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Abstract: In this paper, we give a complete characterization of singly generated invariant subspaces in the Hardy space
on the unit ball. Then we construct a singly generated invariant subspace that cannot be generated by a single inner
function, contrary to the one-variable case where every invariant subspace is generated by a single inner function. Some
important properties of invariant subspaces are also determined for singly generated invariant subspaces.
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1. Introduction
In his well-known paper [3], Beurling showed that every invariant subspace M of the Hardy space H2(D) on the
unit disc D is of the form M = fH2(D) for some inner function f , i.e. is generated by a single inner function.
This type of invariant subspace is called Beurling-type. However, in the case of several variables, the structure
of invariant subspaces cannot be characterized in such a simple form. Although it is clear that the subspaces
generated by an inner function are also invariant, determining all invariant subspaces in the several-variable
case is difficult. For example, in the case of the polydisc Dn (n > 1) it is clear that the subspaces generated by
an inner function are also invariant in H2(Dn) . However, Rudin [9] showed that there are invariant subspaces of
H2(D2) that are not even finitely generated. In his book [9, p. 78], he posed the following question: “One may
ask for a classification or an explicit description (in some sense) of all invariant subspaces of H2(Dn)”. This
question has been extensively studied by various authors in different contexts, but it is still open. Recently,
the authors gave a partially answer to the question by determining the structure of singly generated invariant
subspaces [7].

In this paper, inspired by [7], we deal with the case of the unit ball Bn . In this case, the existence
of nonconstant inner functions was a rather elusive problem for quite some time. There was a time when
nonconstant inner functions were thought not to exist. In 1982, Alexandrov [2] and Løw [8] proved independently
the existence of nonconstant inner functions in the unit ball. After this investigation it is natural to ask for a
classification or an explicit description of all invariant subspaces of H2(Bn) for arbitrary n , as that of Rudin
in the polydisc case.

A subspace M of the Hardy space H2(Bn) on the unit ball Bn is called invariant if (a) M is a closed
linear subspace of H2(Bn) and (b) f ∈M implies zif ∈M for i = 1, . . . , n ; i.e. multiplication by the variables
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z1, z2, . . . , zn maps M into M . The smallest invariant subspace of H2(Bn) that contains a given f is denoted
by Mf and Mf is called the subspace generated by f if Mf = fH2(Bn) .

It is clear that a subspace of H2(Bn) generated by an inner function is invariant and there exist a lot
of invariant subspaces not generated by a single inner function, e.g., invariant subspaces of finite codimension
[4, 5]. In this study we partially answer the question above by giving a complete characterization of singly
generated invariant subspaces in the unit ball. Then we construct a singly generated invariant subspace that
cannot be generated by any single inner function. In view of these results, it is seen that the structure of
invariant subspaces in the unit ball is much more complicated than the one-variable case where every invariant
subspace is generated by a single inner function.

Before beginning, let us recall some required facts.
Throughout this paper, n > 1 is a positive integer, and Cn is the vector space of all ordered n -

tuples z = (z1, . . . , zn) of complex numbers with inner product ⟨z, w⟩ =
∑
ziw̄i , norm |z| = ⟨z, z⟩1/2 , and

corresponding unit ball
Bn = {z ∈ Cn : |z| < 1},

whose boundary is the unit sphere
Sn = {z ∈ Cn : |z| = 1}.

On Sn , there is a unique rotation-invariant positive measure σ so that σ(Sn) = 1 . If f is in L1(Sn) , the usual
Lebesgue space with respect to σ , then its Poisson integral P [f ] is the function

P [f ] =

∫
Sn

P (z, w)f(w)dσ(w), z ∈ Bn,

where P (z, w) is the Poisson kernel.
The Hardy space on the unit ball H2(Bn) is defined as the space of all holomorphic functions f in Bn

for which

||f ||2 = sup
0≤r<1

{∫
Sn

|f(rw)|2dσ(w)
}1/2

<∞.

The radial limits f∗(w) of f ∈ H2(Bn) exist a.e. on Sn and satisfy the integrability condition
log |f∗| ∈ L1(Sn) if f ̸≡ 0 [11, p. 85].

Every f ∈ H2(Bn) satisfies the inequality

log |f | ≤ P [log |f∗|].

This is proved exactly as in polydiscs [9, Theorem 3.3.5].
H∞(Bn) is the space of all bounded holomorphic functions f in Bn ; ||f ||∞ = supz∈Bn |f(z)| <∞ . An

inner function in Bn is a function f ∈ H∞(Bn) with |f∗| = 1 a.e. on Sn . A function f ∈ H2(Bn) is said to
be outer if

log |f(0)| =
∫
Sn

log |f∗|dσ.

If f is outer, then log |f | = P [log |f∗|] . This implies that f has no zero in Bn , and log |f | and P [log |f∗|] are
real parts of holomorphic functions in Bn . The proofs are the same as that in the polydisc case [9, p. 73].
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The following theorem is also required in this study.

Theorem 1.1 [12, Theorem 4.2, p. 113] If ψ is a positive, bounded, and lower semicontinuous function on
Sn , then there is a zero-free f ∈ H∞(Bn) such that |f∗| = ψ a.e. on Sn .

For further information on Hardy space on the ball, see [11, 13].

2. Main results
Definition 2.1 A function f ∈ H∞(Bn) with 1/f∗ ∈ L∞(Sn) is called a generalized inner function.

Every inner function in the unit ball is a generalized inner function. Similar to the problem of existence of
nonconstant inner functions in the unit ball given by Rudin [11, p. 403], we can naturally ask the following
question:

Question: Does there exist a nonconstant generalized inner function in the unit ball that is not inner?
We have a positive answer by [12, Example 6.7]: Let V be a dense open circular set in Sn with σ(V ) < 1 .

There is f ∈ H∞(Bn) such that |f∗| = 1 a.e. on V , |f∗| = 1
2 a.e. on Sn\V .

It is clear that the subspace φH2(Bn) of H2(Bn) with some inner function φ is invariant. After the
above answer, it is natural to ask whether there exists any function f that is not necessarily inner such that
fH2(Bn) is invariant. The following theorem describes the class of all such functions.

Theorem 2.2 Let f ∈ H∞(Bn) . The subspace fH2(Bn) of H2(Bn) is invariant if and only if f is a
generalized inner function.

Proof Let Mf denote the bounded linear operator on H2(Bn) given by Mf (g) = fg for any g ∈ H2(Bn) .
Suppose that the subspace fH2(Bn) is invariant. Since KerMf = {0} and the image of Mf , fH2(Bn) is
closed, and Mf is bounded below; that is, there exists a number δ > 0 such that ||Mfg||2 ≥ δ||g||2 for
any g ∈ H2(Bn) . Then |f∗| ≥ δ a.e. on Sn . In fact, assume that σ{ξ ∈ Sn : |f∗(ξ)| < δ} > 0 . Then
σ{ξ ∈ Sn : |f∗(ξ)| < δ0} > 0 for some δ0 ∈ (0, δ) . Let us fix such a δ0 and put E = {ξ ∈ Sn : |f∗(ξ)| < δ0} .
We can construct a sequence of continuous functions {φj}j≥1 defined on Sn such that 0 < φj ≤ 1 and
limj→∞ φj = χE a.e. on Sn , where χE denotes the characteristic function of E . By Theorem (1.1) for each j

there exists a function gj ∈ H∞(Bn) ⊂ H2(Bn) such that |g∗j | = φj a.e. on Sn . We get

δ2
∫
Sn

|g∗j |2dσ ≤
∫
Sn

|f∗|2|g∗j |2dσ

for all j . Applying the Lebesgue dominated convergence theorem, we have

δ2σ(E) ≤
∫
E

|f∗|2dσ ≤ δ20σ(E) < δ2σ(E),

and we get a contradiction. Hence, |f∗| ≥ δ a.e. on Sn , i.e. 1/f∗ ∈ L∞(Sn) . Conversely, suppose that f is a
generalized inner function. It is clear that for the invariance of fH2(Bn) , it is enough to show the closedness
of the subspace fH2(Bn) . For this, we show that Mf is bounded below, and that means there exists a number
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c > 0 such that ||Mfg||2 ≥ c||g||2 for any g ∈ H2(Bn) . In fact, for any g ∈ H2(Bn) we obtain

||g||2 = ||f−1fg||2 ≤ ||f−1||∞ · ||fg||2 = ||f−1||∞ · ||Mfg||2,

and the proof is complete. 2

This theorem shows that every singly generated invariant subspace M of H2(Bn) is of the form M = fH2(Bn)

for some generalized inner function f . This is a generalization of Beurling’s theorem. It is clear that the class of
inner functions is contained in the class of generalized inner functions. Then the following is a natural question
to ask:

Question: Is every singly generated invariant subspace of H2(Bn) generated by an inner function?
The following construction leads to a negative answer:

Theorem 2.3 For n > 1 , there exists a generalized inner function f such that fH2(Bn) ̸= IH2(Bn) for any
inner function I .

Proof We can take a function h ∈ C(Sn) such that h > 0 everywhere and the Poisson integral of logh is not
pluriharmonic. By Theorem (1.1), there exists a function f ∈ H∞(Bn) such that |f∗| = h almost everywhere
on Sn . Suppose that fH2(Bn) = IH2(Bn) for some inner function I . Then fI−1H2(Bn) = H2(Bn) , and
hence fI−1 is outer (the proof is the same as that in the polydisc case [9, p. 74, Theorem 4.4.6]). It follows
that the equality

Re log(fI−1) = log |fI−1| = P [log |(fI−1)∗|] = P [log |f∗|] = P [logh]

is satisfied, showing that P [logh] is pluriharmonic, and we get a contradiction, and the proof is complete. 2

Proposition 2.4 Let f1 and f2 be two generalized inner functions that have no zero in Bn . The invariant
subspaces f1H2(Bn) and f2H

2(Bn) satisfy the following conditions:

(a) f1H
2(Bn) ⊂ f2H

2(Bn) if and only if f1/f2 is a generalized inner function.

(b) f1H
2(Bn) = f2H

2(Bn) if and only if f1/f2, f2/f1 ∈ H∞(Bn) .

Proof

(a) Assume that f1H2(Bn) ⊂ f2H
2(Bn) . Then f1 ∈ f2H

2(Bn) and thus f1 = f2g for some g ∈ H2(Bn) .
Moreover, f1 ∈ H∞(Bn) and 1/f∗2 ∈ L∞(Sn) give g = f1/f2 ∈ H∞(Bn) . On the other hand, if
1/f∗1 ∈ L∞(Sn) , then 1/g∗ = (f2/f1)

∗ ∈ L∞(Sn) . Conversely, if f1 = f2h , where h ∈ H∞(Bn) with
1/h∗ ∈ L∞(Sn) , then f1f = f2(hf) for any f ∈ H2(Bn) and therefore f1H2(Bn) ⊂ f2H

2(Bn) .

(b) It is easily seen from (a).

2

Beurling’s theorem also states (in the one-variable case) that a function f ∈ H∞(D) is outer if and only
if fH2(D) is dense in H2(D) . For the unit ball case one part of this theorem holds if n > 1 : f is outer if
fH2(Bn) is dense in H2(Bn) . The proof is the same as that in the polydisc case [9, Theorem 4.4.6, p. 74].
The following result gives a class of functions for which Beurling’s theorem holds for n > 1 .
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Corollary 2.5 If f is a generalized inner function, then f is outer if and only if fH2(Bn) = H2(Bn) .

Proof If fH2(Bn) = H2(Bn) , then that the function f is outer is obvious by [9, Theorem 4.4.6, p. 74].
Conversely, suppose that f is outer. Then

log |f | = P [log |f∗|], (2.1)

which implies that f has no zero in Bn and hence 1/f is analytic in Bn . On the other hand, multiplying
equality (2.1) by (−1) , we obtain that the same equality is true for 1/f ; that is, log |1/f | = P [log |(1/f)∗|] .
Since 1/f∗ ∈ L∞(Sn) , log |(1/f)∗| ∈ L∞(Sn) , and then its Poisson integral P [log |(1/f)∗|] is bounded on Bn .
Hence, 1/f is bounded on Bn , and 1/f ∈ H∞(Bn) . Applying Proposition (2.4) (b) to f1 = f and f2 = 1 , we
have fH2(Bn) = H2(Bn) . 2

Two invariant subspaces M1 and M2 are said to be unitarily equivalent if there is a unitary operator
U :M1 →M2 such that U(θf) = θ(Uf) for θ ∈ H∞(Bn) and f ∈M1 . In order to classify invariant subspaces,
unitary equivalence is a natural equivalence relation. In the one-variable case, all invariant subspaces are
unitarily equivalent to H2(D) by Beurling’s theorem. However, it is known that there exist many equivalence
classes of invariant subspaces in the polydisc case. Agrawal et al. [1] studied the question of unitary equivalence
of invariant subspaces in this case. In the following theorem, we show unitary equivalence of the singly generated
invariant subspaces in the unit ball case.

Theorem 2.6 (a) Let f1 and f2 be two generalized inner functions. The invariant subspaces f1H2(Bn) and
f2H

2(Bn) are unitarily equivalent if |f∗1 | = |f∗2 | a.e. on Sn .

(b) Any invariant subspace M of H2(Bn) unitarily equivalent to a singly generated invariant subspace is also
singly generated.

Proof

(a) Let |f∗1 | = |f∗2 | a.e. on Sn . Taking the multiplication operator Mψ : f1H
2(Bn) → f2H

2(Bn) , where
ψ := f2/f1 -unimodular function, as a desired unitary operator, we easily obtain the unitary equivalence
of these subspaces.

(b) If the invariant subspace M of H2(Bn) is unitarily equivalent to fH2(Bn) for some generalized inner
function f , then, by Lemma 1 in [1] (this is also true for the unit ball case), there exists a unimodular
function ψ such that M = ψfH2(Bn) and so the subspace M is an invariant subspace generated by
g := ψf ∈ H∞(Bn) with 1/g∗ ∈ L∞(Sn) .

2

It is well known that every nonzero function f in H2(D) has a factorization f = gh , where g is inner and
h is outer. This is no longer true for H2(Bn) for n > 1 (see [6]). One can ask whether a generalized statement
may hold true, namely that every nonzero function f in H2(Bn) can be written as a product f = gh , where h
is still an outer function, but where g is now a generalized inner function. However, according to a result of
Rudin [10, Rem. (b), p. 59], for any n ≥ 2 , there exists an f in H2(Bn) , f ̸≡ 0 , such that for no nonzero
g in H∞(Bn) the quotient g/f is holomorphic in Bn . Assume that such an f factors as f = gh with g a
generalized inner function and h an outer function. Since outer functions have no zeros in Bn , the quotient
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g/f is holomorphic, which contradicts Rudin’s result. Thus, the generalized factorization does not hold for this
f ∈ H2(Bn) . We do not know whether a generalized factorization holds true for arbitrary bounded f ̸≡ 0

on Bn .
Problem Can every nonzero function f in H∞(Bn) be written as a product f = gh , where g is a generalized

inner function and h is an outer function?
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