т $̈$ вітак

Turkish Journal of Mathematics
http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2019) 43: $765-782$
© TÜBİTAK
doi:10.3906/mat-1805-72

The twelvefold way, the nonintersecting circles problem, and partitions of multisets

Toufik MANSOUR ${ }^{1}$ © , Madjid MIRZVAZIRI ${ }^{2}$, Daniel YAQUBI ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, University of Haifa, Haifa, Israel
${ }^{2}$ Department of Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran

Received: 14.05.2018 • Accepted/Published Online: 30.01.2019 • Final Version: 27.03 .2019

Abstract: Let n be a nonnegative integer and $\mathbb{A}=\left\{a_{1}, \ldots, a_{k}\right\}$ be a multiset with k positive integers such that $a_{1} \leqslant \cdots \leqslant a_{k}$. In this paper, we give a recursive formula for partitions and distinct partitions of positive integer n with respect to a multiset \mathbb{A}. We also consider the extension of the twelvefold way. By using this notion, we solve the nonintersecting circles problem, which asks to evaluate the number of ways to draw n nonintersecting circles in the plane regardless of their sizes. The latter also enumerates the number of unlabeled rooted trees with $n+1$ vertices.

Key words: Multiset, partitions and distinct partitions, twelvefold way, nonintersecting circles problem, rooted trees, Wilf partitions

1. Introduction

A partition of n is a sequence $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{k}$ of positive integers such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}=n$ (see [2]). We write $\lambda \vdash n$ to denote that λ is a partition of n. The nonzero integers λ_{k} in λ are called parts of λ. The number of parts of λ is the length of λ, denoted by $\ell(\lambda)$, and $|\lambda|=\sum_{k \geqslant 1} \lambda_{k}$ is the weight of λ. More generally, any weakly decreasing sequence of positive integers is called a partition. The partition whose parts are $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{k}$ is usually denoted by $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}\right)$. Let $P(n)$ denote the set of all partitions of n. The size of the set $P(n)$ is denoted by the partition function $p(n)$; that is, $p(n)=|P(n)|$. In particular, $p(0)$ consists of a single element, the unique empty partition of zero, which we denote by 0 . For example, $P(4)$ consists of five elements: $4,3+1,2+2,2+1+1$, and $1+1+1+1$. Hence, $p(4)=5$.

We let \mathbb{S} be a set of natural numbers and $p(n \mid \mathbb{S})$ denotes the number of partitions of n into elements of \mathbb{S} (that is, the parts of the partitions belonging to \mathbb{S}) and $p_{\ell}(n \mid \mathbb{S})$ is the number of partitions of n into exactly ℓ parts in \mathbb{S}. When $\mathbb{S}=\mathbb{N}$, the set of natural numbers, we denote $p_{\ell}(n \mid \mathbb{N})$ by $p_{\ell}(n)$, i.e. the number of partitions of n into exactly ℓ parts (or dually, partitions with the largest part equal to ℓ).

Recall also that a multiset \mathbb{A} with the multiplicity mapping θ is a collection of some not necessarily different objects such that for each $a \in \mathbb{A}$ the number $\theta(a)$ is the multiplicity of the occurrence of a in \mathbb{A}. If \mathbb{A} is a multiset, we denote the set of members of \mathbb{A} by $S(\mathbb{A})$ and we call it the background set of \mathbb{A}. For a number a_{0} and a multiset \mathbb{A}, the multiset $\left\{a_{0} a: a \in \mathbb{A}\right\}$ is denoted by $a_{0} \mathbb{A}$. We denote the multiset $\{1,1, \ldots, 1\}$ with $\theta(1)=k$ by I_{k}. We define that $I_{0}=\emptyset$. Thus, a multiset \mathbb{A} can be written as $\cup_{i=1}^{\ell} b_{i} I_{\theta\left(b_{i}\right)}$, where the

[^0]background set $S(\mathbb{A})$ of \mathbb{A} is $\left\{b_{1}, \cdots, b_{\ell}\right\}$. For two multisets \mathbb{A} with the multiplicity mapping $\theta_{\mathbb{A}}$ and \mathbb{B} with the multiplicity mapping $\theta_{\mathbb{B}}$, we define the multiplicity mapping $\theta_{\mathbb{A} \backslash \mathbb{B}}$ of $\mathbb{A} \backslash \mathbb{B}$ by $\theta_{\mathbb{A} \backslash \mathbb{B}}(a)=\theta_{\mathbb{A}}(a)-\theta_{\mathbb{B}}(a)$ if $\theta_{\mathbb{A}}(a) \geqslant \theta_{\mathbb{B}}(a)$ and $\theta_{\mathbb{A} \backslash \mathbb{B}}(a)=0$ if $\theta_{\mathbb{A}}(a)<\theta_{\mathbb{B}}(a)$. Moreover, the multiplicity mapping $\theta_{\mathbb{A} \cup \mathbb{B}}$ of $\mathbb{A} \cup \mathbb{B}$ is defined by $\theta_{\mathbb{A} \cup \mathbb{B}}(a)=\theta_{\mathbb{A}}(a)+\theta_{\mathbb{B}}(a)$. In the following, $\theta(\mathbb{A})=\sum_{a \in \mathbb{A}} a$ for a multiset \mathbb{A}.

For any fixed complex number $|q| \leq 1$, any complex number a, and any nonnegative integer n, let

$$
(a ; q)_{n}:= \begin{cases}\prod_{k=0}^{n-1}\left(1-a q^{k}\right), & n>0 \\ 1, & n=0\end{cases}
$$

Accordingly, let

$$
(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right)=\lim _{n \rightarrow \infty}(a ; q)_{n} .
$$

A q-series is any series that involves expressions of the form $(a ; q)_{n}$ and $(a ; q)_{\infty}$. The generating function for $p(n)$, discovered by Euler, is given by $\sum_{n=0}^{\infty} p(n) q^{n}=\frac{1}{(q ; q)_{\infty}}$.

The organization of this paper is as follows. In the next section, we consider the number of partitions of n into elements of the multiset \mathbb{A} and the number of partitions of n with distinct parts from the multiset \mathbb{A}. As a consequence, we present a recursive formula for Wilf's unsolved problem.* In Section 3, we present an extension of the twelvefold way, which was invented by Stanley [11]. As consequences, we give a recurrence relation for B_{n}, the number of ways to draw n nonintersecting circles in a plane regardless of their sizes. In Section 5, we deal with the ordered and unordered factorizations of natural numbers. In Section 6, we present generating functions for our sequences. We end with Section 6, where we establish connections with Möbius and Euler's totient functions.

2. Partitions and distinct partitions of positive integer n with respect to a multiset

Let n be a nonnegative integer and $\mathbb{A}=\left\{a_{1}, \ldots, a_{k}\right\}$ be a multiset with k (not necessarily distinct) positive integers. We denote by $D(n \mid \mathbb{A})$ the number of ways to partition n as $a_{1} x_{1}+\cdots+a_{k} x_{k}$, where x_{i} are positive integers and $x_{i} \leqslant x_{i+1}$ whenever $a_{i}=a_{i+1}$. The number of ways to partition n in the form $a_{1} x_{1}+\cdots+a_{k} x_{k}$, where x_{i} are nonnegative integers and $x_{i} \leqslant x_{i+1}$ whenever $a_{i}=a_{i+1}$, is also denoted by $D_{0}(n \mid \mathbb{A})$. The numbers $D(n \mid \mathbb{A})$ and $D_{0}(n \mid \mathbb{A})$ are called the natural partition number and the arithmetic partition number of n with respect to \mathbb{A}.

Lemma 2.1 Let n be a nonnegative integer and \mathbb{A} be a multiset with the multiplicity mapping θ and the background set $S(\mathbb{A})=\left\{b_{1}, \ldots, b_{\ell}\right\}$. Then

$$
D(n \mid \mathbb{A})=\sum_{\substack{n=b_{1} y_{1}+\cdots+b_{e} y_{e} \\ \theta\left(b_{i}\right) \leqslant y_{i}, i=1, \cdots, \ell}} \prod_{j=1}^{\ell} p_{\theta\left(b_{j}\right)}\left(y_{j}\right) .
$$

Proof Let $A=\left\{a_{1}, \ldots, a_{k}\right\}$, where a_{i} are not necessarily distinct members of A. We can write $n=$ $a_{1} x_{1}+\cdots+a_{k} x_{k}$ in the form $n=b_{1}\left(x_{11}+\cdots+x_{1 \theta\left(b_{1}\right)}\right)+\cdots+b_{\ell}\left(x_{\ell 1}+\cdots+x_{\ell \theta\left(b_{\ell}\right)}\right)$. Putting $y_{i}=x_{i 1}+\cdots+x_{i \theta\left(b_{i}\right)}$,

[^1]we have $n=b_{1} y_{1}+\cdots+b_{\ell} y_{\ell}$, where $\theta\left(b_{i}\right) \leqslant y_{i}$ for $i=1, \cdots, \ell$. Now the number of ways to partition y_{i} in the form $x_{i 1}+\cdots+x_{i \theta\left(b_{i}\right)}$ is $p_{\theta\left(b_{i}\right)}\left(y_{i}\right)$, where $1 \leqslant x_{i 1} \leqslant \cdots \leqslant x_{i \theta\left(b_{i}\right)}$ are positive integers.

Let $p_{\leqslant m}(n)$ denote the number of partitions of positive integer n into at most m parts, and notice that $p_{\leqslant m}(n)$ is equal to the number of partitions of positive integer n into parts that are all $\leqslant m$ in view of conjugate partitions. Then $p_{\leqslant m}(n)=p_{0}(n)+p_{1}(n)+\cdots+p_{m}(n)$. We can state the following result.

Lemma 2.2 Let n be a nonnegative integer and \mathbb{A} be a multiset with the multiplicity mapping θ and the background set $S(\mathbb{A})=\left\{b_{1}, \cdots, b_{\ell}\right\}$. Then

$$
D_{0}(n \mid \mathbb{A})=\sum_{\substack{n=b_{1} y_{1}+\cdots+b_{\ell} y_{\ell} \\ \theta\left(b_{i}\right) \leqslant y_{i}, i=1, \cdots, \ell}} \prod_{j=1}^{\ell} p_{\leqslant \theta\left(b_{j}\right)}\left(y_{j}\right)
$$

Notice that if n is a positive integer and \mathbb{A} is a multiset as $\mathbb{A}=\{1,1, \ldots, 1\}$ with multiplicity function θ such that $\theta(1)=\ell$, then

$$
\begin{equation*}
D(n \mid \mathbb{A})=D(n \mid\{1,1, \ldots, 1\})=p_{\ell}(n) \tag{2.1}
\end{equation*}
$$

That is the number of partitions of positive integer n into exactly ℓ parts. Furthermore, for each multiset \mathbb{A}, $D_{0}(n \mid \mathbb{A})=D(n+\theta(\mathbb{A}) \mid \mathbb{A})$, where $\theta(\mathbb{A})=\sum_{a \in \mathbb{A}} a$.

Proposition 2.3 Let n be a nonnegative integer and \mathbb{A} be a multiset with the multiplicity mapping θ. Then, for each $a \in \mathbb{A}$,

$$
D(n \mid \mathbb{A})=\sum_{\substack{0 \leqslant \ell \leqslant \theta(a) \\ a \theta(a) \leqslant n}} D\left(n-a \theta(a) \mid \mathbb{A} \backslash a I_{\ell}\right)
$$

where $D(0 \mid \emptyset)=1$.
Proof Let $\mathbb{A}=\left\{a_{1}, \ldots, a_{k}\right\}$. We have $\theta(a)$ occurrence of a in the equation $n=a_{1} x_{1}+\cdots+a_{k} x_{k}$. Let $x_{i+1}, \ldots, x_{i+\theta(a)}$ have coefficients a in the equation, $x_{i+1}=\cdots=x_{i+\ell}=1$ and $x_{i+\ell+1}>1$, where $\ell=0,1, \ldots, \theta(a)$. If we subtract $a \theta(a)$ from both sides of $n=a_{1} x_{1}+\cdots+a_{k} x_{k}$, then we get $n-a \theta(a)=$ $a_{1} x_{1}+\cdots+a_{i} x_{i}+a_{i+\ell+1} x_{i+\ell+1}+\cdots+a_{k} x_{k}$. The number of solutions of this equation is $D\left(n-a \theta(a) \mid \mathbb{A} \backslash a I_{\ell}\right)$, which completes the proof.

Example 2.4 We evaluate $D(17 \mid\{1,2,2,3\})$ and $D_{0}(17,\{1,2,2,3\})$. Using Proposition 2.3 and Corollary 2.5, we can write

$$
\begin{aligned}
D(17 \mid\{1,2,2,3\}) & =D(14 \mid\{1,2,2,3\})+D(14 \mid\{1,2,2\}) \\
& =D(11 \mid\{1,2,2,3\})+D(11 \mid\{1,2,2\})+9 \\
& =D(8 \mid\{1,2,2,3\})+D(8 \mid\{1,2,2\})+6+9 \\
& =1+2+6+9=18
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
D_{0}(17,\{1,2,2,3\}) & =D(17+8,\{1,2,2,3\}) \\
& =D(22,\{1,2,2,3\})+D(22,\{1,2,2\}) \\
& =D(19,\{1,2,2,3\})+D(19,\{1,2,2\})+25 \\
& =D(16,\{1,2,2,3\})+D(16,\{1,2,2\})+20+25 \\
& =D(13,\{1,2,2,3\})+D(13,\{1,2,2\})+12+20+25 \\
& =D(10,\{1,2,2,3\})+D(10,\{1,2,2\})+9+12+20+25 \\
& =D(7,\{1,2,2,3\})+D(7,\{1,2,2\})+4+9+12+20+25 \\
& =0+2+4+9+12+20+25=72 .
\end{aligned}
$$

Corollary 2.5 Let n be a positive integer. Then

$$
\begin{aligned}
D(n \mid\{1,2\}) & =\left\lfloor\frac{n-1}{2}\right\rfloor, \\
D(n \mid\{1,2,2\}) & =\left\lfloor\frac{n-1}{4}\right\rfloor\left(\left\lfloor\frac{n+1}{2}\right\rfloor-\left\lfloor\frac{n+3}{4}\right\rfloor\right), \\
D(n \mid\{1,1,2\}) & =\left\lfloor\frac{3}{2}\left\lfloor\frac{n-1}{3}\right\rfloor+\frac{1}{2}\right\rfloor\left(\left\lfloor\frac{n-1}{2}\right\rfloor-\frac{1}{2}\left\lfloor\frac{3}{2}\left\lfloor\frac{n+2}{3}\right\rfloor\right\rfloor+\frac{1+(-1)^{n}}{2}\right) .
\end{aligned}
$$

Proof Let $n=2 k+r$, where $r=1,2$. By Proposition 2.3, we obtain

$$
\begin{aligned}
D(n \mid\{1,2\}) & =D(n-2 \mid\{1,2\})+D(n-2 \mid\{1\})=D(n-2 \mid\{1,2\})+1 \\
& =D(n-4 \mid\{1,2\})+D(n-2 \mid\{1\})+1=D(n-4 \mid\{1,2\})+2 \\
& =D(n-6 \mid\{1,2\})+3=\cdots=D(n-2 k \mid\{1,2\})+k=0+k=\left\lfloor\frac{n-1}{2}\right\rfloor .
\end{aligned}
$$

For the second assertion, let $n=4 k+r$, where $r=1,2,3,4$. Then

$$
\begin{aligned}
D(n \mid\{1,2,2\}) & =D(n-4 \mid\{1,2,2\})+D(n-4 \mid\{1,2\})+D(n-4 \mid\{1\}) \\
& =D(n-4 \mid\{1,2,2\})+\left\lfloor\frac{n-5}{2}\right\rfloor+1 \\
& =D(n-8 \mid\{1,2,2\})+\left\lfloor\frac{n-7}{2}\right\rfloor+\left\lfloor\frac{n-3}{2}\right\rfloor \\
& =\cdots=D(n-4 k \mid\{1,2,2\})+\sum_{i=1}^{k}\left\lfloor\frac{n-(4 i-1)}{2}\right\rfloor \\
& =D(r \mid\{1,2,2\})+\sum_{i=1}^{k}\left\lfloor\frac{n-(4 i-1)}{2}\right\rfloor=0+\sum_{i=1}^{k}\left\lfloor\frac{n-(4 i-1)}{2}\right\rfloor \\
& =k\left\lfloor\frac{n+1}{2}\right\rfloor-k(k+1)=\left\lfloor\frac{n-1}{4}\right\rfloor\left(\left\lfloor\frac{n+1}{2}\right\rfloor-\left\lfloor\frac{n+3}{4}\right\rfloor\right),
\end{aligned}
$$

MANSOUR et al./Turk J Math

as required. Now let $n=3 k+r$ where $r=1,2,3$. Then

$$
\begin{aligned}
D(n \mid\{1,1,2\})= & D(n-2 \mid\{1,1,2\})+D(n-2 \mid\{1,2\})+D(n-2 \mid\{2\}) \\
= & D(n-2 \backslash\{1,1,2\})+\left\lfloor\frac{n-3}{2}\right\rfloor+\frac{1+(-1)^{n}}{2} \\
= & D(n-4 \backslash\{1,1,2\})+\left\lfloor\frac{n-5}{2}\right\rfloor+\left\lfloor\frac{n-3}{2}\right\rfloor+2 \frac{1+(-1)^{n}}{2} \\
= & \cdots \\
= & D\left(n-4\left(\left\lfloor\frac{3 k+1}{2}\right\rfloor\right),\{1,1,2\}\right) \\
& +\sum_{i=1}^{\left\lfloor\frac{3 k+1}{2}\right\rfloor}\left\lfloor\frac{(n-2 i)-1}{2}\right\rfloor+\left\lfloor\frac{3 k+1}{2}\right\rfloor \frac{1+(-1)^{n}}{2} \\
= & 0+\sum_{i=1}^{2}\left\lfloor\frac{(n-2 i)-1}{2}\right\rfloor+k \frac{1+(-1)^{n}}{2} \\
= & \left\lfloor\frac{3 k+1}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor-\frac{\left.\frac{3 k+1}{2}\right\rfloor\left(\left\lfloor\frac{3 k+1}{2}\right\rfloor+1\right)}{2}+\left\lfloor\frac{3 k+1}{2}\right\rfloor \frac{1+(-1)^{n}}{2} .
\end{aligned}
$$

It is enough to note that $k=\left\lfloor\frac{n-1}{3}\right\rfloor$.
Let $Q_{m}(n)$ be the number of partitions of a positive integer n into exactly m distinct parts. It is not difficult to verify by using Ferrers diagrams that $Q_{m}(n)=p_{\leqslant m}\left(n-\binom{m+1}{2}\right)$, which means that the number of partitions of positive integer n into exactly m distinct parts equals the number of partitions of $n-\binom{m+1}{2}$ into at most m parts (or dually, partitions into parts $\leqslant m$) [4]. Then the generating function of $Q_{m}(n)$ reads as

$$
\sum_{n=0}^{\infty} Q_{m}(n) q^{n}=\frac{q^{\binom{m+1}{2}}}{(q ; q)_{m}}
$$

We let $Q(n)$ be the number of all partitions of n into distinct parts.
Let n be a nonnegative integer and $\mathbb{A}=\left\{a_{1}, \ldots, a_{k}\right\}$ be a multiset of k not necessarily distinct positive integers, where $a_{1} \leqslant \cdots \leqslant a_{k}$. We denote by $\Delta(n \mid \mathbb{A})$ the number of partitions of n as the form $a_{1} x_{1}+\cdots+a_{k} x_{k}$, where x_{i} are distinct positive integers and $x_{i}<x_{i+1}$ whenever $a_{i}=a_{i+1}$. The number of partitions of n of the form $a_{1} x_{1}+\cdots+a_{k} x_{k}$, where x_{i} are distinct nonnegative integers and $x_{i}<x_{i+1}$ whenever $a_{i}=a_{i+1}$, is also denoted by $\Delta_{0}(n \mid \mathbb{A})$. The numbers $\Delta(n \mid \mathbb{A})$ and $\Delta_{0}(n \mid \mathbb{A})$ are called the natural distinct partition number and the arithmetic distinct partition number of n with respect to \mathbb{A}.

Lemma 2.6 Let n be a nonnegative integer and \mathbb{A} be a multiset with the multiplicity mapping θ and the background set $S(\mathbb{A})=\left\{b_{1}, \ldots, b_{\ell}\right\}$. Then

$$
\Delta(n \mid \mathbb{A})=\sum_{\substack{n=b_{1} y_{1}+\cdots+b_{\ell} y_{\ell} \\ \theta\left(b_{i}\right) \leqslant y_{i}, i=1, \cdots, \ell}} \prod_{j=1}^{\ell} Q_{\theta\left(b_{j}\right)}\left(y_{j}\right)
$$

Proof Proof as similar to Lemma 2.1. Let $\mathbb{A}=\left\{a_{1}, \ldots, a_{k}\right\}$, where a_{i} are k not necessarily distinct members of A. We can write $n=a_{1} x_{1}+\ldots+a_{k} x_{k}$ as the form $n=b_{1}\left(x_{11}+\ldots+x_{1 \theta\left(b_{1}\right)}\right)+\ldots+b_{\ell}\left(x_{\ell 1}+\ldots+x_{\ell \theta\left(b_{\ell}\right)}\right)$.

Putting $y_{i}=x_{i 1}+\ldots+x_{i \theta\left(b_{i}\right)}$ we have $n=b_{1} y_{1}+\ldots+b_{\ell} y_{\ell}$, where $\theta\left(b_{i}\right) \leqslant y_{i}$ for $i=1, \ldots, \ell$. Now the number of ways to partition y_{i} into $x_{i 1}+\ldots+x_{i \theta\left(b_{i}\right)}$ with $1 \leqslant x_{i 1} \leqslant \ldots \leqslant x_{i \theta\left(b_{i}\right)}$ is $Q_{\theta\left(b_{i}\right)}\left(y_{i}\right)$.
Let $Q_{\leqslant m}(n)$ denote the number of partitions of positive integer n into at most m distinct parts. Then $Q_{\leqslant m}(n)=Q_{1}(n)+Q_{2}(n)+\cdots+Q_{m}(n)$, which leads to the following corollary.

Corollary 2.7 Let n be a nonnegative integer and \mathbb{A} be a multiset with the multiplicity mapping θ and the background set $S(\mathbb{A})=\left\{b_{1}, \ldots, b_{\ell}\right\}$. Then

$$
\Delta_{0}(n \mid \mathbb{A})=\sum_{\substack{n=b_{1} y_{1}+\cdots+b_{\ell} y_{\ell} \\ \theta\left(b_{i}\right) \leqslant y_{i}, i=1, \cdots, \ell}} \prod_{j=1}^{\ell} Q_{\leqslant \theta\left(b_{j}\right)}\left(y_{j}\right) .
$$

Corollary 2.8 Let n be a nonnegative integer and \mathbb{A} be a multiset with the multiplicity mapping θ and the background set $S(\mathbb{A})=\left\{b_{1}, \ldots, b_{\ell}\right\}$. Then

$$
\Delta(n \mid \mathbb{A})=D\left(\left.n+\theta(\mathbb{A})-\sum_{i=1}^{\ell} b_{i}\binom{\theta\left(b_{i}\right)+1}{2} \right\rvert\, \mathbb{A}\right) .
$$

Proof Let n be a nonnegative integer and $\mathbb{A}=\left\{a_{1}, \ldots, a_{k}\right\}$ be a multiset with k not necessarily distinct positive integers, where $a_{1} \leqslant \cdots \leqslant a_{k} . \Delta(n \mid \mathbb{A})$ is the number of partitions of n as the form $n=a_{1} x_{1}+\cdots+$ $a_{k} x_{k}$, where x_{i} are distinct positive integers and $x_{i}<x_{i+1}$ whenever $a_{i}=a_{i+1}$. We can write

$$
n=b_{1}\left(x_{11}+\cdots+x_{1 \theta\left(b_{1}\right)}\right)+\cdots+b_{\ell}\left(x_{\ell 1}+\cdots+x_{\ell \theta\left(b_{\ell}\right)}\right) .
$$

Putting $y_{i}=x_{i 1}+\cdots+x_{i \theta\left(b_{i}\right)}$, the number of partitions of y_{i} into exactly $\theta\left(b_{i}\right)$ distinct parts equals $Q_{\theta\left(b_{i}\right)}\left(y_{i}\right)$ for $i=1, \ldots, \ell$. By Corollary (2.8), we get

$$
Q_{\theta\left(b_{i}\right)}\left(y_{i}\right)=p_{\leqslant \theta\left(b_{i}\right)}\left(y_{i}+\binom{\theta\left(b_{i}\right)+1}{2}\right) .
$$

Then we can write

$$
\begin{aligned}
n & =b_{1} y_{1}+b_{2} y_{2}+\cdots+b_{\ell} y_{\ell} \\
& =b_{1}\left(y_{1}-\binom{\theta\left(b_{1}\right)+1}{2}\right)+\cdots+b_{\ell}\left(y_{\ell}-\binom{\theta\left(b_{\ell}\right)+1}{2}\right) \\
& =b_{1} y_{1}+b_{2} y_{2}+\cdots+b_{\ell} y_{\ell}-\sum_{i=1}^{\ell} b_{i}\binom{\theta\left(b_{i}\right)+1}{2} .
\end{aligned}
$$

Then we can conclude

$$
\Delta(n \mid \mathbb{A})=D_{0}\left(\left(\left.n-\sum_{i=1}^{\ell} b_{i}\binom{\theta\left(b_{i}\right)+1}{2} \right\rvert\, \mathbb{A}\right)=D\left(\left.n+\theta(\mathbb{A})-\sum_{i=1}^{\ell} b_{i}\binom{\theta\left(b_{i}\right)+1}{2} \right\rvert\, \mathbb{A}\right),\right.
$$

as claimed.

It is easy to see that if n is a positive integer and \mathbb{A} is the multiset $\{1,1, \ldots, 1\}$, with multiplicity function $\theta(1)=\ell$, then $\Delta(n \mid \mathbb{A})=\Delta(n \mid\{1,1, \ldots, 1\})=Q_{\ell}(n)$. Furthermore, for each multiset $\mathbb{A}, \Delta_{0}(n \mid \mathbb{A})=$ $\Delta(n+\theta(\mathbb{A}) \mid \mathbb{A})$, where, $\theta(\mathbb{A})=\sum_{a \in \mathbb{A}} a$.

Herbert Wilf posed some unsolved problems. ${ }^{\dagger}$ Wilf's Sixth Unsolved Problem regards "the set of partitions of positive integer n for which the (nonzero) multiplicities of its parts are all different". We refer to these as Wilf partitions and $T(n)$ for the set of Wilf partitions. For example, there exist 4 Wilf partitions of $n=4$:

$$
4=(1) 4 ; \quad 2+2=(2) 2 ; \quad 2+1+1=(1) 2+(2) 1 ; \quad 1+1+1+1=(4) 1
$$

Then $|T(4)|=4$. Let $\mathbb{A}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a set of nonnegative integers. We denote $T(n \mid \mathbb{A})$ for the number of Wilf partitions of positive integers n as the form $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{k} x_{k}$, where x_{i} are positive distinct integers. Furthermore, if we put $\mathbb{A}=\mathbb{N}$, the set of natural numbers, then $T(n \mid \mathbb{A})=|T(n)|$.

Proposition 2.9 Let n be a nonnegative integer and $\mathbb{A}=\left\{a_{1}, \ldots, a_{k}\right\}$ be a multiset with the background set $S(\mathbb{A})=\left\{b_{1}, \ldots, b_{\ell}\right\}$. Then

$$
\Delta(n \mid \mathbb{A})=\Delta(n-\theta(\mathbb{A}) \mid \mathbb{A})+\sum_{i=1}^{\ell} \Delta\left(n-\theta(\mathbb{A}) \mid \mathbb{A} \backslash\left\{b_{i}\right\}\right)
$$

Moreover, $\Delta(n \mid \mathbb{A})=0$ when $n<\sum_{i=1}^{k}(k+1-i) a_{i}$.
Proof At most one of the $x_{i} \mathrm{~s}$ can be 1 . If there is no x_{i} with $x_{i}=1$ then we can write $n-\theta(A)=$ $a_{1}\left(x_{1}-1\right)+\cdots+a_{k}\left(x_{k}-1\right)$ and there are $\Delta(n-\theta(A), A)$ solutions for this equation under the required conditions. Moreover, if $x_{j}=1$ for some j, then other x_{i} s are greater that 1 and thus we can write

$$
n-\theta(A)=a_{1}\left(x_{1}-1\right)+\cdots+a_{j-1}\left(x_{j-1}-1\right)+a_{j+1}\left(x_{j+1}-1\right)+\cdots+a_{k}\left(x_{k}-1\right)
$$

There are $\Delta\left(n-\theta(A) \mid \mathbb{A} \backslash\left\{b_{i}\right\}\right)$ solutions for the latter equation, where $b_{i}=a_{j}$. The other parts are obvious.

Corollary 2.10 Let n be a nonnegative integer and $\mathbb{A}=\left\{a_{1}, \ldots, a_{k}\right\}$ be a set of nonnegative integers. Then $T(n \mid \mathbb{A})$ is given by $T(n \mid \mathbb{A})=\sum_{i=0}^{k} T\left(n-\theta(\mathbb{A}) \mid \mathbb{A} \backslash\left\{a_{i}\right\}\right)$ with $b_{0}=\emptyset$.

Example 2.11 We evaluate $\Delta(18 \mid\{1,2,2,3\})$. By Proposition 2.9, we have

$$
\begin{aligned}
\Delta(18 \mid\{1,2,2,3\})= & \Delta(10 \mid\{1,2,2,3\})+\Delta(10 \mid\{2,2,3\})+\Delta(10 \mid\{1,2,3\})+\Delta(10 \mid\{1,2,2\}) \\
= & 0+0+\Delta(4 \mid\{1,2,3\})+\Delta(4 \mid\{2,3\})+\Delta(4 \mid\{1,3\})+\Delta(4 \mid\{1,2\}) \\
& +\Delta(5 \mid\{1,2,2\})+\Delta(5 \mid\{2,2\})+\Delta(5 \mid\{1,2\}) \\
= & 0+0+0+0+0+1+0+0+2=3
\end{aligned}
$$

The 3 solutions are

$$
\begin{aligned}
18 & =1 \times \mathbf{3}+2 \times \mathbf{2}+2 \times \mathbf{4}+3 \times \mathbf{1}=1 \times \mathbf{5}+2 \times \mathbf{2}+2 \times \mathbf{3}+3 \times \mathbf{1} \\
& =1 \times \mathbf{4}+2 \times \mathbf{1}+2 \times \mathbf{3}+3 \times \mathbf{2}
\end{aligned}
$$

[^2]Corollary 2.12 Let n be a positive integer. Then

$$
\Delta(n \mid\{1,1\})=\left\lfloor\frac{n-1}{2}\right\rfloor \text { and } \Delta(n \mid\{1,2\})=\left\lfloor\frac{n-1}{3}\right\rfloor+\left\lfloor\frac{n-1}{6}\right\rfloor
$$

Proof Let $n=2 k+r$, where $r=1,2$. Using Proposition 2.9 we can write

$$
\begin{aligned}
\Delta(n \mid\{1,1\}) & =\Delta(n-2 \mid\{1,1\})+\Delta(n-2 \mid\{1\}) \\
& =\Delta(n-2 \mid\{1\})+1 \\
& =\Delta(n-4 \mid\{1,1\})+\Delta(n-4 \mid\{1\})+1 \\
& =\ldots \\
& =\Delta(n-2 k \mid\{1,1\})+k=0+k=\left\lfloor\frac{n-1}{2}\right\rfloor .
\end{aligned}
$$

Now let $n=3 k+r$, where $r=1,2,3$. Thus,

$$
\begin{aligned}
\Delta(n \mid\{1,2\}) & =\Delta(n-3 \mid\{1,2\})+\Delta(n-3 \mid\{1\})+\Delta(n-3 \mid\{2\}) \\
& =\Delta(n-3 \mid\{1,2\})+\Delta(n-3 \mid\{2\})+1 \\
& =\Delta(n-6 \mid\{1,2\})+\Delta(n-6 \mid\{1\})+\Delta(n-6 \mid\{2\})+\Delta(n-3 \mid\{2\})+1 \\
& =\Delta(n-6 \mid\{1,2\})+\Delta(n-6 \mid\{2\})+\Delta(n-3 \mid\{2\})+2 \\
& =\ldots \\
& =\Delta(n-3 k \mid\{1,2\})+\sum_{i=1}^{\left\lfloor\frac{n-1}{3}\right\rfloor} \Delta(n-3 i \mid\{2\})+k \\
& =0+\sum_{i=1}^{\left\lfloor\frac{n-1}{3}\right\rfloor} \Delta(n-3 i \mid\{2\})+\left\lfloor\frac{n-1}{3}\right\rfloor .
\end{aligned}
$$

If $n=3 k$ then $k-i$ is even and so

$$
\sum_{i=1}^{\left\lfloor\frac{n-1}{3}\right\rfloor} \Delta(n-3 i \mid\{2\})+\left\lfloor\frac{n-1}{3}\right\rfloor=\left\lfloor\frac{n-1}{6}\right\rfloor+\left\lfloor\frac{n-1}{3}\right\rfloor .
$$

Similarly, we have the result for the cases $n=3 k+1$ and $n=3 k+2$.

3. The twelvefold way

The twelvefold way gives the number of mappings f from the set N of n objects to set K of k objects (putting balls from the set N into boxes in the set K). Richard Stanley invented the twelvefold way [11]. Consider n (un)labeled balls and k (un)labeled cells. There are four cases, $\mathbf{U} \rightarrow \mathbf{L}, \mathbf{L} \rightarrow \mathbf{U}, \mathbf{L} \rightarrow \mathbf{L}, \mathbf{U} \rightarrow \mathbf{U}$, for arrangements of Labeled or Unlabeled balls $\xrightarrow{i n}$ Labeled or UnLabeled boxes. Here Labeled means distinguishable and Unlabeled means indistinguishable. If we want to partition these balls into these cells we are faced with the following twelve problems (see Table). In the Table, $(k)_{n}:=k(k-1) \cdots(k-n+1)$ is Pochhammer's

Table. The twelvefold way.

Elements of N	Elements of K	f unrestricted	f one-to-one	f onto
\mathbf{L}	\mathbf{L}	k^{n}	$(k-n+1)_{n}$	$k!\left\{\begin{array}{l}n \\ k\end{array}\right\}$
\mathbf{U}	\mathbf{L}	$\binom{n+k-1}{n}$	$\binom{k}{n}$	$\binom{n-1}{n-k}$
\mathbf{L}	\mathbf{U}	$\sum_{i=1}^{k}\left\{\begin{array}{l}n \\ i\end{array}\right\}$	$\delta_{k \leqslant n}$	$\left\{\begin{array}{l}n \\ k\end{array}\right\}$
\mathbf{U}	\mathbf{U}	$\sum_{i=1}^{i} p_{i}(n)$	$\delta_{k \leqslant n}$	$p_{k}(n)$

symbol or falling factorial, for $k, n \in \mathbb{N},\left\{\begin{array}{l}n \\ k\end{array}\right\}$ denotes the Stirling number of the second kind or the number of partitions of the set $\{1,2, \ldots, n\}$ into exactly k nonempty subsets, which is equal to $\sum_{i=1}^{k}(-1)^{i}\binom{k}{i}(k-i)^{n}$, and the number $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ satisfies the recursive relation $\left\{\begin{array}{l}n \\ k\end{array}\right\}=\left\{\begin{array}{c}n-1 \\ k-1\end{array}\right\}+k\left\{\begin{array}{c}n-1 \\ k\end{array}\right\}$ and $\delta_{k \leqslant n}:=\left\{\begin{array}{ll}1 & \text { when } n \leqslant k \text {, } \\ 0 & \text { when } n>k .\end{array}\right.$ Now we consider a new problem as an extension and unification of the above problems. Consider $b_{1}+b_{2}+\cdots+b_{n}$ balls with b_{1} balls Labeled $1, b_{2}$ balls Labeled 2, and so on, $c_{1}+c_{2}+\cdots+c_{k}$ cells with c_{1} cells Labeled 1 , c_{2} cells Labeled 2, and so on. We denote the situation of these balls and cells by the two multisets $\mathcal{B}=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ of balls and $\mathcal{C}=\left\{c_{1}, \ldots, c_{k}\right\}$ of cells. Let the number of mappings \mathcal{F} from the multiset \mathcal{B} of balls to the multiset \mathcal{C} of cells be called the mixed twelvefold way (or dually, the number of ways to partition the multiset \mathcal{B} of balls into the multiset \mathcal{C} of cells). We denote the number of unrestricted mappings of \mathcal{F} by $\Gamma_{0}(\mathcal{B} \mid \mathcal{C})$. Also, we denote the number of onto mappings of \mathcal{F}, that is, the number of ways to partition the multiset \mathcal{B} of balls into the multiset \mathcal{C} of cells, such that the cells are nonempty by $\Gamma(\mathcal{B} \mid \mathcal{C})$.

Theorem 3.1 Let $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ and $\mathcal{C}=\left\{c_{1}, \ldots, c_{k}\right\}$ be two multisets whose members are positive integers. The number of unrestricted mappings \mathcal{F} from the multiset \mathcal{B} to \mathcal{C} is given by

$$
\Gamma_{0}(\mathcal{B} \mid \mathcal{C})=\sum_{\substack{b_{1}=n_{1}+\cdots+n_{k} \\ 0 \leqslant n_{i} \leqslant b_{1}}} \sum_{\substack{\left(C_{1}, \ldots, C_{k}\right) \\ \theta\left(C_{i}\right) \leqslant c_{i}}}\left(\prod_{j=1}^{k} \Delta\left(n_{j} \mid C_{j}\right)\right) \Gamma_{0}\left(\mathcal{B} \backslash\left\{b_{1}\right\} \mid\left(\bigcup_{i=1}^{k} C_{i}\right) \cup\left(\bigcup_{\substack{i=1 \\ \theta\left(C_{i}\right)<c_{i}}}^{k}\left\{c_{i}-\theta\left(C_{i}\right)\right\}\right),\right.
$$

where $\Gamma_{0}(\emptyset, A)=1$ for each multiset A of nonnegative integers.

Proof First we distribute the b_{1} balls Labeled 1 into cells. Let n_{i} be the number of balls in cells Labeled i for $i=1, \ldots, k$. Thus, we can write $b_{1}=n_{1}+\cdots+n_{k}$. When we put n_{i} balls in cell Labeled i, the c_{i} cells Labeled i are partitioned into different types. Suppose that we have $\ell_{i j}$ cells Labeled i with $x_{i j}$ balls Labeled 1. Here, $c_{i}=\ell_{i 1} x_{i 1}+\cdots+\ell_{i t} x_{i t}+r_{i}$, where r_{i} is the number of cells Labeled i that are still empty. Let $C_{i}=\left\{\ell_{i 1}, \ldots, \ell_{i t}\right\}$. Thus, $\theta\left(C_{i}\right) \leqslant c_{i}$ and there are $\Delta\left(n_{i} \mid C_{i}\right)$ situations in which the types of the c_{i} cells Labeled i change into $\ell_{i 1}$ cells of the first type, say Labeled $\ell_{i 1}, \ldots, \ell_{i t}$ cells of the t th type, say Labeled $i t$, and r_{i} empty cells the $t+1$ st type, say Labeled $i(t+1)$. We can therefore say that after distributing the b_{1} balls Labeled 1 into cells we have the multiset $\mathcal{B} \backslash\left\{b_{1}\right\}$ of balls and the multiset

$$
\left(\bigcup_{i=1}^{k} C_{i}\right) \cup\left(\bigcup_{\substack{i=1 \\ \theta\left(C_{i}\right)<c_{i}}}^{k}\left\{c_{i}-\theta\left(C_{i}\right)\right\}\right)
$$

of cells. The number of ways putting of these balls into these cells is

$$
\Gamma_{0}\left(\mathcal{B} \backslash\left\{b_{1}\right\} \mid\left(\bigcup_{i=1}^{k} C_{i}\right) \cup\left(\bigcup_{\substack{i=1 \\ \theta\left(C_{i}\right)<c_{i}}}^{k}\left\{c_{i}-\theta\left(C_{i}\right)\right\}\right)\right.
$$

which completes the proof.

Theorem 3.2 Let $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ and $\mathcal{C}=\left\{c_{1}, \ldots, c_{k}\right\}$ be two mulitsets whose members are positive integers. The number of onto mappings of \mathcal{F} from the multiset \mathcal{B} to \mathcal{C} is given by

$$
\Gamma(\mathcal{B} \mid \mathcal{C})=\sum_{\ell=0}^{k} \sum_{1 \leqslant i_{1}<\cdots<i_{\ell} \leqslant k}(-1)^{\ell} \Gamma_{0}\left(\mathcal{B} \mid \bigcup_{i=1}^{\ell}\left(\left(\mathcal{C} \backslash\left\{c_{i_{j}}\right\}\right) \cup\left(\left\{c_{i_{j}}-1\right\}\right)\right)\right)
$$

Proof Let \mathcal{E}_{i} be the set of situations in which some of the cells Labeled i are empty. Then the number of the elements of $\mathcal{E}_{i_{1}} \cap \cdots \cap \mathcal{E}_{i_{\ell}}$ is $\Gamma_{0}\left(\mathcal{B} \mid \bigcup_{i=1}^{\ell}\left(\left(\mathcal{C} \backslash\left\{c_{i_{j}}\right\}\right) \cup\left(\left\{c_{i_{j}}-1\right\}\right)\right)\right)$. Now the inclusion exclusion principle implies the result.

Let n and k be positive integers. Consider $\mathcal{B}=\{1,2, \ldots, n\}$, the set of n Unlabeled balls, and $\mathcal{C}=\{1,2, \ldots, k\}$, the set of k Unlabeled cells. Also, let $\mathcal{I}_{k}=\{1,1, \ldots, 1\}$ be a multiset with multiplicity mapping m, such that $\theta(1)=k$. Then we conclude the following result about the number of unrestricted or onto mappings of \mathcal{F}, from the set \mathcal{B} or \mathcal{I}_{k} to the set \mathcal{C} or \mathcal{I}_{k}. Then:
i) $\Gamma(\mathcal{B} \mid \mathcal{C})=p_{k}(n)$ and $\Gamma_{0}(\mathcal{B} \mid \mathcal{C})=p_{k}(n+k)$.
ii) $\Gamma\left(\mathcal{B} \mid \mathcal{I}_{k}\right)=\binom{n-1}{k-1}$ and $\Gamma_{0}\left(\mathcal{B} \mid \mathcal{I}_{k}\right)=\binom{n+k-1}{k-1}$.
iii) $\Gamma\left(\mathcal{I}_{n} \mid \mathcal{C}\right)=\left\{\begin{array}{l}n \\ k\end{array}\right\}$ and $\Gamma_{0}\left(\mathcal{I}_{n} \mid \mathcal{C}\right)=\sum_{i=1}^{k}\left\{\begin{array}{l}n \\ i\end{array}\right\}$.
iv) $\Gamma\left(\mathcal{I}_{n} \mid \mathcal{I}_{k}\right)=k!\left\{\begin{array}{l}n \\ k\end{array}\right\}$ and $\Gamma_{0}\left(\mathcal{I}_{n} \mid \mathcal{I}_{k}\right)=k^{n}$.

Corollary 3.3 Let n and k be positive integers. Then $p_{k}(n)=\sum_{\theta(\mathcal{C})=k} \Delta(n \mid \mathcal{C})$, where the summation is taken over all multisets \mathcal{C} whose members are positive integers.

Proof Using Theorems 3.1 and 3.2, we can write

$$
\begin{aligned}
p_{k}(n) & =\Gamma(\{1,2, \ldots, n\} \mid\{1,2, \ldots, k\}) \\
& =\Gamma_{0}(\{1,2, \ldots, n\} \mid\{1,2, \ldots, k\})-\Gamma_{0}(\{1,2, \ldots, n\} \mid\{1,2, \ldots, k-1\}) \\
& =\sum_{\theta(\mathcal{C}) \leqslant k} \Delta(n \mid \mathcal{C})-\sum_{\theta(\mathcal{C}) \leqslant k-1} \Delta(n \mid \mathcal{C})=\sum_{\theta(\mathcal{C})=k} \Delta(n \mid \mathcal{C})
\end{aligned}
$$

as claimed.

MANSOUR et al./Turk J Math

4. The nonintersecting circles problem

To solve the nonintersecting circles problem, let us assume the following notations. Let n be a positive integer. We denote the set of all multisets $\mathbb{A}=\left\{a_{1}, \ldots, a_{k}\right\}$ such that there are distinct positive integers x_{1}, \ldots, x_{k} with $n=a_{1} x_{1}+\cdots+a_{k} x_{k}$, where $x_{i}<x_{i+1}$ whenever $a_{i}=a_{i+1}$, by $\mathcal{A}_{n, k}$. Recall that for an $\mathbb{A} \in \mathcal{A}_{n, k}$ there are $\Delta(n \mid \mathbb{A})$ solutions $\left(x_{1}, \ldots, x_{k}\right)$ satisfying the above condition. We denote the set of these $\left(x_{1}, \ldots, x_{k}\right)$ by $\mathcal{X}_{\mathbb{A}}$.

Note that the number of $\left(n_{1}, \ldots, n_{r}\right)$ with $1 \leqslant n_{1} \leqslant \cdots \leqslant n_{r} \leqslant s$ is given by

$$
\begin{equation*}
\sum_{i=1}^{k}\binom{r-1}{i-1}\binom{s}{i}=\sum_{i=1}^{k}\binom{r-1}{r-i}\binom{s}{i}=\binom{r+s-1}{r} \tag{4.1}
\end{equation*}
$$

The nonintersecting circles problem asks to evaluate the number of ways to draw n nonintersecting circles in a plane regardless of their sizes. For example, if we use the symbol () for a circle then there are four such ways for 3 circles ()()()$,(()()),(())(),((()))$ and nine ways for 4 circles,

If we denote this number by B_{n} then we can see that $B_{0}=B_{1}=1, B_{2}=2, B_{3}=4, B_{4}=9, B_{5}=20$, and so on.

Theorem 4.1 Let B_{n} be the number of ways to draw n nonintersecting circles in a plane regardless of their sizes. Then

$$
B_{n}=\sum_{k=1}^{\lfloor\sqrt{2 n}\rfloor} \sum_{\mathbb{A}=\left\{a_{1}, \cdots, a_{k}\right\} \in \mathcal{A}_{n, k}} \sum_{\left(x_{1}, \cdots, x_{k}\right) \in \mathcal{X}_{A}} \prod_{i=1}^{k}\binom{B_{x_{i}-1}+a_{i}-1}{a_{i}}
$$

Proof Given n, let us draw our circles in ℓ parts with y_{i} circles in the i th part. We can assume that $y_{1} \leqslant \cdots \leqslant y_{\ell}$. Thus, $n=y_{1}+\cdots+y_{\ell}$. We can rewrite it in the form $n=a_{1} x_{1}+\cdots+a_{k} x_{k}$ such that $x_{i}<x_{i+1}$ whenever $a_{i}=a_{i+1}$. This shows that we have a_{i} parts with x_{i} circles of the form $\left(x_{i}-1\right)$ where () denotes a circle containing $x_{i}-1$ circles. We can form the a_{i} parts of the form $\left(x_{i}-1\right)$ in $\binom{B_{x_{i}-1}+a_{i}-1}{a_{i}}$ ways. The latter is true since we may put $r=a_{i}$ and $s=B_{x_{i}-1}$ in 4.1. Note that a single form $\left(x_{i}-1\right)$ can be drawn in $B_{x_{i}-1}$ ways.

Now notice the fact that the maximum of k occurs when $a_{1}=\cdots=a_{k}=1$. Since we have $1 \leqslant x_{1}<$ $\cdots<x_{k}$ in this case, we can therefore deduce that $\frac{k(k+1)}{2} \leqslant n$. Thus, the maximum value of k is $\lfloor\sqrt{2 n}\rfloor$.

Example 4.2 For $n=6$ we have

$$
\begin{aligned}
& \mathcal{A}_{6,1}=\{\{\mathbf{1}\},\{\mathbf{2}\},\{\mathbf{3}\},\{\mathbf{6}\}\} \\
& \mathcal{A}_{6,2}=\{\{\mathbf{1}, \mathbf{1}\},\{\mathbf{1}, \mathbf{2}\},\{\mathbf{1}, \mathbf{3}\},\{\mathbf{1}, \mathbf{4}\},\{\mathbf{2}, \mathbf{2}\}\} \\
& \mathcal{A}_{6,3}=\{\{\mathbf{1}, \mathbf{1}, \mathbf{1}\}\}
\end{aligned}
$$

We can therefore write

$$
\begin{aligned}
6 & =\mathbf{1} \times 6=\mathbf{2} \times 3=\mathbf{3} \times 2=\mathbf{6} \times 1=\mathbf{1} \times 1+\mathbf{1} \times 5=\mathbf{1} \times 2+\mathbf{1} \times 4 \\
& =\mathbf{1} \times 4+\mathbf{2} \times 1=\mathbf{1} \times 3+\mathbf{3} \times 2=\mathbf{1} \times 2+\mathbf{4} \times 1=\mathbf{2} \times 1+\mathbf{2} \times 2 \\
& =\mathbf{1} \times 1+\mathbf{1} \times 2+\mathbf{1} \times 3
\end{aligned}
$$

Thus,

$$
\begin{aligned}
B_{6}= & \binom{B_{5}}{1}+\binom{B_{2}+1}{2}+\binom{B_{1}+2}{3}+\binom{B_{0}+5}{6} \\
& +\binom{B_{0}}{1}\binom{B_{4}}{1}+\binom{B_{1}}{1}\binom{B_{3}}{1}+\binom{B_{3}}{1}\binom{B_{0}+1}{2}+\binom{B_{2}}{1}\binom{B_{1}+2}{3} \\
& +\binom{B_{1}}{1}\binom{B_{0}+3}{4}+\binom{B_{0}+1}{2}\binom{B_{1}+1}{2}+\binom{B_{0}}{1}\binom{B_{1}}{1}\binom{B_{2}}{1} \\
= & 20+3+1+1+9+4+4+2+1+1+2=48 .
\end{aligned}
$$

The number of ways to draw 6 nonintersecting circles in a plane regardless of their sizes is thus equal to 48.
A rooted tree may be defined as a free tree in which some vertex has been distinguished as the root. We can see some values of a rooted tree for positive integer n in [10].

Corollary 4.3 Let n be a positive integer. Then B_{n} is the number of unlabeled rooted tree with $n+1$ vertices.
Proof There is a one-to-one correspondence between n nonintersecting circles and an unlabeled rooted tree with $n+1$ vertices. It is enough to draw a circle for each nonroot vertex and put a circle inside another one if the second one is the parent of the first one.

5. Ordered and unordered factorizations of natural numbers

An ordered factorization of a positive integer n is a representation of n as an ordered product of integers, each factor greater than 1 . For positive integer $\ell, k \geqslant 1$ we denote the number of the ordered factorizations of positive integer n into exactly k factors, such that each factor $\geqslant \ell$ by $\mathcal{H}(n ; k, \ell)$. We use $\mathcal{H}(n)$ to represent the number of all ordered factorizations of the positive integer n (in analogy with compositions for sum). For example, $\mathcal{H}(12)=8$, since we have the factorizations $12,2 \times 6,6 \times 2,3 \times 4,4 \times 3,2 \times 2 \times 3,2 \times 3 \times 2$, and $3 \times 2 \times 2$. By the definition, $\mathcal{H}(1)=0$, but in some situations it is useful to set $\mathcal{H}(1)=1$ or $\mathcal{H}(1)=\frac{1}{2}$ [5]. Every integer $n>1$ has a canonical factorization into distinct prime numbers $p_{1}, p_{2}, \ldots, p_{r}$, namely

$$
\begin{equation*}
n=p^{\alpha_{1}} p_{2}^{\alpha} \ldots p^{\alpha_{r}} ; \quad 1<p_{1}<p_{2}<\ldots<p_{r} \tag{5.1}
\end{equation*}
$$

Many problems involving factorisatio numerorum depend only on the set of exponents in $5.1,\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right\}$. MacMahon [7] developed the theory of compositions of multipartite numbers from this perspective and indeed considered these problems throughout his career [8], but Andrews suggested the more modern terminology vector compositions [2]. A general formula for $\mathcal{H}(n, k, 2)$ of ordered factorizations of positive integer n such that each factor is larger than 2 was given by MacMahon in [7]. Now we give another proof for $\mathcal{H}(n, k, 2)$ and $\mathcal{H}(n, k, 1)$ with the above results.

Theorem 5.1 Let $n=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$ be a positive integer. Then the number of ordered factorizations of n into k factors such that each factor $\geqslant 1$ and $\alpha_{1}+\ldots+\alpha_{n} \geqslant k \geqslant 1$ is given by

$$
\begin{equation*}
\mathcal{H}(n, k, 1)=\sum_{i=1}^{\alpha_{1}+\ldots+\alpha_{r}} \Gamma_{0}\left(\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}, I_{i}\right)=\sum_{i=1}^{\alpha_{1}+\ldots+\alpha_{r}} \prod_{j=1}^{n}\binom{\alpha_{j}+i-1}{i-1} \tag{5.2}
\end{equation*}
$$

Also, the number of unordered factorizations of n into k factors such that each factor $\geqslant 2$ is given by

$$
\begin{align*}
\mathcal{H}(n, k, 2) & =\sum_{i=1}^{\alpha_{1}+\ldots+\alpha_{r}} \Gamma\left(\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}, I_{i}\right) \\
& =\sum_{i=1}^{\alpha_{1}+\ldots+\alpha_{r}} \sum_{\ell=0}^{i}(-1)^{\ell}\binom{i}{\ell} \prod_{j=1}^{n}\binom{\alpha_{j}+i-\ell-1}{i-\ell-1} . \tag{5.3}
\end{align*}
$$

Proof It is sufficient to use Theorems 3.2 and 3.1. Suppose that for $1 \leqslant j \leqslant n$ we have α_{j} balls labeled p_{j} and we want to put these balls into k different cells. There is a one-to-one correspondence between these situations and unordered factorizations of positive integer n as the form $n=n_{1} \times n_{2} \times \ldots \times n_{k}$ such that each factor $\geqslant 1$. In fact, we can consider n_{j} as the product of the balls in cell j. There are $\binom{\alpha_{j}+k-1}{k-1}$ ways to put balls labeled p_{j}. Thus, the first part is obvious.

For the second part, let E_{r} be the set of all situations in which cell r is empty, where $1 \leqslant r \leqslant k$. Then we have

$$
\left|E_{r_{1}} \cap \ldots \cap E_{r_{i}}\right|=\prod_{j=1}^{n}\binom{\alpha_{j}+k-i-1}{k-i-1}, \quad 1 \leqslant i \leqslant k-1 .
$$

Thus, the principle of inclusion and exclusion implies the result.
Let $\mathcal{F}(n ; k, \ell)$ denote the number of unordered factorizations of a positive integer n into exactly k factors, such that every factor $\geqslant \ell$. This means that the number of ways can be written as positive integer n as the product $n=n_{1} \times n_{2} \times \ldots \times n_{k}$, where $n_{1} \geqslant n_{2} \geqslant \ldots \geqslant n_{k} \geqslant \ell$. We call $\mathcal{F}(n)$ the unordered Factorization function of n (in analogy with partitions function $p(n)$ for sum). For example, $\mathcal{F}(12)$ corresponds to $2 \times 6,2 \times 2 \times 3,3 \times 4$, and 12. The sequence $\mathcal{F}(n)$ is listed in [10].
Now, by using Theorems 3.2 and 3.1, we conclude the following proposition.
Proposition 5.2 Let $n=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$ be a positive integer. Then the number of unordered factorizations of n into k factors such that each factor $\geqslant 1$ and $\alpha_{1}+\ldots+\alpha_{n} \geqslant k \geqslant 1$ is given by

$$
\mathcal{F}(n, k, 1)=\sum_{i=1}^{\alpha_{1}+\ldots+\alpha_{n}} \Gamma_{0}\left(\left\{\alpha_{1}, \ldots, \alpha_{n}\right\},\{i\}\right) .
$$

Also, the number of unordered factorizations of n into k factors such that each factor is greater 1 is given by

$$
\mathcal{F}(n, k, 2)=\sum_{i=1}^{\alpha_{1}+\ldots+\alpha_{n}} \Gamma\left(\left\{\alpha_{1}, \ldots, \alpha_{n}\right\},\{i\}\right)
$$

6. Generating function of $D(n \mid A)$

In this section, by using the generating function, we obtain the values of $D(n \mid A)$ for a special multiset.

Theorem 6.1 Let n be a nonnegative integer and $\mathbb{A}=\left\{a_{1}, \ldots, a_{k}\right\}$ be a multiset with the multiplicity mapping θ and the background set $S(\mathbb{A})=\left\{b_{1}, \ldots, b_{\ell}\right\}$, where $\theta\left(b_{i}\right)=m_{i}$. The generation function of $D(n \mid A)$ is given
by

$$
\begin{equation*}
\sum_{n=0}^{\infty} D(n \mid A) x^{n}=\prod_{i=1}^{\ell} \prod_{j=1}^{m_{i}} \frac{x^{b_{i}}}{1-x^{b_{i}\left(m_{i}-j+1\right)}} \tag{6.1}
\end{equation*}
$$

Proof For each $1 \leq i \leq \ell$, we want a monotonically nondecreasing sequence $n_{i, 1} \leq n_{i, 2} \leq \cdots \leq n_{i, m_{i}}$. For $2 \leq j \leq m_{i}$, we make the change of variables as follows: $d_{i, 1}=n_{i, 1}$ and $d_{i, j}=n_{i, j}-n_{i, j-1}$ for $j=2,3, \ldots, m_{i}$. Then the monotonically nondecreasing condition on the $\left(n_{i, j}\right)_{j}$ becomes $d_{i, 1} \geq 1$ and $d_{i, j} \geq 0$ for $1 \leq j \leq m_{i}$. Observe that

$$
\begin{aligned}
\sum_{j=1}^{m_{i}} n_{i, j} & =\left(d_{i, 1}\right)+\left(d_{i, 1}+d_{i, 2}\right)+\cdots+\left(d_{i, 1}+d_{i, 2}+\cdots+d_{i, m_{i}}\right) \\
& =\sum_{j=1}^{m_{i}}\left(m_{i}-j+1\right) d_{i, j}
\end{aligned}
$$

Then $D(n \mid A)$ is the number of ways of choosing all these $d_{i, j}$ such that

$$
\begin{aligned}
n & =\sum_{i=1}^{\ell} b_{i} \sum_{j=1}^{m_{i}} n_{i, j}=\sum_{i \in I} b_{i} \sum_{j=1}^{m_{i}}\left(m_{i}-j+1\right) d_{i, j} \\
& =\sum_{i=1}^{\ell}\left(b_{i} m_{i} d_{i, 1}+\sum_{j=2}^{m_{i}} b_{i}\left(m_{i}-j+1\right) d_{i, j}\right)
\end{aligned}
$$

where $d_{i, 1} \geq 1(1 \leq i \leq \ell)$ and $d_{i, j} \geq 0\left(1 \leq i \leq \ell, 2 \leq j \leq m_{i}\right)$. Thus, the generating function for $D(n \mid A)$ is

$$
\prod_{i=1}^{\ell}\left(\frac{x^{b_{i} m_{i}}}{1-x^{b_{i} m_{i}}} \prod_{j=2}^{m_{i}} \frac{1}{1-x^{b_{i}\left(m_{i}-j+1\right)}}\right)
$$

as required.
By (2.1), we have the following corollary.
Corollary 6.2 Let n be a positive integer and $A=\{1,1, \cdots, 1\}$ be a multiset for which $\theta(1)=\ell$. Then

$$
\sum_{n=0}^{\infty} D(n \mid A) x^{n}=\frac{x^{\ell}}{(x ; x)_{\ell}}
$$

Proof We can rewrite the generating function of $D(n \mid A)$ more simply:

$$
\begin{aligned}
\prod_{i \in I}\left(\frac{x^{b_{i} m_{i}}}{1-x^{b_{i} m_{i}}} \prod_{j=2}^{m_{i}} \frac{1}{1-x^{b_{i}\left(m_{i}-j+1\right)}}\right) & =\prod_{i \in I} \frac{x^{b_{i} m_{i}}}{1-x^{b_{i} m_{i}}} \frac{1}{\prod_{j=2}^{m_{i}} 1-x^{b_{i}\left(m_{i}-j+1\right)}} \\
& =\prod_{i \in I} \frac{x^{b_{i} m_{i}}}{\prod_{j=1}^{m_{i}} 1-x^{b_{i}\left(m_{i}-j+1\right)}} \\
& =\prod_{i \in I} \prod_{j=1}^{m_{i}} \frac{x^{b_{i}}}{1-x^{b_{i}\left(m_{i}-j+1\right)}}
\end{aligned}
$$

Consider multiset $A=\{1,1, \cdots, 1\}$ such that $\theta(1)=\ell$. Put $m_{i}=\ell$ and $b_{i}=1$, and then

$$
\sum_{n=0}^{\infty} D(n \mid A) x^{n}=\frac{x}{1-x^{\ell}} \cdot \frac{x}{1-x^{\ell-1}} \cdots \cdot \frac{x}{1-x}
$$

as claimed.
Now we obtain another generating function for $D(n \mid A)$ by using hypergeometric series.
Let n be a nonnegative integer and $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a multiset. Let $1 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{k}$ be a positive solution of the system $n=a_{1} n_{1}+\ldots+a_{k} n_{k}$, such that $n_{i}=n_{i-1}+s_{i}$ where s_{i} is nonnegative integers for $1 \leq i \leq k$. For $|q|<1$, we can write

$$
\begin{aligned}
\sum_{n=0}^{\infty} D(n, A) q^{n} & =\sum_{1 \leqslant n_{1} \leqslant \ldots \leqslant n_{k}} q^{a_{1} n_{1}+\ldots+a_{k} n_{k}} \\
& =\sum_{1 \leqslant n_{1} \leqslant \ldots \leqslant n_{k}}\left(q^{a_{1}}\right)^{n_{1}}\left(q^{a_{2}}\right)^{n_{2}} \ldots\left(q^{a_{k}}\right)^{n_{k}} \\
& =\sum_{1 \leqslant n_{1} \leqslant \ldots \leqslant n_{k-1}}\left(q^{a_{1}}\right)^{n_{1}}\left(q^{a_{2}}\right)^{n_{2}} \ldots\left(q^{a_{k-1}}\right)^{n_{k-1}}\left(q^{a_{k}}\right)^{n_{k-1}+s_{k}} \\
& =\sum_{1 \leqslant n_{1} \leqslant \ldots \leqslant n_{k-1}}\left(q^{a_{1}}\right)^{n_{1}}\left(q^{a_{2}}\right)^{n_{2}} \ldots\left(q^{a_{k-1}+a_{k}}\right)^{n_{k-1}} \frac{q^{a_{k}}}{1-q^{a_{k}}} \\
& =\sum_{1 \leqslant x_{1} \leqslant \ldots \leqslant x_{k-2}}\left(q^{a_{1}}\right)^{n_{1}}\left(q^{a_{2}}\right)^{n_{2}} \ldots\left(q^{a_{k-2}+a_{k-1}+a_{k}}\right)^{n_{k-2}} \frac{q^{a_{k}+a_{k-1}}}{\left(1-q^{a_{k}+a_{k-1}}\right)\left(1-q^{a_{k}}\right)} \\
& =\ldots q^{\ell} \\
& =\frac{q^{\ell}}{\left(1-q^{a_{1}+a_{2}+\ldots+a_{k}}\right)\left(1-q^{a_{2}+\ldots+a_{k}}\right) \ldots\left(1-q^{a_{k-1}+a_{k}}\right)\left(1-q^{a_{k}}\right)}
\end{aligned}
$$

Corollary 6.3 Let n be a nonnegative integer and $A=\{1,2,2, \cdots, 2\}$ be a multiset with $\theta(A)=2 \ell+1$. The generation function of $D(n \mid A)$ is given by $\sum_{n=0}^{\infty} D(n \mid A) x^{n}=\frac{x}{1-x} E_{\ell}(n)$, where $E_{\ell}(n)$ is the number of partitions of positive integer n with even parts to at most ℓ parts.

Corollary 6.4 Let n be a positive integer and $A=\{1,1, \cdots, 1,2,2, \cdots, 2\}$ be a multiset with ℓ-times one and d times two. Then $\sum_{n=0}^{\infty} D(n \mid A) x^{n}=p_{\ell}(n) E_{d}(n)$.

Example 6.5 The generating functions for multisets $\{1,1,2\},\{1,3,3\}$, and $\{1,2,3\}$ are

$$
\begin{aligned}
\left.\sum_{n=0}^{\infty} D(n \mid\{1,1,2\})\right) x^{n} & =x^{2}+x^{3}+2 x^{4}+2 x^{5}+3 x^{6}+3 x^{7}+4 x^{8}+4 x^{9}+\cdots \\
\left.\sum_{n=0}^{\infty} D(n \mid\{1,3,3\})\right) x^{n} & =x^{7}+x^{8}+x^{9}+2 x^{10}+2 x^{11}+2 x^{12}+3 x^{13}+3 x^{14}+3 x^{15} \\
& +4 x^{16}+4 x^{17}+4 x^{18}+5 x^{19}+5 x^{20}+5 x^{21}+6 x^{22}+\cdots \\
\left.\sum_{n=0}^{\infty} D(n \mid\{1,2,3\})\right) x^{n} & =x^{6}+x^{7}+2 x^{8}+3 x^{9}+4 x^{10}+5 x^{11}+7 x^{12}+8 x^{13}+\cdots
\end{aligned}
$$

MANSOUR et al./Turk J Math

Let n be a positive integer and $A=\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}$ be a multiset. We denote the number of partitions of n as $n=a_{1} n_{1}+a_{2} n_{2}+\ldots+a_{k} n_{k}$, for which n_{i} are odd by $\operatorname{Do}(n \mid A)$.

Theorem 6.6 Let n be a positive integer and $A=\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}$ be multiset. Then

$$
D o(2 n \mid A)=\sum_{\substack{0 \leq \theta(A) \leq n \\ \theta(A) \text { iseven }}} D(2 n-\theta(A) \mid A) D(\theta(A) \mid A)
$$

where $\theta(A)=\sum_{i=1}^{k} a_{i}$.
Proof Let n be positive integer. We have $2 n=a_{1} n_{1}+a_{2} n_{2}+\ldots+a_{k} n_{k}$, where $n_{i}=2 r_{i}+1$ are odd. We can write the following:

$$
\begin{aligned}
2 n & =a_{1}\left(2 r_{1}+1\right)+a_{2}\left(2 r_{2}+1\right)+\ldots+a_{k}\left(2 r_{k}+1\right) \\
& =2 r_{1} a_{1}+2 r_{2} a_{2}+\ldots+2 r_{k} a_{k}+a_{1}+a_{2}+\ldots+a_{k}
\end{aligned}
$$

Since $2 n$ is even, put $a_{1}+a_{2}+\ldots+a_{k}=\theta(A)$, where $\theta(A)$ is even. Then the number of natural partitions of $2 n$ to odd parts is equal to the number of natural partitions of $\theta(A)$ and the number of natural partitions of $n-\theta(A)$.

7. Relatively prime $D(n \mid A)$

Definition 7.1 Let n be a positive integer and $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a multiset. We say that $D(n, A)$ is relatively prime if its parts form a relatively prime set; that is, if we partition n as $n=a_{1} n_{1}+a_{2} n_{2}+\ldots+a_{k} n_{k}$ then $\left(n_{1}, n_{2}, \cdots, n_{k}\right)=1$. We denote the number of such partitions of n with $D^{r}(n, A)$.

Example 7.2 We evaluate the relatively prime natural number of $n=11$ with respect to multiset $\{1,1,2\}$ and we have

$$
\begin{array}{ll}
11=1 \times \mathbf{1}+1 \times \mathbf{2}+2 \times \mathbf{4}, & 11=1 \times \mathbf{1}+1 \times \mathbf{4}+2 \times \mathbf{3} \\
11=1 \times \mathbf{1}+1 \times \mathbf{6}+2 \times \mathbf{2}, & 11=1 \times \mathbf{1}+1 \times \mathbf{8}+2 \times \mathbf{1} \\
11=1 \times \mathbf{2}+1 \times \mathbf{3}+2 \times \mathbf{3}, & 11=1 \times \mathbf{2}+1 \times \mathbf{5}+2 \times \mathbf{2} \\
11=1 \times \mathbf{2}+1 \times \mathbf{7}+2 \times \mathbf{1}, & 11=1 \times \mathbf{3}+1 \times \mathbf{4}+2 \times \mathbf{2} \\
11=1 \times \mathbf{3}+1 \times \mathbf{6}+2 \times \mathbf{1}, & 11=1 \times \mathbf{1}+1 \times \mathbf{6}+2 \times \mathbf{2} \\
11=1 \times \mathbf{4}+1 \times \mathbf{5}+2 \times \mathbf{1}, &
\end{array}
$$

Then $D^{r}(11,\{1,1,2\})=10$.
Lemma 7.3 Let n be a positive integer and $A=\left\{a_{1}, a_{2}\right\}$. If $a_{1}=a_{2}=a$ then $D_{0}\left(n,\left\{a_{1}, a_{2}\right\}\right)=\left\lfloor\frac{n}{2 a}\right\rfloor+1$, and if $a_{1} \neq a_{2}$ then $D_{0}\left(n,\left\{a_{1}, a_{2}\right\}\right)=\left\lfloor\frac{n+a_{1}+a_{2}-1}{a_{1} a_{2}}\right\rfloor$.

Theorem 7.4 Let n be a nonnegative integer. For multiset $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, we have

$$
\begin{equation*}
D^{r}(n, A)=\sum_{d \mid n} \mu(d) D\left(\frac{n}{d}, A\right) \tag{7.1}
\end{equation*}
$$

where $\mu(d)$ is the Möbius function.

Proof For nonnegative integers n, k, we have $D(n, A)=\sum_{d \mid n} D^{r}\left(\frac{n}{d}, A\right)$, and by the Möbius inversion formula we have that $D^{r}(n, A)=\sum_{d \mid n} \mu(d) D\left(\frac{n}{d}, A\right)$, as required.

Corollary 7.5 Let n be a nonnegative integer and $A=\left\{a_{1}, a_{2}\right\}$. If $a_{1}=a_{2}=a$, then

$$
D_{0}^{r}\left(n,\left\{a_{1}, a_{2}\right\}\right)=\frac{1}{2 a}\lfloor\varphi(n)\rfloor,
$$

where $\varphi(n)$ is the Euler totient function.
Proof Let n, k be nonnegative integers and $p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ be the prime decomposition of n. By Lemma 7.3 and Theorem 7.4, we have $D^{r}(n, A)=\sum_{d \mid n} \mu(d)\left(\left\lfloor\frac{n}{2 a d}\right\rfloor+1\right)$. If $2 a d \mid n$ then $\left\lfloor\frac{n}{2 a d}\right\rfloor$ is an integer and recall that $\sum_{d \mid n} \varphi(n)=n$ and $\sum_{d \mid n} \mu(d)=\left\lfloor\frac{1}{n}\right\rfloor$. By the Möbius inversion we have

$$
\sum_{d \mid n} \mu(d)\left\lfloor\frac{n}{2 a d}\right\rfloor=\frac{1}{2 a} \varphi(n)
$$

Now, if $2 a d \nmid n$, we have

$$
\begin{aligned}
\sum_{d \mid n} \mu(d)\left\lfloor\frac{n}{2 a d}\right\rfloor & =\sum_{d \mid n} \mu(d)\left(\frac{n}{2 a d}-\frac{1}{2 a}\right)=\sum_{d \mid n} \mu(d)\left(\frac{n}{2 a d}\right)-\sum_{d \mid n} \mu(d)\left(\frac{1}{2 a}\right) \\
& =\frac{1}{2 a} \varphi(n)-\frac{1}{2 a} \sum_{d \mid n} \mu(d)=\frac{1}{2 a} \varphi(n)
\end{aligned}
$$

as claimed.

Acknowledgment

The third author would like to thanks Eric Towers for discussing some of the results of this paper.

References

[1] Aigner M. Combinatorial Theory. Berlin, Germany: Springer, 1979.
[2] Andrews G. The Theory of Partitions (Encyclopaedia of Mathematics and Its Applications). Cambridge, UK: Cambridge University Press, 1976.
[3] Blecher M. Properties of integer partitions and plane partitions. PhD, University of the Witwatersrand, Johannesburg, South Africa, 2012.
[4] Comtet L. Advanced Combinatorics: The Art of Finite and Infinite Expansions. Amsterdam, the Netherlands: Springer, 1974.
[5] Hille E. A problem in factorisatio numerorum. Acta Arithmetica 1936; 2: 134-144. doi: 10.4064/aa-2-1-134-144
[6] Knopfmacher A, Munagi A. Successions in integer partitions. Ramanujan Journal 2009; 18: 239-255. doi: 10.1007/s11139-008-9140-2
[7] MacMahon PA. Memoir on the theory of the compositions of numbers. Philosophical Transactions of the Royal Society London (A) 1893; 184: 835-901. doi: 10.1098/rsta.1893.0017
[8] MacMahon PA. The enumeration of the partitions of multipartite numbers. Mathematical Proceedings of the Cambridge Philosophical Society 1927; 22: 951-963. doi: 10.1017/S0305004100014547
[9] Mansour T. Combinatorics of Set Partitions. Boca Raton, FL, USA: Chapman \& Hall/CRC, Taylor \& Francis Group, 2012.
[10] Sloane NJ. The On-line Encyclopedia of Integer Sequences. https://oeis.org/, 2010.
[11] Stanley R. Enumerative Combinatorics, Volume 1. Cambridge, UK: Cambridge University Press, 1999.

[^0]: *Correspondence: daniel_yaqubi@yahoo.es
 2010 AMS Mathematics Subject Classification: 05A18

[^1]: ${ }^{*}$ Wilf HS. Some unsolved problems. www.math.upenn.edu/ ~ wilf/website/UnsolvedProblems.pdf.

[^2]: ${ }^{\dagger}$ Wilf HS. Some unsolved problems. www.math.upenn.edu/ ~ wilf/website/UnsolvedProblems.pdf.

