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Abstract: Making use of the λ -pseudo-q -differential operator, we aim to investigate a new, interesting class of bi-starlike
functions in the conic domain. Furthermore, we obtain certain sharp bounds of the Fekete–Szegö functional for functions
belonging to this class.
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1. Introduction
Let A denote the family of functions analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}

and given by the following Taylor–Maclaurin series:

f(z) = z + a2z2 + a3z3 + ... . (1.1)

We denote by S the class of starlike functions f ∈ A , which are univalent in U (e.g., see [1, 4, 5, 9, 11]).
Let S∗(β) be the usual subclass of starlike functions S of order β , 0 ≤ β < 1 , so that f ∈ S∗(β) if and

only if, for z ∈ U ,

Re

(
zf ′(z)

f(z)

)
> β.

For α > 0 , let B(α) denote the class of Bazilevic̆ functions defined in the open unit disk U , normalized
by the conditionf(0) = f ′(0)− 1 = 0 , and such that, for z ∈ U ,

Re

(
f ′(z)

(
zf(z)

z

)α−1
)

> 0.
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The class B(α) reduces to the starlike function and bounded turning function whenever α = 0 and α = 1 ,
respectively. This class is extended to B(α, β) , which satisfies the geometric condition

Re

(
f(z)α−1f ′(z)

zα−1

)
> β,

where α is a nonnegative real number and 0 ≤ β < 1. This class of functions was intensively studied by Singh
[18] and considered subsequently by London and Thomas [14]. Recently, Babalola [3] introduced a new subclass
Lλ(β) of λ -pseudo-starlike functions of order β satisfying the geometric condition

Re

(
z(f ′(z))λ

f(z)

)
> β, (z ∈ U, 0 ≤ β < 1, λ ≥ 1).

We note that, if λ = 1, we have the class of starlike functions of order β , which in this context is 1-pseudo-
starlike functions of order β . If β = 0 , we simply write Lλ instead of Lλ(0) . For λ = 2, we note that functions
in L2(β) are defined by

Re

(
f ′(z)

zf ′(z)

f(z)

)
> β, (z ∈ U),

which is a product combination of geometric expression for bounded turning and starlike functions, an interesting
analytic presentation on univalent functions in the open unit disk U . Joshi et al. [8] defined the subclasses
Sλ
Σ(k, α) and Sλ

Σ(k, β) of bi-univalent functions associated with λ -bi-pseudo-starlike functions in the unit disk
U . Recently, Altinkaya and Özkan [2] introduced the subclasses Lλ(β) and Lλ(β, ϕ) of Sălăgean type λ -
pseudo-starlike functions. For these function classes, they found upper bounds for the initial coefficients as well
as Fekete–Szegö inequalities.

Definition 1.1 Let P be analytic and normalized Carathèodory functions with positive real part in U . Let
P(pk)(0 ≤ k < ∞) denote the family of functions p, such that p ∈ P and p ≺ P in U , where pk maps the unit
disk conformally onto the domain Ωk such that 1 ∈ Ωk and ∂Ωk is defined by

∂Ωk = {u+ iv : u2 = k2(u− 1)2 + k2v2}.

Moreover, Ωk is elliptic for k > 1 , hyperbolic when 0 < k < 1 , and parabolic for k = 1 and it covers the right
half plane when k = 0 . The extremal functions of class P(pk)(0 ≤ k < ∞) were presented and investigated by
Kanas et al. in [12] and [13]. Obviously,
for k = 0 , we have

p0(z) =
1 + z

1− z
= 1 + 2z + 2z2 + 2z3 + 2z4 + ...,

for k = 1 , we have

p1(z) = 1 +
2

π2
log2

(
1 +

√
z

1−
√
z

)
,

and for 0 < k < 1 and A = A(k) = (2/π)arccos k, we have

pk(z) = 1 +
2

1− k2
sinh2

(
A(k) arc tanh

√
z
)
.
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By virtue of

p(z) =
zf ′(z)

f(z)
≺ pk(z)

or

p(z) = 1 +
zf ′′(z)

f ′(z)
≺ pk(z),

and the properties of domains, we have

Re(p(z)) > Re(pk(z)) >
k

k + 1
.

The q -differential operator plays a vital role in the theory of geometric function theory. The various
subclasses of the normalized analytic function class A have been studied from different view points. Both
q -calculus and fractional calculus provide important tools that have been used in order to investigate various
subclasses of A . Historically speaking, the firm footing of the usage of q -calculus in the context of geometric
function theory was provided and q -hypergeometric functions were first used in geometric function theory in
a book chapter by Srivastava (see, for details, [19, p. 347 et seq.]). Ismail et al. [6] introduced the class of
generalized complex functions via q -calculus on some subclasses of analytic functions. Recently, Purohit and
Raina [16] investigated applications of the fractional q -calculus operator to define new classes of functions that
are analytic in unit disk U (see, for details, [7], [10], and [20]–[23]).

For 0 < q < 1 , the q -derivative of a function f ∈ A given by (1.1) is defined as follows:

Dqf(z) =
f(qz)− f(z)

(q − 1)z
(z ̸= 0), (1.2)

and Dqf(0) = f ′(0), D2
qf(z) = Dq(Dqf(z)). From (1.1), we deduce that

Dqf(z) = 1 +
∞∑
k=2

[k]qak z
k−1, (1.3)

where

[k]q =
1− qk

1− q
. (1.4)

As q → 1− , [k]q → k . For a function g(z) = zk , we observe that

Dq(g(z)) = Dq(z
k) =

1− qk

1− q
zk−1 = k zk−1,

lim
q→1−

(Dq(g(z))) = k zk−1 = g′(z),

where g′ is the ordinary derivative.
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We define the Sălăgean q -differential operator (also refer to [10]) using the q -differential operator as
follows:

D0
qf(z) = f(z),

D1
qf(z) = zDqf(z),

Dn
q f(z) = zDq(Dn−1

q f(z)),

Dn
q f(z) = z +

∞∑
k=2

[k]nq akz
k (n ∈ N0, z ∈ U). (1.5)

We note that limq−→1−

Dnf(z) = z +

∞∑
k=2

knakz
k (n ∈ N0, z ∈ U). (1.6)

Definition 1.2 Let 0 ≤ k < 1, λ ≥ 1, n ∈ N0, 0 < q < 1 . For pk(z) as defined in Definition 1.1, the function
f given by (1.1) belongs to Sq

λ,k(pk) if(
z[((Dn

q f)z)
′]λ

(Dn
q f)z

)
≺ pk(z) (z ∈ U). (1.7)

Let ϕ(z) = 1 + c1z + c2z
2 + c3z

3 + ...(c1 > 0) be an analytic function with positive real part on U .

Definition 1.3 For λ ≥ 1, 0 < q < 1 , we say a function f given by (1.1) belongs to the class Sq
λ,φ(ϕ) if it

satisfies the quasi-subordination condition(
z[((Dn

q f)z)
′]λ

(Dn
q f)z

)
≺q ϕ(z)− 1 (z ∈ U). (1.8)

In order to derive our main results, we use the following lemma.

Lemma 1.4 [15] Let w(z) = w1z+w2z
2+w3z

3+ ... ∈ 0 such that |w(z)| < 1 in U . If t is a complex number,
then ∣∣w2 + tw2

1

∣∣ ≤ max{1, |t|}.

The inequality is sharp for the function w(z) = z or w(z) = z2 .

In this paper, motivated by the earlier work of Babalola [3] and Altinkaya and Özkan [2], we introduce
a new approach for studying a subclass of λ -pseudo bi-starlike functions using the q -differential operator and
estimate the Fekete–Szegö body of the coefficient using subordination [17].
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2. Main results
We investigate

∣∣a3 − σa22
∣∣ for the function f ∈ A for the class Sq

λ,k(pk) associated with conical domains.

Theorem 2.1 Let 0 ≤ k < 1, λ ≥ 1, 0 < q < 1 and pk(z) = 1 + p1z + p2z
2 + p3z

3 + ... defined in Definition
1.1. If the function f given by (1.1) belongs to Sq

λ,k(pk) , then for any complex σ we have

∣∣a3 − σa22
∣∣ ≤ p1

(3λ− 1)[3]nq
max

{
1,

∣∣∣∣∣p2p1 +
p1(4λ− 1− 2λ2)[2]2nq − σp1(3λ− 1)[3]nq

{(2λ− 1)[2]nq }2

∣∣∣∣∣
}
. (2.1)

Proof By (1.7), we have

z[((Dn
q f)z)

′]λ

(Dn
q f)z

= pk(z) (z ∈ U). (2.2)

We note that
z[((Dn

q f)z)
′]λ = z + 2λ[2]nq a2z

2 +
(
3λ[3]nq a3 + 2λ(λ− 1)an2 [2]

2n
q

)
z3 + ... (2.3)

and
pk(w(z))(Dn

q f)(z) = z +
(
p1w1 + [2]nq a2

)
z2 +

(
p1w2 + p2w

2
1 + [2]nq a2p1w1 + [3]nq a3

)
z3 + ... . (2.4)

Comparing coefficients of (2.2), (2.3), and (2.4), we obtain

a2 =
p1w1

(2λ− 1)[2]nq
(2.5)

and

a3 =
p1w2

(3λ− 1)[3]nq
+

p2w
2
1

(3λ− 1)[3]nq
+

(
4λ− 1− 2λ2

)
p1w

2
1

(3λ− 1)(2λ− 1)2[3]nq
. (2.6)

Hence, by (2.5) and (2.6), we get the following:

a3 − σa22 =
p1

(3λ− 1)[3]nq

(
w2 + ϑw2

1

)
,

where

ϑ =

∣∣∣∣∣p2p1 +
p1(4λ− 1− 2λ2)[2]2nq − σp1(3λ− 1)[3]nq

{(2λ− 1)[2]nq }2

∣∣∣∣∣ . (2.7)

Using Lemma 1.4 and equation (2.7), we yield (2.1). This completes the proof. 2

Corollary 2.2 Let f ∈ Sq
λ,k(pk) , then

|a2| =
p1

(2λ− 1)[2]nq
(2.8)

and

|a3| ≤
p1

(3λ− 1)[3]nq
max

{
1,

∣∣∣∣p2p1 +
p1(4λ− 1− 2λ2)

(2λ− 1)2[2]2nq

∣∣∣∣} , (2.9)

where 0 ≤ k < 1, λ ≥ 1, 0 < q < 1 .
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For the class of functions f ∈ Sq
λ,φ(ϕ) , we can prove the following:

Theorem 2.3 Let λ ≥ 1, 0 < q < 1 . If the function f given by (1.1) belongs to Sq
λ,φ(ϕ) , then for any complex

σ we have ∣∣a3 − σa22
∣∣ ≤ 1

3λ[3]nq

(
c1 +max

{
c1,

∣∣∣∣∣2λ(2− λ)[2]2nq − 3σλ[3]nq
4λ2[2]2nq

∣∣∣∣∣ c21 + |c2|

})
. (2.10)

Proof If f ∈ Sq
λ,φ(ϕ) , then

z[((Dn
q f)z)

′]λ

(Dn
q f)z

= φ(z) (ϕ(z)− 1) (z ∈ U). (2.11)

We have

z[((Dn
q f)z)

′]λ = z + 2λ[2]nq a2z
2 +

(
3λ[3]nq a3 + 2λ(λ− 1)[2]2nq a22

)
z3 + · · ·

and

φ(z) (ϕ(z)− 1) (Dn
q f)(z) = c1A0w1z

2 +
(
c1A1w1 +A0

(
c1w2 + c2w

2
1 + [2]nq c1A0w1a2

))
z3 + · · · . (2.12)

From (2.11) and (2.12), it is easily seen that

a2 =
c1A0w1

2λ[2]nq
, (2.13)

a3 =
c1A1w1

3λ[3]nq
+

c1A0w2

3λ[3]nq
+

A0

3λ[3]nq

(
c2 −

(2− λ)c21A0

2λ

)
w2

1, (2.14)

and ∣∣a3 − σa22
∣∣ ≤ 1

3λ[3]nq
[|c1A1w1|+ |c1A0Ψ|] , (2.15)

where

Ψ =

{
w2 −

(
(2− λ)c1A0

2λ
+

3λc1A0w
2
1σ[3]

n
q

4λ2[2]2nq
− c2

c1

)
w2

1

}
. (2.16)

Since φ is analytic in U , using the inequalities |An| ≤ 1 and |w1| ≤ 1 , we get∣∣a3 − σa22
∣∣ ≤ c1

3λ[3]nq
[|1 + |Φ|] , (2.17)

where

Φ =

∣∣∣∣w2 −
(
−c2
c1

−
[
(2− λ)c1

2λ
+

3σλ[3]nq c1

4λ2[2]2nq

]
c1

)
w2

1

∣∣∣∣ . (2.18)

Applying Lemma 1.4 and equation (2.18) yields result (2.10). 2
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Corollary 2.4 Let f ∈ Sq
λ,φ(ϕ) , then

|a2| ≤
c1A0

2λ[2]nq
(2.19)

and

|a3| ≤
1

3λ[3]nq

(
c1 +max

{
c1,

∣∣∣∣ (2− λ)c21
2λ

∣∣∣∣+ |c2|
})

, (2.20)

where λ ≥ 1, 0 < q < 1 .
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