 1, \end{split}$$

which implies the conclusion (5.1).

For q = 0 Theorem 5.1 reduces to the next special case:

Corollary 5.2 If $f \in B_{p,0}(b, \alpha)$, then

$$\left|\frac{zf'(z)}{f(z)}\right| \le p + \frac{2(1-\alpha)r}{1-r^2} \frac{b+2r+br^2}{1+2b(1-\alpha)r+(1-2\alpha)r^2}, \ |z| = r, \ 0 < r < 1.$$

With a similar proof as for Theorem 5.1, using Lemma 2.8 we obtain the following theorem:

Theorem 5.3 If $f \in B_{p,q}(b, \alpha)$, then

$$\operatorname{Re} \frac{zf^{(q+1)}(z)}{f^{(q)}(z)} \geq \begin{cases} (p-q) - \frac{2\left(\delta(p,q) - \alpha\right)r(b + 2r + br^2\right)}{\left(\delta(p,q) + 2b\alpha r + (2\alpha - \delta(p,q))r^2\right)\left(1 + 2br + r^2\right)}, & \text{if } R' \leq R_b, \\ (p-q) + \frac{2\sqrt{\delta(p,q)\alpha M_1} - \delta(p,q)M_1 - \alpha}{\delta(p,q) - \alpha}, & \text{if } R' \geq R_b, \end{cases}$$

for |z| = r, 0 < r < 1, with $R_b := M_b - N_b$, where

$$M_b := \frac{\delta(p,q)(1+br)^2 - (2\alpha - \delta(p,q))(b+r)^2 r^2}{\delta(p,q)(1-r^2)(1+2br+r^2)},$$
$$N_b := \frac{2(\delta(p,q) - \alpha)r(b+r)(1+br)r}{\delta(p,q)(1-r^2)(1+2br+r^2)},$$

and

$$R' := \sqrt{\frac{\alpha}{\delta(p,q)}M_1}.$$

Taking q = 0 in Theorem 5.3 we obtain the next special case:

Corollary 5.4 If $f \in B_{p,0}(b, \alpha)$, then

$$\operatorname{Re} \frac{zf'(z)}{f(z)} \ge \begin{cases} p - \frac{2(1-\alpha)r(b+2r+br^2)}{(1+2b\alpha r + (2\alpha - 1)r^2)(1+2br+r^2)}, & \text{if } R' \le R_b, \\ p + \frac{2\sqrt{\alpha M_1} - M_1 - \alpha}{1-\alpha}, & \text{if } R' \ge R_b, \end{cases}$$

for |z| = r, 0 < r < 1, with $R_b := M_b - N_b$, where

$$M_b := \frac{(1+br)^2 - (2\alpha - 1)(b+r)^2 r^2}{(1-r^2)\left(1+2br+r^2\right)}, \quad N_b := \frac{2(1-\alpha)r(b+r)(1+br)r}{(1-r^2)\left(1+2br+r^2\right)},$$

and

$$R' := \sqrt{\alpha M_1}.$$

Remark 5.1 (i) Putting q = j $(1 \le j \le p)$ in Theorems 5.1 and 5.3, we get the results obtained by Owa [21, Theorems 5 and 6];

(ii) For p = 1 Corollaries 5.2 and 5.4 reduce to the results of McCarty [12, 13].

Acknowledgment

The authors are grateful to the reviewers of this article, who gave valuable remarks, comments, and advice in order to revise and improve the results of the paper.

References

- [1] Aouf MK. On a class of p-valent starlike functions of order α . Int J Math Math Sci 1987; 10: 733-744
- [2] Aouf MK. A generalization of multivalent functions with negative coefficients. J Korean Math Soc 1988; 25: 53-66.
- [3] Aouf MK. Certain classes of multivalent functions with negative coefficients defined by using a differential operator. J Math Appl 2008; 30: 5-21.
- [4] Aouf MK. Certain subclasses of p-valent starlike functions defined by using a differential operator. Appl Math Comput 2008; 206: 867-875.
- [5] Aouf MK. Some families of p-valent functions with negative coefficients. Acta Math Univ Comenian (NS) 2009; 78: 121-135.
- [6] Aouf MK. Bounded p-valent Robertson functions defined by using a differential operator. J Franklin Inst 2010; 347: 1972-1941.
- [7] Aouf MK. Some inclusion relationships associated with Dizok-Srivastava operator. Appl Math Comput 2010; 216: 431-437.
- [8] Bulboacă T. Differential Subordinations and Superordinations. New Results. Cluj-Napoca, Romania: House of Scientific Book Publications, 2005.
- [9] Fukui S, Ren F, Owa S, Nunokawa M. On certain multivalent functions. Bull Fac Edu Wakayama Univ Nat Sci 1989; 38: 5-8.
- [10] Jack IS. Functions starlike and convex of order α . J Lond Math Soc 1971; 2: 469-474.
- [11] Lee SK, Owa S. A subclass of p-valently close to convex functions of order α . Appl Math Lett 1992; 5: 3-6.
- [12] McCarty CP. Functions with real part greater than α . P Am Math Soc 1972; 35: 211-216.
- [13] McCarty CP. Two radius of convexity problems. P Am Math Soc 1974; 42: 153-160.
- [14] Miller SS. Distortion properties of alpha-starlike functions. P Am Math Soc 1973; 38: 311-318.
- [15] Miller SS, Mocanu PT. Differential Subordinations. Theory and Applications. Series on Monographs and Textbooks in Pure and Applied Mathematics, No. 255. New York, NY, USA: Marcel Dekker, 2000.
- [16] Miller SS, Mocanu PT, Reade MO. The order of starlikeness of alpha-convex functions. Mathematica (Cluj) 1978; 20: 25-30.
- [17] Mocanu PT. Une propriété de convexité generalisé dans la théorie de la représentation conforme. Mathematica (Cluj) 1969; 11: 127-133 (in French).
- [18] Mocanu PT, Reade MO. On generalized convexity in conformal mappings. Rev Roum Math Pures Appl 1971; 46: 1541-1544.
- [19] Nunokawa M. On the theory of multivalent functions. Tsukuba J Math 1987; 11: 273-286.
- [20] Owa S. On certain classes of p-valent functions with negative coefficients. Bull Belg Math Soc Simon Stevin 1985; 59: 385-402.
- [21] Owa S. Some properties of certain multivalently functions. Math Nachr 1992; 155: 167-185.
- [22] Owa S, Aouf MK, Nasr MA. Note on certain subclass of close-to-convex functions of order α . Int J Math Math Sci 1990; 13: 189-192.
- [23] Owa S, Ma W, Liu L. On a class of analytic functions satisfying $\operatorname{Re}(f'(z)) > \alpha$. Bull Korean Math Soc 1988; 25: 211-224.

AOUF et al./Turk J Math

- [24] Owa S, Ren F. On a class of p-valently α-convex functions. Math Nachr 1990; 146: 17-21.
- [25] Saitoh H. Some properties of certain analytic functions. Topics in Univalent Functions and Its Applications 1990; 714: 160-167.
- [26] Saitoh H. Some properties of certain multivalent functions. Tsukuba J Math 1991; 15: 105-111.
- [27] Saitoh H. On certain class of multivalent functions. Math Japon 1992; 37: 871-875.