Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2019) 43: $751-758$
© TÜBİTAK
doi:10.3906/mat-1810-80

On λ-pseudo q-bi-starlike functions

Prakash KAMBLE ${ }^{1}$, Mallikarjun SHRIGAN ${ }^{2, *}$ (©), Şahsene ALTINKAYA ${ }^{3}$ ©
${ }^{1}$ Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra State, India
${ }^{2}$ Department of Mathematics, Dr. D. Y. Patil School of Engineering and Technology, Pune, Maharashtra State, India
${ }^{3}$ Department of Mathematics, Faculty of Science, Uludağ University, Bursa, Turkey

- Accepted/Published Online: 28.01.2019

Final Version: 27.03.2019

Abstract

Making use of the λ-pseudo- q-differential operator, we aim to investigate a new, interesting class of bi-starlike functions in the conic domain. Furthermore, we obtain certain sharp bounds of the Fekete-Szegö functional for functions belonging to this class.

Key words: Fekete-Szegö inequality, bi-starlike functions, q-differential operator

1. Introduction

Let \mathcal{A} denote the family of functions analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\}
$$

and given by the following Taylor-Maclaurin series:

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots \tag{1.1}
\end{equation*}
$$

We denote by \mathcal{S} the class of starlike functions $f \in \mathcal{A}$, which are univalent in \mathbb{U} (e.g., see [1, 4, 5, 9, 11]).
Let $\mathcal{S}^{*}(\beta)$ be the usual subclass of starlike functions \mathcal{S} of order $\beta, 0 \leq \beta<1$, so that $f \in \mathcal{S}^{*}(\beta)$ if and only if, for $z \in \mathbb{U}$,

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\beta
$$

For $\alpha>0$, let $\mathcal{B}(\alpha)$ denote the class of Bazilevič functions defined in the open unit disk \mathbb{U}, normalized by the condition $f(0)=f^{\prime}(0)-1=0$, and such that, for $z \in \mathbb{U}$,

$$
\operatorname{Re}\left(f^{\prime}(z)\left(\frac{z f(z)}{z}\right)^{\alpha-1}\right)>0
$$

[^0]The class $\mathcal{B}(\alpha)$ reduces to the starlike function and bounded turning function whenever $\alpha=0$ and $\alpha=1$, respectively. This class is extended to $\mathcal{B}(\alpha, \beta)$, which satisfies the geometric condition

$$
\operatorname{Re}\left(\frac{f(z)^{\alpha-1} f^{\prime}(z)}{z^{\alpha-1}}\right)>\beta
$$

where α is a nonnegative real number and $0 \leq \beta<1$. This class of functions was intensively studied by Singh [18] and considered subsequently by London and Thomas [14]. Recently, Babalola [3] introduced a new subclass $\mathcal{L}_{\lambda}(\beta)$ of λ-pseudo-starlike functions of order β satisfying the geometric condition

$$
\operatorname{Re}\left(\frac{z\left(f^{\prime}(z)\right)^{\lambda}}{f(z)}\right)>\beta, \quad(z \in \mathbb{U}, 0 \leq \beta<1, \lambda \geq 1)
$$

We note that, if $\lambda=1$, we have the class of starlike functions of order β, which in this context is 1 -pseudostarlike functions of order β. If $\beta=0$, we simply write \mathcal{L}_{λ} instead of $\mathcal{L}_{\lambda}(0)$. For $\lambda=2$, we note that functions in $\mathcal{L}_{2}(\beta)$ are defined by

$$
\operatorname{Re}\left(f^{\prime}(z) \frac{z f^{\prime}(z)}{f(z)}\right)>\beta, \quad(z \in \mathbb{U})
$$

which is a product combination of geometric expression for bounded turning and starlike functions, an interesting analytic presentation on univalent functions in the open unit disk \mathbb{U}. Joshi et al. [8] defined the subclasses $S_{\Sigma}^{\lambda}(k, \alpha)$ and $S_{\Sigma}^{\lambda}(k, \beta)$ of bi-univalent functions associated with λ-bi-pseudo-starlike functions in the unit disk \mathbb{U}. Recently, Altinkaya and Özkan [2] introduced the subclasses $\mathcal{L}_{\lambda}(\beta)$ and $\mathcal{L}_{\lambda}(\beta, \phi)$ of Sălăgean type λ -pseudo-starlike functions. For these function classes, they found upper bounds for the initial coefficients as well as Fekete-Szegö inequalities.

Definition 1.1 Let \mathcal{P} be analytic and normalized Carathèodory functions with positive real part in \mathbb{U}. Let $\mathcal{P}\left(p_{k}\right)(0 \leq k<\infty)$ denote the family of functions p, such that $p \in \mathcal{P}$ and $p \prec \mathcal{P}$ in \mathbb{U}, where p_{k} maps the unit disk conformally onto the domain Ω_{k} such that $1 \in \Omega_{k}$ and $\partial \Omega_{k}$ is defined by

$$
\partial \Omega_{k}=\left\{u+i v: u^{2}=k^{2}(u-1)^{2}+k^{2} v^{2}\right\}
$$

Moreover, Ω_{k} is elliptic for $k>1$, hyperbolic when $0<k<1$, and parabolic for $k=1$ and it covers the right half plane when $k=0$. The extremal functions of class $\mathcal{P}\left(p_{k}\right)(0 \leq k<\infty)$ were presented and investigated by Kanas et al. in [12] and [13]. Obviously,
for $k=0$, we have

$$
p_{0}(z)=\frac{1+z}{1-z}=1+2 z+2 z^{2}+2 z^{3}+2 z^{4}+\ldots
$$

for $k=1$, we have

$$
p_{1}(z)=1+\frac{2}{\pi^{2}} \log ^{2}\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)
$$

and for $0<k<1$ and $A=A(k)=(2 / \pi) \arccos k$, we have

$$
p_{k}(z)=1+\frac{2}{1-k^{2}} \sinh ^{2}(A(k) \operatorname{arctanh} \sqrt{z})
$$

By virtue of

$$
p(z)=\frac{z f^{\prime}(z)}{f(z)} \prec p_{k}(z)
$$

or

$$
p(z)=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec p_{k}(z)
$$

and the properties of domains, we have

$$
\operatorname{Re}(p(z))>\operatorname{Re}\left(p_{k}(z)\right)>\frac{k}{k+1}
$$

The q-differential operator plays a vital role in the theory of geometric function theory. The various subclasses of the normalized analytic function class \mathcal{A} have been studied from different view points. Both q-calculus and fractional calculus provide important tools that have been used in order to investigate various subclasses of \mathcal{A}. Historically speaking, the firm footing of the usage of q-calculus in the context of geometric function theory was provided and q-hypergeometric functions were first used in geometric function theory in a book chapter by Srivastava (see, for details, [19, p. 347 et seq.]). Ismail et al. [6] introduced the class of generalized complex functions via q-calculus on some subclasses of analytic functions. Recently, Purohit and Raina [16] investigated applications of the fractional q-calculus operator to define new classes of functions that are analytic in unit disk \mathbb{U} (see, for details, [7], [10], and [20]-[23]).

For $0<q<1$, the q-derivative of a function $f \in \mathcal{A}$ given by (1.1) is defined as follows:

$$
\begin{equation*}
D_{q} f(z)=\frac{f(q z)-f(z)}{(q-1) z} \quad(z \neq 0) \tag{1.2}
\end{equation*}
$$

and $D_{q} f(0)=f^{\prime}(0), D_{q}^{2} f(z)=D_{q}\left(D_{q} f(z)\right)$. From (1.1), we deduce that

$$
\begin{equation*}
D_{q} f(z)=1+\sum_{k=2}^{\infty}[k]_{q} a_{k} z^{k-1} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
[k]_{q}=\frac{1-q^{k}}{1-q} . \tag{1.4}
\end{equation*}
$$

As $q \rightarrow 1^{-},[k]_{q} \rightarrow k$. For a function $g(z)=z^{k}$, we observe that

$$
\begin{gathered}
D_{q}(g(z))=D_{q}\left(z^{k}\right)=\frac{1-q^{k}}{1-q} z^{k-1}=k z^{k-1} \\
\lim _{q \rightarrow 1^{-}}\left(D_{q}(g(z))\right)=k z^{k-1}=g^{\prime}(z)
\end{gathered}
$$

where g^{\prime} is the ordinary derivative.

We define the Sălăgean q-differential operator (also refer to [10]) using the q-differential operator as follows:

$$
\begin{align*}
& \mathcal{D}_{q}^{0} f(z)=f(z) \\
& \mathcal{D}_{q}^{1} f(z)=z \mathcal{D}_{q} f(z) \\
& \mathcal{D}_{q}^{n} f(z)=z \mathcal{D}_{q}\left(\mathcal{D}_{q}^{n-1} f(z)\right), \\
& \mathcal{D}_{q}^{n} f(z)=z+\sum_{k=2}^{\infty}[k]_{q}^{n} a_{k} z^{k} \quad\left(n \in \mathbb{N}_{0}, z \in \mathbb{U}\right) . \tag{1.5}
\end{align*}
$$

We note that $\lim _{q \longrightarrow 1^{-}}$

$$
\begin{equation*}
\mathcal{D}^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k} \quad\left(n \in \mathbb{N}_{0}, z \in \mathbb{U}\right) \tag{1.6}
\end{equation*}
$$

Definition 1.2 Let $0 \leq k<1, \lambda \geq 1, n \in \mathbb{N}_{0}, 0<q<1$. For $p_{k}(z)$ as defined in Definition 1.1, the function f given by (1.1) belongs to $\mathcal{S}_{\lambda, k}^{q}\left(p_{k}\right)$ if

$$
\begin{equation*}
\left(\frac{z\left[\left(\left(\mathcal{D}_{q}^{n} f\right) z\right)^{\prime}\right]^{\lambda}}{\left(\mathcal{D}_{q}^{n} f\right) z}\right) \prec p_{k}(z) \quad(z \in \mathbb{U}) \tag{1.7}
\end{equation*}
$$

Let $\phi(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots\left(c_{1}>0\right)$ be an analytic function with positive real part on \mathbb{U}.

Definition 1.3 For $\lambda \geq 1,0<q<1$, we say a function f given by (1.1) belongs to the class $\mathcal{S}_{\lambda, \varphi}^{q}(\phi)$ if it satisfies the quasi-subordination condition

$$
\begin{equation*}
\left(\frac{z\left[\left(\left(\mathcal{D}_{q}^{n} f\right) z\right)^{\prime}\right]^{\lambda}}{\left(\mathcal{D}_{q}^{n} f\right) z}\right) \prec_{q} \phi(z)-1 \quad(z \in \mathbb{U}) \tag{1.8}
\end{equation*}
$$

In order to derive our main results, we use the following lemma.

Lemma 1.4 [15] Let $w(z)=w_{1} z+w_{2} z^{2}+w_{3} z^{3}+\ldots \in \mathcal{U}$ such that $|w(z)|<1$ in \mathbb{U}. If t is a complex number, then

$$
\left|w_{2}+t w_{1}^{2}\right| \leq \max \{1,|t|\}
$$

The inequality is sharp for the function $w(z)=z$ or $w(z)=z^{2}$.

In this paper, motivated by the earlier work of Babalola [3] and Altinkaya and Özkan [2], we introduce a new approach for studying a subclass of λ-pseudo bi-starlike functions using the q-differential operator and estimate the Fekete-Szegö body of the coefficient using subordination [17].

2. Main results

We investigate $\left|a_{3}-\sigma a_{2}^{2}\right|$ for the function $f \in \mathcal{A}$ for the class $\mathcal{S}_{\lambda, k}^{q}\left(p_{k}\right)$ associated with conical domains.

Theorem 2.1 Let $0 \leq k<1, \lambda \geq 1,0<q<1$ and $p_{k}(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots$ defined in Definition 1.1. If the function f given by (1.1) belongs to $\mathcal{S}_{\lambda, k}^{q}\left(p_{k}\right)$, then for any complex σ we have

$$
\begin{equation*}
\left|a_{3}-\sigma a_{2}^{2}\right| \leq \frac{p_{1}}{(3 \lambda-1)[3]_{q}^{n}} \max \left\{1,\left|\frac{p_{2}}{p_{1}}+\frac{p_{1}\left(4 \lambda-1-2 \lambda^{2}\right)[2]_{q}^{2 n}-\sigma p_{1}(3 \lambda-1)[3]_{q}^{n}}{\left\{(2 \lambda-1)[2]_{q}^{n}\right\}^{2}}\right|\right\} \tag{2.1}
\end{equation*}
$$

Proof By (1.7), we have

$$
\begin{equation*}
\frac{z\left[\left(\left(\mathcal{D}_{q}^{n} f\right) z\right)^{\prime}\right]^{\lambda}}{\left(\mathcal{D}_{q}^{n} f\right) z}=p_{k}(z) \quad(z \in \mathbb{U}) \tag{2.2}
\end{equation*}
$$

We note that

$$
\begin{equation*}
z\left[\left(\left(\mathcal{D}_{q}^{n} f\right) z\right)^{\prime}\right]^{\lambda}=z+2 \lambda[2]_{q}^{n} a_{2} z^{2}+\left(3 \lambda[3]_{q}^{n} a_{3}+2 \lambda(\lambda-1) a_{2}^{n}[2]_{q}^{2 n}\right) z^{3}+\ldots \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{k}(w(z))\left(\mathcal{D}_{q}^{n} f\right)(z)=z+\left(p_{1} w_{1}+[2]_{q}^{n} a_{2}\right) z^{2}+\left(p_{1} w_{2}+p_{2} w_{1}^{2}+[2]_{q}^{n} a_{2} p_{1} w_{1}+[3]_{q}^{n} a_{3}\right) z^{3}+\ldots \tag{2.4}
\end{equation*}
$$

Comparing coefficients of (2.2), (2.3), and (2.4), we obtain

$$
\begin{equation*}
a_{2}=\frac{p_{1} w_{1}}{(2 \lambda-1)[2]_{q}^{n}} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{3}=\frac{p_{1} w_{2}}{(3 \lambda-1)[3]_{q}^{n}}+\frac{p_{2} w_{1}^{2}}{(3 \lambda-1)[3]_{q}^{n}}+\frac{\left(4 \lambda-1-2 \lambda^{2}\right) p_{1} w_{1}^{2}}{(3 \lambda-1)(2 \lambda-1)^{2}[3]_{q}^{n}} \tag{2.6}
\end{equation*}
$$

Hence, by (2.5) and (2.6), we get the following:

$$
a_{3}-\sigma a_{2}^{2}=\frac{p_{1}}{(3 \lambda-1)[3]_{q}^{n}}\left(w_{2}+\vartheta w_{1}^{2}\right)
$$

where

$$
\begin{equation*}
\vartheta=\left|\frac{p_{2}}{p_{1}}+\frac{p_{1}\left(4 \lambda-1-2 \lambda^{2}\right)[2]_{q}^{2 n}-\sigma p_{1}(3 \lambda-1)[3]_{q}^{n}}{\left\{(2 \lambda-1)[2]_{q}^{n}\right\}^{2}}\right| . \tag{2.7}
\end{equation*}
$$

Using Lemma 1.4 and equation (2.7), we yield (2.1). This completes the proof.

Corollary 2.2 Let $f \in \mathcal{S}_{\lambda, k}^{q}\left(p_{k}\right)$, then

$$
\begin{equation*}
\left|a_{2}\right|=\frac{p_{1}}{(2 \lambda-1)[2]_{q}^{n}} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{p_{1}}{(3 \lambda-1)[3]_{q}^{n}} \max \left\{1,\left|\frac{p_{2}}{p_{1}}+\frac{p_{1}\left(4 \lambda-1-2 \lambda^{2}\right)}{(2 \lambda-1)^{2}[2]_{q}^{2 n}}\right|\right\} \tag{2.9}
\end{equation*}
$$

where $0 \leq k<1, \lambda \geq 1,0<q<1$.

KAMBLE et al./Turk J Math

For the class of functions $f \in \mathcal{S}_{\lambda, \varphi}^{q}(\phi)$, we can prove the following:

Theorem 2.3 Let $\lambda \geq 1,0<q<1$. If the function f given by (1.1) belongs to $\mathcal{S}_{\lambda, \varphi}^{q}(\phi)$, then for any complex σ we have

$$
\begin{equation*}
\left|a_{3}-\sigma a_{2}^{2}\right| \leq \frac{1}{3 \lambda[3]_{q}^{n}}\left(c_{1}+\max \left\{c_{1},\left|\frac{2 \lambda(2-\lambda)[2]_{q}^{2 n}-3 \sigma \lambda[3]_{q}^{n}}{4 \lambda^{2}[2]_{q}^{2 n}}\right| c_{1}^{2}+\left|c_{2}\right|\right\}\right) \tag{2.10}
\end{equation*}
$$

Proof If $f \in \mathcal{S}_{\lambda, \varphi}^{q}(\phi)$, then

$$
\begin{equation*}
\frac{z\left[\left(\left(\mathcal{D}_{q}^{n} f\right) z\right)^{\prime}\right]^{\lambda}}{\left(\mathcal{D}_{q}^{n} f\right) z}=\varphi(z)(\phi(z)-1) \quad(z \in \mathbb{U}) \tag{2.11}
\end{equation*}
$$

We have

$$
z\left[\left(\left(\mathcal{D}_{q}^{n} f\right) z\right)^{\prime}\right]^{\lambda}=z+2 \lambda[2]_{q}^{n} a_{2} z^{2}+\left(3 \lambda[3]_{q}^{n} a_{3}+2 \lambda(\lambda-1)[2]_{q}^{2 n} a_{2}^{2}\right) z^{3}+\cdots
$$

and

$$
\begin{equation*}
\varphi(z)(\phi(z)-1)\left(\mathcal{D}_{q}^{n} f\right)(z)=c_{1} A_{0} w_{1} z^{2}+\left(c_{1} A_{1} w_{1}+A_{0}\left(c_{1} w_{2}+c_{2} w_{1}^{2}+[2]_{q}^{n} c_{1} A_{0} w_{1} a_{2}\right)\right) z^{3}+\cdots \tag{2.12}
\end{equation*}
$$

From (2.11) and (2.12), it is easily seen that

$$
\begin{gather*}
a_{2}=\frac{c_{1} A_{0} w_{1}}{2 \lambda[2]_{q}^{n}} \tag{2.13}\\
a_{3}=\frac{c_{1} A_{1} w_{1}}{3 \lambda[3]_{q}^{n}}+\frac{c_{1} A_{0} w_{2}}{3 \lambda[3]_{q}^{n}}+\frac{A_{0}}{3 \lambda[3]_{q}^{n}}\left(c_{2}-\frac{(2-\lambda) c_{1}^{2} A_{0}}{2 \lambda}\right) w_{1}^{2}, \tag{2.14}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|a_{3}-\sigma a_{2}^{2}\right| \leq \frac{1}{3 \lambda[3]_{q}^{n}}\left[\left|c_{1} A_{1} w_{1}\right|+\left|c_{1} A_{0} \Psi\right|\right] \tag{2.15}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi=\left\{w_{2}-\left(\frac{(2-\lambda) c_{1} A_{0}}{2 \lambda}+\frac{3 \lambda c_{1} A_{0} w_{1}^{2} \sigma[3]_{q}^{n}}{4 \lambda^{2}[2]_{q}^{2 n}}-\frac{c_{2}}{c_{1}}\right) w_{1}^{2}\right\} \tag{2.16}
\end{equation*}
$$

Since φ is analytic in \mathbb{U}, using the inequalities $\left|A_{n}\right| \leq 1$ and $\left|w_{1}\right| \leq 1$, we get

$$
\begin{equation*}
\left|a_{3}-\sigma a_{2}^{2}\right| \leq \frac{c_{1}}{3 \lambda[3]_{q}^{n}}[|1+|\Phi|] \tag{2.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi=\left|w_{2}-\left(-\frac{c_{2}}{c_{1}}-\left[\frac{(2-\lambda) c_{1}}{2 \lambda}+\frac{3 \sigma \lambda[3]_{q}^{n} c_{1}}{4 \lambda^{2}[2]_{q}^{2 n}}\right] c_{1}\right) w_{1}^{2}\right| . \tag{2.18}
\end{equation*}
$$

Applying Lemma 1.4 and equation (2.18) yields result (2.10).

Corollary 2.4 Let $f \in \mathcal{S}_{\lambda, \varphi}^{q}(\phi)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{c_{1} A_{0}}{2 \lambda[2]_{q}^{n}} \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{1}{3 \lambda[3]_{q}^{n}}\left(c_{1}+\max \left\{c_{1},\left|\frac{(2-\lambda) c_{1}^{2}}{2 \lambda}\right|+\left|c_{2}\right|\right\}\right) \tag{2.20}
\end{equation*}
$$

where $\lambda \geq 1,0<q<1$.

References

[1] Abdel-Gawad HR, Thomas DK. The Fekete-Szegö coefficient problems for strongly close-to-convex functions. P Am Math Soc 1992; 114: 345-349.
[2] Altinkaya Ş, Özkan SY. On Sălăgean type pseudo-starlike functions. Acta et Commentationes Universitatis Tartuensis de Mathematica 2017; 21: 275-285.
[3] Babalola KO. On λ-pseudo starlike functions. J Classical Anal 2013; 2: 137-147.
[4] Darus M, Hussain S, Raza M, Sokół J. On a subclass of starlike functions. Result Math 2018; 73: 22.
[5] Frasin BA, Auof MK. New subclasses of bi-univalent functions. Appl Math Lett 2011; 24: 1569-1673.
[6] Ismail MEH, Merkes E, Styer D. A generalization of starlike functions. Complex Variable Theory Appl 1990; 14: 77-84.
[7] Jahangiri JM, Hamidi SG. Coefficient estimates for certain classes of bi-univalent functions. Int J Math Math Sci 2013; 2013: 190560.
[8] Joshi SB, Altinkaya Ş, Yalçin S. Coefficient estimates for Sălăgean type bi-pseudo-starlike functions. Kyungpook Mathematical Journal 2017; 57: 613-621.
[9] Keogh FR, Merkes EP. A Coefficient inequality for certain classes of analytic functions. P Am Math Soc 1969; 20: 8-12.
[10] Kamble PN, Shrigan MG. Initial coefficient estimates for bi-univalent functions. Far East J Math 2018; 102: 271-282.
[11] Kamble PN, Shrigan MG, Srivastava HM. A novel subclass of univalent functions involving operators of fractional calculus. Int J Appl Math 2017; 30: 501-514.
[12] Kanas S, Răducanu D. Conic regions and k-uniform convexity. J Comput Appl Math 1999; 105: 327-336.
[13] Kanas S, Răducanu D. Some subclass of analytic functions related to conic domains. Math Slovaca 2014; 64: 1183-1196.
[14] London RR, Thomas DK. The derivative of Bazilevič functions. P Am Math Soc 1988; 104: 85-89.
[15] Ma W, Minda D. A Unified Treatment of Some Special Classes of Univalent Functions. Cambridge, MA, USA: MIT Press, 1994.
[16] Purohit SD, Raina RK. Certain subclasses of analytic functions associated with fractional q-calculus operators. Math Scand 2011; 109: 55-70.
[17] Robertson MS. Quasi-subordination and coefficient conjecture. B Am Math Soc 1970; 76: 1-9.
[18] Singh R. On Bazilevič functions. B Am Math Soc 1973; 38: 261-271.
[19] Srivastava HM. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In: Srivastava HM, Owa S, editors. Univalent Functions, Fractional Calculus, and Their Applications. New York, NY, USA: John Wiley and Sons, 1989, pp. 329-354.
[20] Srivastava HM, Altinkaya Ş, Yalçin S. Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator. Filomat 2018; 32: 503-516.
[21] Srivastava HM, Bulut S, Çağlar M, Yağmur N. Coefficient estimates for a general subclass of analytic and biunivalent functions. Filomat 2013; 27: 831-842.
[22] Srivastava HM, Gaboury S, Ghanim F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afrika Math 2017; 28: 693-706.
[23] Srivastava HM, Sümer S, Hamidi SG, Jahangiri JM. Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. Bull Iranian Math Soc 2017; 44: 149-157.

[^0]: *Correspondence: mgshrigan@gmail.com
 2010 AMS Mathematics Subject Classification: 30C45

