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Abstract: Let n be a nonnegative integer and A = {a1, . . . , ak} be a multiset with k positive integers such that
a1 ⩽ · · · ⩽ ak . In this paper, we give a recursive formula for partitions and distinct partitions of positive integer n

with respect to a multiset A . We also consider the extension of the twelvefold way. By using this notion, we solve the
nonintersecting circles problem, which asks to evaluate the number of ways to draw n nonintersecting circles in the plane
regardless of their sizes. The latter also enumerates the number of unlabeled rooted trees with n+ 1 vertices.
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1. Introduction
A partition of n is a sequence λ1 ⩾ λ2 ⩾ · · · ⩾ λk of positive integers such that λ1 + λ2 + · · · + λk = n (see
[2]). We write λ ⊢ n to denote that λ is a partition of n . The nonzero integers λk in λ are called parts of λ .
The number of parts of λ is the length of λ , denoted by ℓ(λ) , and |λ| =

∑
k⩾1 λk is the weight of λ . More

generally, any weakly decreasing sequence of positive integers is called a partition. The partition whose parts
are λ1 ⩾ λ2 ⩾ · · · ⩾ λk is usually denoted by λ = (λ1, λ2, · · · , λk) . Let P (n) denote the set of all partitions
of n . The size of the set P (n) is denoted by the partition function p(n) ; that is, p(n) = |P (n)| . In particular,
p(0) consists of a single element, the unique empty partition of zero, which we denote by 0 . For example, P (4)

consists of five elements: 4, 3 + 1, 2 + 2, 2 + 1 + 1, and1 + 1 + 1 + 1. Hence, p(4) = 5 .
We let S be a set of natural numbers and p(n|S) denotes the number of partitions of n into elements

of S (that is, the parts of the partitions belonging to S) and pℓ(n|S) is the number of partitions of n into
exactly ℓ parts in S . When S = N , the set of natural numbers, we denote pℓ(n|N) by pℓ(n) , i.e. the number
of partitions of n into exactly ℓ parts (or dually, partitions with the largest part equal to ℓ).

Recall also that a multiset A with the multiplicity mapping θ is a collection of some not necessarily
different objects such that for each a ∈ A the number θ(a) is the multiplicity of the occurrence of a in A . If A
is a multiset, we denote the set of members of A by S(A) and we call it the background set of A . For a number
a0 and a multiset A , the multiset {a0a : a ∈ A} is denoted by a0A . We denote the multiset {1, 1, . . . , 1}
with θ(1) = k by Ik . We define that I0 = ∅ . Thus, a multiset A can be written as ∪ℓ

i=1biIθ(bi) , where the
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2010 AMS Mathematics Subject Classification: 05A18

This work is licensed under a Creative Commons Attribution 4.0 International License.
765

https://orcid.org/0000-0001-8028-2391


MANSOUR et al./Turk J Math

background set S(A) of A is {b1, · · · , bℓ} . For two multisets A with the multiplicity mapping θA and B with
the multiplicity mapping θB , we define the multiplicity mapping θA\B of A \ B by θA\B(a) = θA(a) − θB(a) if
θA(a) ⩾ θB(a) and θA\B(a) = 0 if θA(a) < θB(a) . Moreover, the multiplicity mapping θA∪B of A ∪ B is defined
by θA∪B(a) = θA(a) + θB(a) . In the following, θ(A) =

∑
a∈A a for a multiset A .

For any fixed complex number |q| ≤ 1 , any complex number a , and any nonnegative integer n , let

(a; q)n :=

{ ∏n−1
k=0(1− aqk), n > 0

1, n = 0.

Accordingly, let

(a; q)∞ =

∞∏
k=0

(1− aqk) = lim
n→∞

(a; q)n.

A q -series is any series that involves expressions of the form (a; q)n and (a; q)∞ . The generating function for
p(n) , discovered by Euler, is given by

∑∞
n=0 p(n)q

n = 1
(q;q)∞

.

The organization of this paper is as follows. In the next section, we consider the number of partitions
of n into elements of the multiset A and the number of partitions of n with distinct parts from the multiset
A . As a consequence, we present a recursive formula for Wilf’s unsolved problem.∗ In Section 3, we present
an extension of the twelvefold way, which was invented by Stanley [11]. As consequences, we give a recurrence
relation for Bn , the number of ways to draw n nonintersecting circles in a plane regardless of their sizes. In
Section 5, we deal with the ordered and unordered factorizations of natural numbers. In Section 6, we present
generating functions for our sequences. We end with Section 6, where we establish connections with Möbius
and Euler’s totient functions.

2. Partitions and distinct partitions of positive integer n with respect to a multiset

Let n be a nonnegative integer and A = {a1, . . . , ak} be a multiset with k (not necessarily distinct) positive
integers. We denote by D(n|A) the number of ways to partition n as a1x1 + · · ·+ akxk , where xi are positive
integers and xi ⩽ xi+1 whenever ai = ai+1 . The number of ways to partition n in the form a1x1 + · · ·+ akxk ,
where xi are nonnegative integers and xi ⩽ xi+1 whenever ai = ai+1 , is also denoted by D0(n|A) . The
numbers D(n|A) and D0(n|A) are called the natural partition number and the arithmetic partition number of
n with respect to A .

Lemma 2.1 Let n be a nonnegative integer and A be a multiset with the multiplicity mapping θ and the
background set S(A) = {b1, . . . , bℓ} . Then

D(n|A) =
∑

n=b1y1+···+bℓyℓ

θ(bi)⩽yi, i=1,··· ,ℓ

ℓ∏
j=1

pθ(bj)(yj).

Proof Let A = {a1, . . . , ak} , where ai are not necessarily distinct members of A . We can write n =

a1x1+· · ·+akxk in the form n = b1(x11+· · ·+x1θ(b1))+· · ·+bℓ(xℓ1+· · ·+xℓθ(bℓ)) . Putting yi = xi1+· · ·+xiθ(bi) ,

∗Wilf HS. Some unsolved problems. www.math.upenn.edu/∼wilf/website/UnsolvedProblems.pdf.
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we have n = b1y1 + · · · + bℓyℓ , where θ(bi) ⩽ yi for i = 1, · · · , ℓ . Now the number of ways to partition yi in
the form xi1 + · · ·+ xiθ(bi) is pθ(bi)(yi) , where 1 ⩽ xi1 ⩽ · · · ⩽ xiθ(bi) are positive integers. 2

Let p⩽m(n) denote the number of partitions of positive integer n into at most m parts, and notice that
p⩽m(n) is equal to the number of partitions of positive integer n into parts that are all ⩽ m in view of
conjugate partitions. Then p⩽m(n) = p0(n) + p1(n) + · · ·+ pm(n) . We can state the following result.

Lemma 2.2 Let n be a nonnegative integer and A be a multiset with the multiplicity mapping θ and the
background set S(A) = {b1, · · · , bℓ} . Then

D0(n|A) =
∑

n=b1y1+···+bℓyℓ

θ(bi)⩽yi, i=1,··· ,ℓ

ℓ∏
j=1

p⩽θ(bj)(yj).

Notice that if n is a positive integer and A is a multiset as A = {1, 1, . . . , 1} with multiplicity function θ such
that θ(1) = ℓ , then

D(n|A) = D(n|{1, 1, . . . , 1}) = pℓ(n). (2.1)

That is the number of partitions of positive integer n into exactly ℓ parts. Furthermore, for each multiset A ,
D0(n|A) = D(n+ θ(A)|A) , where θ(A) =

∑
a∈A a .

Proposition 2.3 Let n be a nonnegative integer and A be a multiset with the multiplicity mapping θ . Then,
for each a ∈ A ,

D(n|A) =
∑

0⩽ℓ⩽θ(a)
aθ(a)⩽n

D(n− aθ(a)|A \ aIℓ),

where D(0|∅) = 1 .

Proof Let A = {a1, . . . , ak} . We have θ(a) occurrence of a in the equation n = a1x1 + · · · + akxk .
Let xi+1, . . . , xi+θ(a) have coefficients a in the equation, xi+1 = · · · = xi+ℓ = 1 and xi+ℓ+1 > 1 , where
ℓ = 0, 1, . . . , θ(a) . If we subtract aθ(a) from both sides of n = a1x1 + · · · + akxk , then we get n − aθ(a) =

a1x1+ · · ·+aixi+ai+ℓ+1xi+ℓ+1+ · · ·+akxk . The number of solutions of this equation is D(n−aθ(a)|A \aIℓ) ,
which completes the proof. 2

Example 2.4 We evaluate D(17 | {1, 2, 2, 3}) and D0(17, {1, 2, 2, 3}) . Using Proposition 2.3 and Corollary 2.5,
we can write

D(17 | {1, 2, 2, 3}) = D(14 | {1, 2, 2, 3}) +D(14 | {1, 2, 2})

= D(11 | {1, 2, 2, 3}) +D(11 | {1, 2, 2}) + 9

= D(8 | {1, 2, 2, 3}) +D(8 | {1, 2, 2}) + 6 + 9

= 1 + 2 + 6 + 9 = 18.
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Moreover,

D0(17, {1, 2, 2, 3}) = D(17 + 8, {1, 2, 2, 3})

= D(22, {1, 2, 2, 3}) +D(22, {1, 2, 2})

= D(19, {1, 2, 2, 3}) +D(19, {1, 2, 2}) + 25

= D(16, {1, 2, 2, 3}) +D(16, {1, 2, 2}) + 20 + 25

= D(13, {1, 2, 2, 3}) +D(13, {1, 2, 2}) + 12 + 20 + 25

= D(10, {1, 2, 2, 3}) +D(10, {1, 2, 2}) + 9 + 12 + 20 + 25

= D(7, {1, 2, 2, 3}) +D(7, {1, 2, 2}) + 4 + 9 + 12 + 20 + 25

= 0 + 2 + 4 + 9 + 12 + 20 + 25 = 72.

Corollary 2.5 Let n be a positive integer. Then

D(n | {1, 2}) =
⌊n− 1

2

⌋
,

D(n | {1, 2, 2}) =
⌊n− 1

4

⌋
(
⌊n+ 1

2

⌋
−
⌊n+ 3

4

⌋
),

D(n | {1, 1, 2}) =
⌊3
2
⌊n− 1

3
⌋+ 1

2

⌋(⌊n− 1

2

⌋
− 1

2

⌊3
2
⌊n+ 2

3
⌋
⌋
+

1 + (−1)n

2

)
.

Proof Let n = 2k + r , where r = 1, 2 . By Proposition 2.3, we obtain

D(n|{1, 2}) = D(n− 2|{1, 2}) +D(n− 2|{1}) = D(n− 2|{1, 2}) + 1

= D(n− 4|{1, 2}) +D(n− 2|{1}) + 1 = D(n− 4|{1, 2}) + 2

= D(n− 6|{1, 2}) + 3 = · · · = D(n− 2k|{1, 2}) + k = 0 + k = ⌊n− 1

2
⌋.

For the second assertion, let n = 4k + r , where r = 1, 2, 3, 4 . Then

D(n|{1, 2, 2}) = D(n− 4|{1, 2, 2}) +D(n− 4|{1, 2}) +D(n− 4|{1})

= D(n− 4|{1, 2, 2}) + ⌊n− 5

2
⌋+ 1

= D(n− 8|{1, 2, 2}) + ⌊n− 7

2
⌋+ ⌊n− 3

2
⌋

= · · · = D(n− 4k|{1, 2, 2}) +
k∑

i=1

⌊n− (4i− 1)

2

⌋

= D(r|{1, 2, 2}) +
k∑

i=1

⌊n− (4i− 1)

2

⌋
= 0 +

k∑
i=1

⌊n− (4i− 1)

2

⌋
= k⌊n+ 1

2
⌋ − k(k + 1) = ⌊n− 1

4
⌋
(
⌊n+ 1

2
⌋ − ⌊n+ 3

4
⌋
)
,
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as required. Now let n = 3k + r where r = 1, 2, 3 . Then

D(n | {1, 1, 2}) = D(n− 2 | {1, 1, 2}) +D(n− 2 | {1, 2}) +D(n− 2 | {2})

= D(n− 2 | {1, 1, 2}) + ⌊n− 3

2
⌋+ 1 + (−1)n

2

= D(n− 4 | {1, 1, 2}) + ⌊n− 5

2
⌋+ ⌊n− 3

2
⌋+ 2

1 + (−1)n

2
= . . .

= D(n− 4(⌊3k + 1

2
⌋), {1, 1, 2})

+

⌊ 3k+1
2 ⌋∑

i=1

⌊ (n− 2i)− 1

2
⌋+ ⌊3k + 1

2
⌋1 + (−1)n

2

= 0 +

⌊ 3k+1
2 ⌋∑

i=1

⌊ (n− 2i)− 1

2
⌋+ k

1 + (−1)n

2

= ⌊3k + 1

2
⌋⌊n− 1

2
⌋ −

⌊ 3k+1
2 ⌋(⌊ 3k+1

2 ⌋+ 1)

2
+ ⌊3k + 1

2
⌋1 + (−1)n

2
.

It is enough to note that k = ⌊n−1
3 ⌋ . 2

Let Qm(n) be the number of partitions of a positive integer n into exactly m distinct parts. It is not
difficult to verify by using Ferrers diagrams that Qm(n) = p⩽m

(
n−

(
m+1
2

))
, which means that the number of

partitions of positive integer n into exactly m distinct parts equals the number of partitions of n−
(
m+1
2

)
into

at most m parts (or dually, partitions into parts ⩽ m) [4]. Then the generating function of Qm(n) reads as

∞∑
n=0

Qm(n)qn =
q(

m+1
2 )

(q; q)m
.

We let Q(n) be the number of all partitions of n into distinct parts.
Let n be a nonnegative integer and A = {a1, . . . , ak} be a multiset of k not necessarily distinct positive

integers, where a1 ⩽ · · · ⩽ ak . We denote by ∆(n|A) the number of partitions of n as the form a1x1+· · ·+akxk ,
where xi are distinct positive integers and xi < xi+1 whenever ai = ai+1 . The number of partitions of n of
the form a1x1 + · · ·+ akxk , where xi are distinct nonnegative integers and xi < xi+1 whenever ai = ai+1 , is
also denoted by ∆0(n|A) . The numbers ∆(n|A) and ∆0(n|A) are called the natural distinct partition number
and the arithmetic distinct partition number of n with respect to A .

Lemma 2.6 Let n be a nonnegative integer and A be a multiset with the multiplicity mapping θ and the
background set S(A) = {b1, . . . , bℓ} . Then

∆(n|A) =
∑

n=b1y1+···+bℓyℓ

θ(bi)⩽yi, i=1,··· ,ℓ

ℓ∏
j=1

Qθ(bj)(yj).

Proof Proof as similar to Lemma 2.1. Let A = {a1, . . . , ak} , where ai are k not necessarily distinct members
of A . We can write n = a1x1 + . . .+ akxk as the form n = b1(x11 + . . .+ x1θ(b1)) + . . .+ bℓ(xℓ1 + . . .+ xℓθ(bℓ)) .
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Putting yi = xi1 + . . . + xiθ(bi) we have n = b1y1 + . . . + bℓyℓ , where θ(bi) ⩽ yi for i = 1, . . . , ℓ . Now the
number of ways to partition yi into xi1 + . . .+ xiθ(bi) with 1 ⩽ xi1 ⩽ . . . ⩽ xiθ(bi) is Qθ(bi)(yi) . 2

Let Q⩽m(n) denote the number of partitions of positive integer n into at most m distinct parts. Then
Q⩽m(n) = Q1(n) +Q2(n) + · · ·+Qm(n) , which leads to the following corollary.

Corollary 2.7 Let n be a nonnegative integer and A be a multiset with the multiplicity mapping θ and the
background set S(A) = {b1, . . . , bℓ} . Then

∆0(n|A) =
∑

n=b1y1+···+bℓyℓ

θ(bi)⩽yi, i=1,··· ,ℓ

ℓ∏
j=1

Q⩽θ(bj)(yj).

Corollary 2.8 Let n be a nonnegative integer and A be a multiset with the multiplicity mapping θ and the
background set S(A) = {b1, . . . , bℓ} . Then

∆(n|A) = D

(
n+ θ(A)−

ℓ∑
i=1

bi

(
θ(bi) + 1

2

)
|A

)
.

Proof Let n be a nonnegative integer and A = {a1, . . . , ak} be a multiset with k not necessarily distinct
positive integers, where a1 ⩽ · · · ⩽ ak . ∆(n|A) is the number of partitions of n as the form n = a1x1 + · · ·+
akxk , where xi are distinct positive integers and xi < xi+1 whenever ai = ai+1 . We can write

n = b1(x11 + · · ·+ x1θ(b1)) + · · ·+ bℓ(xℓ1 + · · ·+ xℓθ(bℓ)).

Putting yi = xi1+ · · ·+xiθ(bi) , the number of partitions of yi into exactly θ(bi) distinct parts equals Qθ(bi)(yi)

for i = 1, . . . , ℓ . By Corollary (2.8), we get

Qθ(bi)(yi) = p⩽θ(bi)

(
yi +

(
θ(bi) + 1

2

))
.

Then we can write

n = b1y1 + b2y2 + · · ·+ bℓyℓ

= b1

(
y1 −

(
θ(b1) + 1

2

))
+ · · ·+ bℓ

(
yℓ −

(
θ(bℓ) + 1

2

))

= b1y1 + b2y2 + · · ·+ bℓyℓ −
ℓ∑

i=1

bi

(
θ(bi) + 1

2

)
.

Then we can conclude

∆(n|A) = D0

(
(n−

ℓ∑
i=1

bi

(
θ(bi) + 1

2

)
|A

)
= D

(
n+ θ(A)−

ℓ∑
i=1

bi

(
θ(bi) + 1

2

)
|A

)
,

as claimed. 2
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It is easy to see that if n is a positive integer and A is the multiset {1, 1, . . . , 1} , with multiplicity
function θ(1) = ℓ , then ∆(n|A) = ∆(n|{1, 1, . . . , 1}) = Qℓ(n) . Furthermore, for each multiset A , ∆0(n|A) =
∆(n+ θ(A)|A) , where, θ(A) =

∑
a∈A a .

Herbert Wilf posed some unsolved problems.† Wilf’s Sixth Unsolved Problem regards “the set of partitions
of positive integer n for which the (nonzero) multiplicities of its parts are all different”. We refer to these as
Wilf partitions and T (n) for the set of Wilf partitions. For example, there exist 4 Wilf partitions of n = 4 :

4 = (1)4; 2 + 2 = (2)2; 2 + 1 + 1 = (1)2 + (2)1; 1 + 1 + 1 + 1 = (4)1.

Then |T (4)| = 4 . Let A = {a1, a2, . . . , ak} be a set of nonnegative integers. We denote T (n|A) for the number
of Wilf partitions of positive integers n as the form a1x1 + a2x2 + · · · + akxk , where xi are positive distinct
integers. Furthermore, if we put A = N , the set of natural numbers, then T (n|A) = |T (n)| .

Proposition 2.9 Let n be a nonnegative integer and A = {a1, . . . , ak} be a multiset with the background set
S(A) = {b1, . . . , bℓ} . Then

∆(n|A) = ∆(n− θ(A)|A) +
ℓ∑

i=1

∆(n− θ(A)|A \ {bi}).

Moreover, ∆(n|A) = 0 when n <
∑k

i=1(k + 1− i)ai .

Proof At most one of the xi s can be 1 . If there is no xi with xi = 1 then we can write n − θ(A) =

a1(x1 − 1) + · · · + ak(xk − 1) and there are ∆(n − θ(A), A) solutions for this equation under the required
conditions. Moreover, if xj = 1 for some j , then other xi s are greater that 1 and thus we can write

n− θ(A) = a1(x1 − 1) + · · ·+ aj−1(xj−1 − 1) + aj+1(xj+1 − 1) + · · ·+ ak(xk − 1).

There are ∆(n− θ(A)|A \ {bi}) solutions for the latter equation, where bi = aj . The other parts are obvious.
2

Corollary 2.10 Let n be a nonnegative integer and A = {a1, . . . , ak} be a set of nonnegative integers. Then

T (n|A) is given by T (n|A) =
∑k

i=0 T (n− θ(A)|A \ {ai}) with b0 = ∅ .

Example 2.11 We evaluate ∆(18|{1, 2, 2, 3}) . By Proposition 2.9, we have

∆(18|{1, 2, 2, 3}) = ∆(10|{1, 2, 2, 3}) + ∆(10|{2, 2, 3}) + ∆(10|{1, 2, 3}) + ∆(10|{1, 2, 2})

= 0 + 0 +∆(4|{1, 2, 3}) + ∆(4|{2, 3}) + ∆(4|{1, 3}) + ∆(4|{1, 2})

+∆(5|{1, 2, 2}) + ∆(5|{2, 2}) + ∆(5|{1, 2})

= 0 + 0 + 0 + 0 + 0 + 1 + 0 + 0 + 2 = 3.

The 3 solutions are

18 = 1× 3 + 2× 2 + 2× 4 + 3× 1 = 1× 5 + 2× 2 + 2× 3 + 3× 1
= 1× 4 + 2× 1 + 2× 3 + 3× 2.

†Wilf HS. Some unsolved problems. www.math.upenn.edu/∼wilf/website/UnsolvedProblems.pdf.
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Corollary 2.12 Let n be a positive integer. Then

∆(n | {1, 1}) = ⌊n− 1

2
⌋ and ∆(n | {1, 2}) = ⌊n− 1

3
⌋+ ⌊n− 1

6
⌋.

Proof Let n = 2k + r , where r = 1, 2 . Using Proposition 2.9 we can write

∆(n | {1, 1}) = ∆(n− 2 | {1, 1}) + ∆(n− 2 | {1})

= ∆(n− 2 | {1}) + 1

= ∆(n− 4 | {1, 1}) + ∆(n− 4 | {1}) + 1

= . . .

= ∆(n− 2k | {1, 1}) + k = 0 + k = ⌊n− 1

2
⌋.

Now let n = 3k + r , where r = 1, 2, 3 . Thus,

∆(n | {1, 2}) = ∆(n− 3 | {1, 2}) + ∆(n− 3 | {1}) + ∆(n− 3 | {2})

= ∆(n− 3 | {1, 2}) + ∆(n− 3 | {2}) + 1

= ∆(n− 6 | {1, 2}) + ∆(n− 6 | {1}) + ∆(n− 6 | {2}) + ∆(n− 3 | {2}) + 1

= ∆(n− 6 | {1, 2}) + ∆(n− 6 | {2}) + ∆(n− 3 | {2}) + 2

= . . .

= ∆(n− 3k | {1, 2}) +
⌊n−1

3 ⌋∑
i=1

∆(n− 3i | {2}) + k

= 0 +

⌊n−1
3 ⌋∑

i=1

∆(n− 3i | {2}) + ⌊n− 1

3
⌋.

If n = 3k then k − i is even and so

⌊n−1
3 ⌋∑

i=1

∆(n− 3i | {2}) + ⌊n− 1

3
⌋ = ⌊n− 1

6
⌋+ ⌊n− 1

3
⌋.

Similarly, we have the result for the cases n = 3k + 1 and n = 3k + 2 . 2

3. The twelvefold way

The twelvefold way gives the number of mappings f from the set N of n objects to set K of k objects
(putting balls from the set N into boxes in the set K ). Richard Stanley invented the twelvefold way [11].
Consider n (un)labeled balls and k (un)labeled cells. There are four cases, U → L,L → U,L → L,U → U ,

for arrangements of Labeled or Unlabeled balls in−→ Labeled or UnLabeled boxes. Here Labeled means
distinguishable and Unlabeled means indistinguishable. If we want to partition these balls into these cells we are
faced with the following twelve problems (see Table). In the Table, (k)n := k(k−1) · · · (k−n+1) is Pochhammer’s
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Table. The twelvefold way.

Elements of N Elements of K f unrestricted f one-to-one f onto
L L kn (k − n+ 1)n k!

{
n
k

}
U L

(
n+k−1

n

) (
k
n

) (
n−1
n−k

)
L U

∑k
i=1

{
n
i

}
δk⩽n

{
n
k

}
U U

∑i
i=1 pi(n) δk⩽n pk(n)

symbol or falling factorial, for k, n ∈ N ,
{
n
k

}
denotes the Stirling number of the second kind or the number of

partitions of the set {1, 2, . . . , n} into exactly k nonempty subsets, which is equal to
∑k

i=1(−1)i
(
k
i

)
(k−i)n , and

the number
{
n
k

}
satisfies the recursive relation

{
n
k

}
=
{
n−1
k−1

}
+ k
{
n−1
k

}
and δk⩽n :=

{
1 when n ⩽ k,
0 when n > k.

Now

we consider a new problem as an extension and unification of the above problems. Consider b1+b2+· · ·+bn balls
with b1 balls Labeled 1 , b2 balls Labeled 2 , and so on, c1 + c2 + · · ·+ ck cells with c1 cells Labeled 1 , c2 cells
Labeled 2 , and so on. We denote the situation of these balls and cells by the two multisets B = {b1, b2, . . . , bn}
of balls and C = {c1, . . . , ck} of cells. Let the number of mappings F from the multiset B of balls to the
multiset C of cells be called the mixed twelvefold way (or dually, the number of ways to partition the multiset B
of balls into the multiset C of cells). We denote the number of unrestricted mappings of F by Γ0(B|C) . Also,
we denote the number of onto mappings of F , that is, the number of ways to partition the multiset B of balls
into the multiset C of cells, such that the cells are nonempty by Γ(B|C) .

Theorem 3.1 Let B = {b1, . . . , bn} and C = {c1, . . . , ck} be two multisets whose members are positive integers.
The number of unrestricted mappings F from the multiset B to C is given by

Γ0(B|C) =
∑

b1=n1+···+nk
0⩽ni⩽b1

∑
(C1,··· ,Ck)
θ(Ci)⩽ci

( k∏
j=1

∆(nj |Cj)
)
Γ0

(
B \ {b1}|(

k∪
i=1

Ci) ∪ (

k∪
i=1

θ(Ci)<ci

{ci − θ(Ci)}
)
,

where Γ0(∅, A) = 1 for each multiset A of nonnegative integers.

Proof First we distribute the b1 balls Labeled 1 into cells. Let ni be the number of balls in cells Labeled
i for i = 1, . . . , k . Thus, we can write b1 = n1 + · · · + nk . When we put ni balls in cell Labeled i , the ci

cells Labeled i are partitioned into different types. Suppose that we have ℓij cells Labeled i with xij balls
Labeled 1 . Here, ci = ℓi1xi1 + · · ·+ ℓitxit + ri , where ri is the number of cells Labeled i that are still empty.
Let Ci = {ℓi1, . . . , ℓit} . Thus, θ(Ci) ⩽ ci and there are ∆(ni|Ci) situations in which the types of the ci cells
Labeled i change into ℓi1 cells of the first type, say Labeled ℓi1 , . . . , ℓit cells of the tth type, say Labeled it ,
and ri empty cells the t + 1st type, say Labeled i(t + 1) . We can therefore say that after distributing the b1

balls Labeled 1 into cells we have the multiset B \ {b1} of balls and the multiset

(

k∪
i=1

Ci) ∪ (

k∪
i=1

θ(Ci)<ci

{ci − θ(Ci)}
)
,
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of cells. The number of ways putting of these balls into these cells is

Γ0

(
B \ {b1}|(

k∪
i=1

Ci) ∪ (

k∪
i=1

θ(Ci)<ci

{ci − θ(Ci)}
)
,

which completes the proof. 2

Theorem 3.2 Let B = {b1, . . . , bn} and C = {c1, . . . , ck} be two mulitsets whose members are positive integers.
The number of onto mappings of F from the multiset B to C is given by

Γ(B|C) =
k∑

ℓ=0

∑
1⩽i1<···<iℓ⩽k

(−1)ℓΓ0

(
B|

ℓ∪
i=1

(
(C \ {cij}) ∪ ({cij − 1})

))
.

Proof Let Ei be the set of situations in which some of the cells Labeled i are empty. Then the number of
the elements of Ei1 ∩ · · · ∩ Eiℓ is Γ0

(
B|
∪ℓ

i=1

(
(C \ {cij}) ∪ ({cij − 1})

))
. Now the inclusion exclusion principle

implies the result. 2

Let n and k be positive integers. Consider B = {1, 2, . . . , n} , the set of n Unlabeled balls, and C = {1, 2, . . . , k} ,
the set of k Unlabeled cells. Also, let Ik = {1, 1, . . . , 1} be a multiset with multiplicity mapping m , such that
θ(1) = k . Then we conclude the following result about the number of unrestricted or onto mappings of F , from
the set B or Ik to the set C or Ik . Then:

i) Γ(B|C) = pk(n) and Γ0(B|C) = pk(n+ k) .

ii) Γ(B|Ik) =
(
n−1
k−1

)
and Γ0(B|Ik) =

(
n+k−1
k−1

)
.

iii) Γ(In|C) =
{
n
k

}
and Γ0(In|C) =

∑k
i=1

{
n
i

}
.

iv) Γ(In|Ik) = k!
{
n
k

}
and Γ0(In|Ik) = kn .

Corollary 3.3 Let n and k be positive integers. Then pk(n) =
∑

θ(C)=k ∆(n|C) , where the summation is taken
over all multisets C whose members are positive integers.

Proof Using Theorems 3.1 and 3.2, we can write

pk(n) = Γ({1, 2, . . . , n}|{1, 2, . . . , k})

= Γ0({1, 2, . . . , n}|{1, 2, . . . , k})− Γ0({1, 2, . . . , n}|{1, 2, . . . , k − 1})

=
∑

θ(C)⩽k

∆(n|C)−
∑

θ(C)⩽k−1

∆(n|C) =
∑

θ(C)=k

∆(n|C),

as claimed. 2
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4. The nonintersecting circles problem
To solve the nonintersecting circles problem, let us assume the following notations. Let n be a positive integer.
We denote the set of all multisets A = {a1, . . . , ak} such that there are distinct positive integers x1, . . . , xk with
n = a1x1 + · · ·+ akxk , where xi < xi+1 whenever ai = ai+1 , by An,k . Recall that for an A ∈ An,k there are
∆(n|A) solutions (x1, . . . , xk) satisfying the above condition. We denote the set of these (x1, . . . , xk) by XA .

Note that the number of (n1, . . . , nr) with 1 ⩽ n1 ⩽ · · · ⩽ nr ⩽ s is given by

k∑
i=1

(
r − 1

i− 1

)(
s

i

)
=

k∑
i=1

(
r − 1

r − i

)(
s

i

)
=

(
r + s− 1

r

)
. (4.1)

The nonintersecting circles problem asks to evaluate the number of ways to draw n nonintersecting circles
in a plane regardless of their sizes. For example, if we use the symbol ( ) for a circle then there are four such
ways for 3 circles ( )( )( ), (( )( )), (( ))( ), ((( ))) and nine ways for 4 circles,

( )( )( )( ), (( )( )( )), (( )( ))( ), ((( )( ))), (( ))( )( ), ((( ))( )), ((( )))( ), (((( )))), (( ))(( )).

If we denote this number by Bn then we can see that B0 = B1 = 1, B2 = 2, B3 = 4, B4 = 9 , B5 = 20 , and so
on.

Theorem 4.1 Let Bn be the number of ways to draw n nonintersecting circles in a plane regardless of their
sizes. Then

Bn =

⌊
√
2n⌋∑

k=1

∑
A={a1,··· ,ak}∈An,k

∑
(x1,··· ,xk)∈XA

k∏
i=1

(
Bxi−1 + ai − 1

ai

)
.

Proof Given n , let us draw our circles in ℓ parts with yi circles in the ith part. We can assume that
y1 ⩽ · · · ⩽ yℓ . Thus, n = y1+ · · ·+yℓ . We can rewrite it in the form n = a1x1+ · · ·+akxk such that xi < xi+1

whenever ai = ai+1 . This shows that we have ai parts with xi circles of the form (xi − 1) where ( ) denotes
a circle containing xi − 1 circles. We can form the ai parts of the form (xi − 1) in

(
Bxi−1+ai−1

ai

)
ways. The

latter is true since we may put r = ai and s = Bxi−1 in 4.1. Note that a single form (xi − 1) can be drawn
in Bxi−1 ways.

Now notice the fact that the maximum of k occurs when a1 = · · · = ak = 1 . Since we have 1 ⩽ x1 <

· · · < xk in this case, we can therefore deduce that k(k+1)
2 ⩽ n . Thus, the maximum value of k is ⌊

√
2n⌋ . 2

Example 4.2 For n = 6 we have

A6,1 = {{1}, {2}, {3}, {6}},

A6,2 = {{1,1}, {1,2}, {1,3}, {1,4}, {2,2}},

A6,3 = {{1,1,1}}.

We can therefore write

6 = 1 × 6 = 2 × 3 = 3 × 2 = 6 × 1 = 1 × 1 + 1 × 5 = 1 × 2 + 1 × 4

= 1 × 4 + 2 × 1 = 1 × 3 + 3 × 2 = 1 × 2 + 4 × 1 = 2 × 1 + 2 × 2

= 1 × 1 + 1 × 2 + 1 × 3.
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Thus,

B6 =

(
B5

1

)
+

(
B2 + 1

2

)
+

(
B1 + 2

3

)
+

(
B0 + 5

6

)
+

(
B0

1

)(
B4

1

)
+

(
B1

1

)(
B3

1

)
+

(
B3

1

)(
B0 + 1

2

)
+

(
B2

1

)(
B1 + 2

3

)
+

(
B1

1

)(
B0 + 3

4

)
+

(
B0 + 1

2

)(
B1 + 1

2

)
+

(
B0

1

)(
B1

1

)(
B2

1

)
= 20 + 3 + 1 + 1 + 9 + 4 + 4 + 2 + 1 + 1 + 2 = 48.

The number of ways to draw 6 nonintersecting circles in a plane regardless of their sizes is thus equal to 48 .

A rooted tree may be defined as a free tree in which some vertex has been distinguished as the root. We can
see some values of a rooted tree for positive integer n in [10].

Corollary 4.3 Let n be a positive integer. Then Bn is the number of unlabeled rooted tree with n+1 vertices.

Proof There is a one-to-one correspondence between n nonintersecting circles and an unlabeled rooted tree
with n+ 1 vertices. It is enough to draw a circle for each nonroot vertex and put a circle inside another one if
the second one is the parent of the first one. 2

5. Ordered and unordered factorizations of natural numbers
An ordered factorization of a positive integer n is a representation of n as an ordered product of integers,
each factor greater than 1 . For positive integer ℓ, k ⩾ 1 we denote the number of the ordered factorizations of
positive integer n into exactly k factors, such that each factor ⩾ ℓ by H(n; k, ℓ) . We use H(n) to represent
the number of all ordered factorizations of the positive integer n (in analogy with compositions for sum). For
example, H(12) = 8 , since we have the factorizations 12, 2 × 6, 6 × 2, 3 × 4, 4 × 3, 2 × 2 × 3, 2 × 3 × 2 , and
3× 2× 2 . By the definition, H(1) = 0 , but in some situations it is useful to set H(1) = 1 or H(1) = 1

2 [5].
Every integer n > 1 has a canonical factorization into distinct prime numbers p1, p2, . . . , pr , namely

n = pα1pα2 . . . pαr ; 1 < p1 < p2 < . . . < pr. (5.1)

Many problems involving factorisatio numerorum depend only on the set of exponents in 5.1, {α1, α2, . . . , αr} .
MacMahon [7] developed the theory of compositions of multipartite numbers from this perspective and indeed
considered these problems throughout his career [8], but Andrews suggested the more modern terminology
vector compositions [2]. A general formula for H(n, k, 2) of ordered factorizations of positive integer n such
that each factor is larger than 2 was given by MacMahon in [7]. Now we give another proof for H(n, k, 2) and
H(n, k, 1) with the above results.

Theorem 5.1 Let n = pα1
1 . . . pαr

r be a positive integer. Then the number of ordered factorizations of n into k

factors such that each factor ⩾ 1 and α1 + . . .+ αn ⩾ k ⩾ 1 is given by

H(n, k, 1) =

α1+...+αr∑
i=1

Γ0({α1, . . . , αr}, Ii) =
α1+...+αr∑

i=1

n∏
j=1

(
αj + i− 1

i− 1

)
. (5.2)
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Also, the number of unordered factorizations of n into k factors such that each factor ⩾ 2 is given by

H(n, k, 2) =

α1+...+αr∑
i=1

Γ({α1, . . . , αr}, Ii)

=

α1+...+αr∑
i=1

i∑
ℓ=0

(−1)ℓ
(
i

ℓ

) n∏
j=1

(
αj + i− ℓ− 1

i− ℓ− 1

)
. (5.3)

Proof It is sufficient to use Theorems 3.2 and 3.1. Suppose that for 1 ⩽ j ⩽ n we have αj balls labeled
pj and we want to put these balls into k different cells. There is a one-to-one correspondence between these
situations and unordered factorizations of positive integer n as the form n = n1 × n2 × . . .× nk such that each
factor ⩾ 1 . In fact, we can consider nj as the product of the balls in cell j . There are

(
αj+k−1

k−1

)
ways to put

balls labeled pj . Thus, the first part is obvious.
For the second part, let Er be the set of all situations in which cell r is empty, where 1 ⩽ r ⩽ k . Then

we have

|Er1 ∩ . . . ∩ Eri | =
n∏

j=1

(
αj + k − i− 1

k − i− 1

)
, 1 ⩽ i ⩽ k − 1.

Thus, the principle of inclusion and exclusion implies the result. 2

Let F(n; k, ℓ) denote the number of unordered factorizations of a positive integer n into exactly k factors, such
that every factor ⩾ ℓ . This means that the number of ways can be written as positive integer n as the product
n = n1×n2× . . .×nk , where n1 ⩾ n2 ⩾ . . . ⩾ nk ⩾ ℓ . We call F(n) the unordered Factorization function of n

(in analogy with partitions function p(n) for sum). For example, F(12) corresponds to 2× 6, 2× 2× 3, 3× 4 ,
and 12 . The sequence F(n) is listed in [10].
Now, by using Theorems 3.2 and 3.1, we conclude the following proposition.

Proposition 5.2 Let n = pα1
1 . . . pαr

r be a positive integer. Then the number of unordered factorizations of n

into k factors such that each factor ⩾ 1 and α1 + . . .+ αn ⩾ k ⩾ 1 is given by

F(n, k, 1) =

α1+...+αn∑
i=1

Γ0({α1, . . . , αn}, {i}).

Also, the number of unordered factorizations of n into k factors such that each factor is greater 1 is given by

F(n, k, 2) =

α1+...+αn∑
i=1

Γ({α1, . . . , αn}, {i}).

6. Generating function of D(n|A)

In this section, by using the generating function, we obtain the values of D(n|A) for a special multiset.

Theorem 6.1 Let n be a nonnegative integer and A = {a1, . . . , ak} be a multiset with the multiplicity mapping
θ and the background set S(A) = {b1, . . . , bℓ} , where θ(bi) = mi . The generation function of D(n|A) is given
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by
∞∑

n=0

D(n|A)xn =

ℓ∏
i=1

mi∏
j=1

xbi

1− xbi(mi−j+1)
. (6.1)

Proof For each 1 ≤ i ≤ ℓ , we want a monotonically nondecreasing sequence ni,1 ≤ ni,2 ≤ · · · ≤ ni,mi . For
2 ≤ j ≤ mi , we make the change of variables as follows: di,1 = ni,1 and di,j = ni,j −ni,j−1 for j = 2, 3, . . . ,mi .
Then the monotonically nondecreasing condition on the (ni,j)j becomes di,1 ≥ 1 and di,j ≥ 0 for 1 ≤ j ≤ mi .
Observe that

mi∑
j=1

ni,j = (di,1) + (di,1 + di,2) + · · ·+ (di,1 + di,2 + · · ·+ di,mi)

=

mi∑
j=1

(mi − j + 1)di,j .

Then D(n|A) is the number of ways of choosing all these di,j such that

n =

ℓ∑
i=1

bi

mi∑
j=1

ni,j =
∑
i∈I

bi

mi∑
j=1

(mi − j + 1)di,j

=

ℓ∑
i=1

bimidi,1 +

mi∑
j=2

bi(mi − j + 1)di,j

 ,

where di,1 ≥ 1 (1 ≤ i ≤ ℓ) and di,j ≥ 0 (1 ≤ i ≤ ℓ , 2 ≤ j ≤ mi ). Thus, the generating function for D(n|A) is

ℓ∏
i=1

 xbimi

1− xbimi

mi∏
j=2

1

1− xbi(mi−j+1)

 ,

as required. 2

By (2.1), we have the following corollary.

Corollary 6.2 Let n be a positive integer and A = {1, 1, · · · , 1} be a multiset for which θ(1) = ℓ . Then

∞∑
n=0

D(n|A)xn =
xℓ

(x;x)ℓ
.

Proof We can rewrite the generating function of D(n|A) more simply:

∏
i∈I

 xbimi

1− xbimi

mi∏
j=2

1

1− xbi(mi−j+1)

 =
∏
i∈I

xbimi

1− xbimi

1∏mi

j=2 1− xbi(mi−j+1)

=
∏
i∈I

xbimi∏mi

j=1 1− xbi(mi−j+1)

=
∏
i∈I

mi∏
j=1

xbi

1− xbi(mi−j+1)
.
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Consider multiset A = {1, 1, · · · , 1} such that θ(1) = ℓ . Put mi = ℓ and bi = 1 , and then
∞∑

n=0

D(n|A)xn =
x

1− xℓ
· x

1− xℓ−1
· · · · · x

1− x
,

as claimed. 2

Now we obtain another generating function for D(n|A) by using hypergeometric series.
Let n be a nonnegative integer and A = {a1, a2, . . . , ak} be a multiset. Let 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk

be a positive solution of the system n = a1n1 + . . .+ aknk, such that ni = ni−1 + si where si is nonnegative
integers for 1 ≤ i ≤ k . For |q| < 1 , we can write

∞∑
n=0

D(n,A)qn =
∑

1⩽n1⩽...⩽nk

qa1n1+...+aknk

=
∑

1⩽n1⩽...⩽nk

(qa1)n1(qa2)n2 . . . (qak)nk

=
∑

1⩽n1⩽...⩽nk−1

(qa1)n1(qa2)n2 . . . (qak−1)nk−1(qak)nk−1+sk

=
∑

1⩽n1⩽...⩽nk−1

(qa1)n1(qa2)n2 . . . (qak−1+ak)nk−1
qak

1− qak

=
∑

1⩽x1⩽...⩽xk−2

(qa1)n1(qa2)n2 . . . (qak−2+ak−1+ak)nk−2
qak+ak−1

(1− qak+ak−1)(1− qak)

= . . .

=
qℓ

(1− qa1+a2+...+ak)(1− qa2+...+ak) . . . (1− qak−1+ak)(1− qak)
.

Corollary 6.3 Let n be a nonnegative integer and A = {1, 2, 2, · · · , 2} be a multiset with θ(A) = 2ℓ + 1 .
The generation function of D(n|A) is given by

∑∞
n=0 D(n|A)xn = x

1−xEℓ(n) , where Eℓ(n) is the number of
partitions of positive integer n with even parts to at most ℓ parts.

Corollary 6.4 Let n be a positive integer and A = {1, 1, · · · , 1, 2, 2, · · · , 2} be a multiset with ℓ-times one and
d times two. Then

∑∞
n=0 D(n|A)xn = pℓ(n)Ed(n) .

Example 6.5 The generating functions for multisets {1, 1, 2} , {1, 3, 3} , and {1, 2, 3} are

∞∑
n=0

D(n|{1, 1, 2}))xn = x2 + x3 + 2x4 + 2x5 + 3x6 + 3x7 + 4x8 + 4x9 + · · · ,

∞∑
n=0

D(n|{1, 3, 3}))xn = x7 + x8 + x9 + 2x10 + 2x11 + 2x12 + 3x13 + 3x14 + 3x15

+ 4x16 + 4x17 + 4x18 + 5x19 + 5x20 + 5x21 + 6x22 + · · · ,
∞∑

n=0

D(n|{1, 2, 3}))xn = x6 + x7 + 2x8 + 3x9 + 4x10 + 5x11 + 7x12 + 8x13 + · · · .
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Let n be a positive integer and A = {a1, a2, · · · , ak} be a multiset. We denote the number of partitions
of n as n = a1n1 + a2n2 + . . .+ aknk , for which ni are odd by Do(n|A) .

Theorem 6.6 Let n be a positive integer and A = {a1, a2, · · · , ak} be multiset. Then

Do(2n|A) =
∑

0≤θ(A)≤n
θ(A)iseven

D(2n− θ(A)|A)D(θ(A)|A),

where θ(A) =
∑k

i=1 ai .

Proof Let n be positive integer. We have 2n = a1n1 + a2n2 + . . .+ aknk , where ni = 2ri + 1 are odd. We
can write the following:

2n = a1(2r1 + 1) + a2(2r2 + 1) + . . .+ ak(2rk + 1)

= 2r1a1 + 2r2a2 + . . .+ 2rkak + a1 + a2 + . . .+ ak.

Since 2n is even, put a1 + a2 + . . .+ ak = θ(A) , where θ(A) is even. Then the number of natural partitions of
2n to odd parts is equal to the number of natural partitions of θ(A) and the number of natural partitions of
n− θ(A) . 2

7. Relatively prime D(n|A)

Definition 7.1 Let n be a positive integer and A = {a1, a2, . . . , ak} be a multiset. We say that D(n,A) is
relatively prime if its parts form a relatively prime set; that is, if we partition n as n = a1n1+a2n2+ . . .+aknk

then (n1, n2, · · · , nk) = 1 . We denote the number of such partitions of n with Dr(n,A) .

Example 7.2 We evaluate the relatively prime natural number of n = 11 with respect to multiset {1, 1, 2} and
we have

11 = 1× 1 + 1× 2 + 2× 4, 11 = 1× 1 + 1× 4 + 2× 3
11 = 1× 1 + 1× 6 + 2× 2, 11 = 1× 1 + 1× 8 + 2× 1
11 = 1× 2 + 1× 3 + 2× 3, 11 = 1× 2 + 1× 5 + 2× 2
11 = 1× 2 + 1× 7 + 2× 1, 11 = 1× 3 + 1× 4 + 2× 2
11 = 1× 3 + 1× 6 + 2× 1, 11 = 1× 1 + 1× 6 + 2× 2
11 = 1× 4 + 1× 5 + 2× 1.

Then Dr(11, {1, 1, 2}) = 10 .

Lemma 7.3 Let n be a positive integer and A = {a1, a2} . If a1 = a2 = a then D0(n, {a1, a2}) = ⌊ n
2a⌋ + 1 ,

and if a1 ̸= a2 then D0(n, {a1, a2}) = ⌊n+a1+a2−1
a1a2

⌋ .

Theorem 7.4 Let n be a nonnegative integer. For multiset A = {a1, a2, . . . , ak} , we have

Dr(n,A) =
∑
d|n

µ(d)D
(n
d
,A
)
, (7.1)

where µ(d) is the Möbius function.
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Proof For nonnegative integers n, k , we have D(n,A) =
∑

d|n D
r
(
n
d , A

)
, and by the Möbius inversion formula

we have that Dr(n,A) =
∑

d|n µ(d)D
(
n
d , A

)
, as required. 2

Corollary 7.5 Let n be a nonnegative integer and A = {a1, a2} . If a1 = a2 = a , then

Dr
0(n, {a1, a2}) =

1

2a
⌊φ(n)⌋,

where φ(n) is the Euler totient function.

Proof Let n, k be nonnegative integers and pα1
1 . . . pαk

k be the prime decomposition of n . By Lemma 7.3
and Theorem 7.4, we have Dr(n,A) =

∑
d|n µ(d)

(
⌊ n
2ad⌋+ 1

)
. If 2ad|n then ⌊ n

2ad⌋ is an integer and recall that∑
d|n φ(n) = n and

∑
d|n µ(d) = ⌊ 1

n⌋ . By the Möbius inversion we have

∑
d|n

µ(d)⌊ n

2ad
⌋ = 1

2a
φ(n).

Now, if 2ad ∤ n , we have∑
d|n

µ(d)⌊ n

2ad
⌋ =

∑
d|n

µ(d)(
n

2ad
− 1

2a
) =

∑
d|n

µ(d)(
n

2ad
)−

∑
d|n

µ(d)(
1

2a
)

=
1

2a
φ(n)− 1

2a

∑
d|n

µ(d) =
1

2a
φ(n),

as claimed. 2
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