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Abstract: The gamma function which is expressed by an improper integral is used to establish the fractional difference
operators and fractional Banach sets. In this study, we achieve some comprehensive and complementary results related
to characterizations of the matrix classes of fractional Banach sets. We also obtain some identities or inequalities for the
Hausdorff measure of noncompactness of the corresponding matrix operators, and finally find the necessary and sufficient
conditions for those matrix operators to be compact.

Key words: Hausdorff measure of noncompactness, gamma function, fractional operator, compact operator

1. Introduction
Measure of noncompactness is a very useful concept in functional analysis and applied mathematics, for
instance, in the fixed point theory studies, ordinary, partial, and fractional differential and integral equations,
and characterizations of compact operators between Banach spaces. Hausdorff measure of noncompactness
is established to study modulus of noncompact convexity which is important in the geometry of Banach and
Hilbert spaces.

Difference sets of sequences ℓ∞(∆), c(∆) and c0(∆) were introduced by Kızmaz [13], as the domain of
forward difference matrix ∆ in the spaces ℓ∞, c and c0 of bounded, convergent, and null sequences, respectively.
The difference sequence spaces bvp were investigated as the domain of backward difference matrix ∆(1) in the
space ℓp of absolutely p -summable sequences for the case 1 ≤ p ≤ ∞ by Başar and Altay [6] and for the case
0 < p < 1 by Altay and Başar [1], respectively. The idea of constructing new difference sequence spaces has been
developed by many researchers based on some newly defined infinite matrices in [2, 14–16, 27, 28]. We refer to
the textbook [5] for a comprehensive study about summability theory, and to the papers [1, 6, 7, 11, 20, 21] for
Hausdorff measure of noncompactness for matrix operators, difference sequence spaces, matrix transformations,
and related topics. Some remarkable and important results about visualization and animations for the topologies
of certain sequence spaces were illustrated in the papers [18, 19, 31]. The authors achieved those results applying
their software package. Those results have important and interesting applications in crystallography.

Fractional difference sequence spaces have recently been introduced and studied in the literature [3, 4].
Fractional operators, their properties, and certain fractional sequence spaces have appeared in those papers.
Necessary and sufficient conditions for the classes of compact matrix operators in (ℓp(∆

(α̃)), ℓ∞) for 1 ≤ p ≤ ∞
were obtained in [26]. In addition to these characterizations, Hausdorff measure of noncompactness was applied
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to establish the necessary and sufficient conditions for a matrix operator to be a compact operator in the classes
(X,Y ) , where X = ℓp(∆

(α̃)) (1 ≤ p < ∞) and Y is any of the spaces c0, c , and ℓ1 . The necessary and
sufficient compactness conditions for a matrix operator from fractional sets of sequences c0(∆(α)) , c(∆(α̃)) , and
ℓ∞(∆(α̃)) to the classical sets of sequences have been very recently determined in [25]. Fractional Banach set
of difference sequences ℓ(∆(α̃), p) was geometrically characterized and its modular structure was investigated
in [24]. In addition to uniform Opial, (β) , (L) and (H) properties, reflexivity and convexity of this set were
also investigated. The idea of extreme points was used to determine the necessary and sufficient conditions for
the set ℓ(∆(α̃), p) to be rotund. We remark that these properties play an important role in fixed point theory.

The sets of sequences ℓ1(Ψ) = {σ ∈ ω : Ψσ ∈ ℓ1} , c0(Ψ) = {σ ∈ ω : Ψσ ∈ c0} , and c(Ψ) = {σ ∈ ω :

Ψσ ∈ c} were considered in the papers [9, 10], where ω denotes the space of all complex valued sequences.
Certain results on matrix mappings and compact operators on ℓ1(Ψ) , c0(Ψ) , and c(Ψ) were generalized using
measures of noncompactness in those papers.

In this work, we give some comprehensive and complementary results by characterizing the matrix classes
(c0(∆

(α̃)), c0(Ψ)) , (c(∆(α̃)), c(Ψ)) , and (ℓ1(∆
(α̃)), ℓp(Ψ)) , where Ψ is an arbitrary triangle and 1 ≤ p < ∞ .

We establish identities or estimates for the Hausdorff measures of noncompactness of matrix operators LA ∈
B(c0(∆(α̃)), c0(Ψ)) , LA ∈ B(c(∆(α̃)), c(Ψ)) , and LA ∈ B(ℓ1(∆(α̃)), ℓ1(Ψ)) , and obtain necessary and sufficient
compactness conditions for those operators.

2. Notions and notations
We give the following notions, notations, and definitions that are needed throughout the paper.

The gamma function of a real number n (except zero and the negative integers) is defined by an improper
integral:

Γ (n) =

∫ ∞

0

e−ttn−1dt.

It is known that for any natural number n , Γ(n + 1) = n! , and Γ(n + 1) = nΓ(n) holds for any real
number n /∈ {0,−1,−2, ...} . The fractional difference operator for a fraction α̃ have been defined in [4] as

∆(α̃)(σn) =
∑∞

i=0 (−1)
i Γ(α̃+1)
Γ(α̃−i+1)σn−i. It is assumed that this series is convergent for σ ∈ ω . This infinite sum

becomes a finite sum if α̃ is a nonnegative integer. We use the usual convention that any term with a negative
subscript is equal to naught, throughout the paper.

The inverse ∆(−α̃) = (∆
(−α̃)
nk ) of fractional difference triangle ∆(α̃) = (∆

(α̃)
nk )

∆
(α̃)
nk =

{
(−1)n−k Γ(α̃+1)

(n−k)!Γ(α̃−n+k+1) (0 ≤ k ≤ n)

0 (k > n)

is given in [3] by

∆
(−α̃)
nk =

{
(−1)n−k Γ(−α̃+1)

(n−k)!Γ(−α̃−n+k+1) (0 ≤ k ≤ n)

0 (k > n).

A matrix Ψ = (ψnk)
∞
n,k=0 is said to be a triangle if ψnk = 0 for all k > n and ψnn ̸= 0 (n = 0, 1 . . .) . Let Ψ

be a triangle, then we write S for its inverse and R = St for the transpose of S .
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Let λ and µ be subsets of ω , then λ(Ψ) = {σ ∈ ω : Ψσ ∈ λ} denotes the matrix domain of Ψ in λ and
(λ, µ) is the class of all infinite matrices that map λ into µ .

Note that, e = (ek) and e(n) = (e
(n)
k ) (n = 0, 1, . . . ) are the sequences with ek = 1 for all k , and

e
(n)
n = 1 and e

(n)
k = 0 for k ̸= n .

A BK space is a Banach space with continuous coordinates. A BK space λ ⊃ ϕ is said to have AK if
every sequence σ = (σk)

∞
k=0 ∈ λ has a unique representation σ = limm→∞ σ[m] , where ϕ denotes the set of all

finitely non-zero sequences and σ[m] =
∑m

n=0 σne
(n) is the mth section of the sequence σ .

Let λ and µ be BK spaces and B (λ, µ) denote the set of all bounded linear operators L : λ→ µ . Then
we have (λ, µ) ⊂ B (λ, µ) , that is, every Ψ ∈ (λ, µ) defines an operator LΨ ∈ B (λ, µ) , where LΨ(σ) = Ψσ for
all σ ∈ λ (see [30, Theorem 4.2.8]). Let λ have AK , then we have B (λ, µ) ⊂ (λ, µ) , that is, every L ∈ B (λ, µ)

is given by a matrix Ψ ∈ (λ, µ) such that Ψσ = L(σ) for all σ ∈ λ (see [10, Lemma 1.1]).
Consider now the following fractional difference sequence spaces:

c0(∆
(α̃)) = {σ ∈ ω : lim

n→∞
∆(α̃)(σn) = 0};

c(∆(α̃)) = {σ ∈ ω : lim
n→∞

∆(α̃)(σn) exists};

ℓ1(∆
(α̃)) = {σ ∈ ω :

∞∑
n=0

∣∣∣∆(α̃)(σn)
∣∣∣ <∞}.

It is known that λ(Ψ) is a BK space with ∥.∥Ψ = ∥Ψ(.)∥ when (λ, ∥.∥) is a BK space [30, Theorem 4.3.12].
Taking into account this fact, the set ℓ1(∆

(α̃)) is a complete, linear, BK space equipped with the norm
∥σ∥ =

∑∞
n=0

∣∣∆(α̃)(σn)
∣∣ and the fractional difference sets c0(∆

(α̃)) and c(∆(α̃)) are complete, linear, BK

spaces equipped with the norm ∥σ∥ = supn

∣∣∆(α̃)(σn)
∣∣ .

All the notions and notations that are given in this section are standard and can also be found in [3, 17, 32].

3. Characterizations of matrix classes
In this section, we characterize the matrix classes (c0(∆

(α̃)), c0(Ψ)) , (c(∆(α̃)), c(Ψ)) , and (ℓ1(∆
(α̃)), ℓp(Ψ)) ,

where Ψ is an arbitrary triangle and 1 ≤ p <∞ .
We first give the following results which play an important role in this study.
BK spaces play an important role in the theory of sequence spaces and matrix transformations since

matrix transformations between BK spaces are continuous. Note that well known characterizations of the
classical sequence spaces can be found in [29].
Lemma 3.1 [9, Lemma 2.3] Let µ be an arbitrary subset of ω and λ be a BK space with AK . Also let
S = (sjk) be the inverse of an infinite matrix A and R be the transpose of S . Then A ∈ (λ(Ψ), µ) if and

only if Â ∈ (λ, µ) and W (An) ∈ (λ, ℓ∞) for all n = 0, 1, . . . . Here Â is the matrix with rows Ân = RAn for
n = 0, 1, . . . , and the triangles W (An) (n = 0, 1, . . .) are defined by

w
(An)
mk =


∞∑

j=m

anjsjk (0 ≤ k ≤ m)

0 (k > m).

Furthermore, if A ∈ (λ(Ψ), µ) then we have Az = Â(Tz) for all z ∈ Z = λ(Ψ) .
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Remark 3.2 [22, Remark 3.5] Let µ be an arbitrary subset of ω . Then we have A ∈ (c(Ψ), µ) if and only if{
Â ∈ (c0, µ) and
W (An) ∈ (c, c) for all n

and Âe− (αn) ∈ µ where αn = limm→∞
∑m

k=0 w
(An)
mk for all n .

Remark 3.3 [9, Remark 2.5] Let λ be a BK space with AK and µ be an arbitrary subset of ω , then we have
A ∈ (λ(Ψ), µ(Ψ̃)) if and only if {

B̂ ∈ (λ, µ) and
W (Bn) ∈ (λ, ℓ∞) for all n

or equivalently if and only if {
Ψ̃Â ∈ (λ, µ) and
W (An) ∈ (λ, ℓ∞) for all n,

where B = Ψ̃A , b̂nk =
∑∞

j=k sjkbnj for all n and k , and

w
(Bn)
mk =


∞∑

j=m

sjkbnj (0 ≤ k ≤ m)

0 (k > m)

(m = 0, 1, . . . ).

Theorem 3.4 Let Ψ be a triangle. Then we have A ∈ (c0(∆
(α̃)), c0(Ψ)) if and only if

sup
n

∞∑
k=0

∣∣∣∣∣∣
n∑

i=0

∞∑
j=k

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃+ j − k + 1)
ψniaij

∣∣∣∣∣∣ <∞, (3.1)

sup
m

m∑
k=0

∣∣∣∣∣∣
∞∑

j=m

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃− j + k + 1)
ψniaij

∣∣∣∣∣∣ <∞ (3.2)

and

lim
n→∞

n∑
i=0

∞∑
j=k

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃+ j − k + 1)
ψniaij = 0. (3.3)

Proof We first have

A ∈
(
c0(∆

(α̃)), c0(Ψ)
)

if and only if
{
Â ∈ (c0, c0(Ψ)) and
W (An) ∈ (c0, c0) for all n

by Lemma 3.1 since c0 is a BK space with AK . Since A ∈ (λ, µ(Ψ)) if and only if ΨA ∈ (λ, µ) , we have
Â ∈ (c0, c0(Ψ)) if and only if B = ΨÂ ∈ (c0, c0) . We also know from the well-known characterization of (c0, c0)

that

B = ΨÂ ∈ (c0, c0) if and only if


sup
n

∞∑
k=0

|bnk| <∞ and

lim
n→∞

bnk = 0 for all k.
(3.4)
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Taking into account the conditions in (3.4) and the definitions of ∆(α̃) and triangle B ,

bnk =

n∑
i=0

ψniâik =

n∑
i=0

∞∑
j=k

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃+ j − k + 1)
ψniaij

we obtain the conditions (3.1) and (3.3). On the other hand,

W (An) ∈ (c0, c0) if and only if


sup
m

m∑
k=0

∣∣∣w(An)
mk

∣∣∣ <∞ and

lim
m
w

(An)
mk = 0 for all k.

Since the series
∞∑
j=k

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃+ j − k + 1)
aij (3.5)

converges for each k , the condition limm w
(An)
mk = 0 becomes redundant. Therefore, we have W (An) ∈ (c0, c0)

if and only if the condition (3.2) is satisfied. It completes the proof. 2

Theorem 3.5 Let Ψ be a triangle. Then we have A ∈ (c(∆(α̃)), c(Ψ)) if and only if

sup
n

∞∑
k=0

∣∣∣∣∣∣
n∑

i=0

∞∑
j=k

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃+ j − k + 1)
ψniaij

∣∣∣∣∣∣ <∞, (3.6)

lim
n→∞

n∑
i=0

∞∑
j=k

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃+ j − k + 1)
ψniaij = ξ̂k exists for all k, (3.7)

sup
m

m∑
k=0

∣∣∣∣∣∣
∞∑

j=m

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃+ j − k + 1)
ψniaij

∣∣∣∣∣∣ <∞ for each n, (3.8)

lim
m→∞

m∑
k=0

n∑
i=0

∞∑
j=k

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃+ j − k + 1)
ψniaij = ξn exists for each n, (3.9)

lim
n→∞

 ∞∑
k=0

n∑
i=0

∞∑
j=k

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃+ j − k + 1)
ψniaij − ξn

 = ζ exists. (3.10)

Proof We first have

A ∈
(
c(∆(α̃)), c(Ψ)

)
if and only if


Â ∈ (c0, c(Ψ)),

Âe− (αn) ∈ c(Ψ) and
W (An) ∈ (c, c) for all n,
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where αn = limm→∞
∑m

k=0 w
(An)
mk for all n , by the help of Remark 3.2. Since A ∈ (λ, µ(Ψ)) if and only if

ΨA ∈ (λ, µ) , we have Â ∈ (c0, c(Ψ)) if and only if B = ΨÂ ∈ (c0, c) . We also know from the well known
characterization of (c0, c) that

B = ΨÂ ∈ (c0, c) if and only if


sup
n

∞∑
k=0

|bnk| <∞ and

lim
n→∞

bnk = ξ̂k for all k.
(3.11)

Taking into account the conditions in (3.11) and the definitions of ∆(α̃) and B , we obtain the conditions (3.6)
and (3.7). On the other hand, the condition Âe − (αi) ∈ c(Ψ) implies that (Ψn(Âe) − Ψn (αi)) ∈ c and this
implies the condition in (3.10) since limn αn exists for each n and since

Ψn ((αi)
∞
i=0) =

n∑
i=0

ψniαi =

n∑
i=0

ψni lim
m→∞

m∑
k=0

w
(Ai)
mk

= lim
m→∞

m∑
k=0

n∑
i=0

∞∑
j=k

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃+ j − k + 1)
ψniaij

= ξn.

Finally, we have

W (An) ∈ (c, c) if and only if


sup
m

m∑
k=0

∣∣∣w(An)
mk

∣∣∣ <∞,

lim
m
w

(An)
mk = ξn for all k,

lim
m
w

(An)
mk exists for all k,

(3.12)

which are the conditions (3.8) and (3.9). Note again that the last condition in (3.12) becomes redundant since
the series in (3.5) converges for each k . This completes the proof. 2

Theorem 3.6 Let 1 ≤ p <∞ and Ψ be a triangle. Then we have A ∈ (ℓ1(∆
(α̃)), ℓp(Ψ)) if and only if

sup
k

∞∑
n=0

∣∣∣∣∣∣
n∑

i=0

∞∑
j=k

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃− j + k + 1)
ψniaij

∣∣∣∣∣∣
p

<∞ (3.13)

and for all n = 0, 1, . . .

sup
m,k

∣∣∣∣∣∣
∞∑

j=m

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃− j + k + 1)
anj

∣∣∣∣∣∣ <∞. (3.14)

Proof We first have

A ∈
(
ℓ1(∆

(α̃)), ℓp(Ψ)
)

if and only if
{
Â ∈ (ℓ1, ℓp(Ψ)) and
W (An) ∈ (ℓ1, ℓ∞) for all n
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by Lemma 3.1 since ℓ1 is a BK space with AK . Also, since A ∈ (λ, µ(Ψ)) if and only if ΨA ∈ (λ, µ) , we have
Â ∈ (ℓ1, ℓp(Ψ)) if and only if B = ΨÂ ∈ (ℓ1, ℓp) . We also know from the well known characterization of (ℓ1, ℓp)

that B = ΨÂ ∈ (ℓ1, ℓp) if and only if

sup
k

∞∑
n=0

|bnk|p = sup
k

∞∑
n=0

∣∣∣∣∣∣
n∑

i=0

∞∑
j=k

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃− j + k + 1)
ψniaij

∣∣∣∣∣∣
p

<∞.

Hence, we obtain the condition (3.13). On the other hand, W (An) ∈ (ℓ1, ℓ∞) if and only if

sup
m,k

m∑
k=0

∣∣∣w(An)
mk

∣∣∣ = sup
m,k

m∑
k=0

∣∣∣∣∣∣
∞∑

j=m

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃− j + k + 1)
anj

∣∣∣∣∣∣ <∞,

which is the condition (3.14). 2

4. Applications of measures of noncompactness

In this section, we give our main results related to compact operators on the sets of fractional difference
sequences.

We recall the definition of Hausdorff measure of noncompactness for operators between Banach spaces.
If λ and µ are infinite–dimensional complex Banach spaces then a linear operator L : λ → µ is said to

be compact if the domain of L is all of λ , and, for every bounded sequence (σn) in λ , the sequence (L(σn))

has a convergent subsequence. We denote the class of such operators by C(λ, µ) .
Let (λ, d) be a metric space, B(b, c) = {a ∈ λ : d(a, b) < c} denote the open ball of radius c > 0 and

centre in b ∈ λ , and Mλ be the collection of bounded sets in λ . The Hausdorff measure of noncompactness of
Q ∈ Mλ is

χ(Q) = inf{ϵ > 0 : Q ⊂
n∪

k=1

B(σk, δk) : σk ∈ λ, δk < ϵ, 1 ≤ k ≤ n, n ∈ N}.

Let λ and µ be Banach spaces and χ1 and χ2 be measures of noncompactness on λ and µ . Then the
operator L : λ → µ is called (χ1, χ2)–bounded if L(Q) ∈ Mµ for every Q ∈ Mλ and there exists a positive
constant C such that χ2(L(Q)) ≤ Cχ1(Q) for every Q ∈ Mλ . If an operator L is (χ1, χ2)–bounded then the
number ∥L∥(χ1,χ2) = inf{C ≥ 0 : χ2(L(Q)) ≤ Cχ1(Q) holds for all Q ∈ Mλ} is called the (χ1, χ2)–measure of
noncompactness of L . In particular, if χ1 = χ2 = χ , then we write ∥L∥χ instead of ∥L∥(χ,χ) .

Let λ be a normed space. Then Sλ = {σ ∈ λ : ∥σ∥ = 1} and B̄λ = {σ ∈ λ : ∥σ∥ ≤ 1} denote the unit
sphere and closed unit ball in λ .

Let λ and µ be Banach spaces and L ∈ B (λ, µ) . Then we have

∥L∥χ = χ
(
L(B̄λ)

)
= χ (L(Sλ)) [23, Theorem 2.25]; (4.1)

L ∈ C(λ, µ) if and only if ∥L∥χ = 0 [23, Corollary 2.26]. (4.2)
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Lemma 4.1 [23, Theorem 2.23] Let λ be a Banach space with Schauder basis (bn)
∞
n=0 , Q ∈ Mλ, Pn : λ→ λ be

the projector onto the linear span of {b0, b1, . . . bn} . I be the identity map on λ and Rn = I−Pn (n = 0, 1, . . . ) .
Then we have

1

a
· lim sup

n→∞

(
sup
σ∈Q

∥Rn(σ)∥
)

≤ χ(Q) ≤ lim sup
n→∞

(
sup
σ∈Q

∥Rn(σ)∥
)
,

where a = lim supn→∞ ∥Rn∥ .

Lemma 4.2 [23, Theorem 2.8] Let Q be a bounded subset of the normed space λ , where λ is ℓp for 1 ≤ p <∞

or c0 . If Pn : λ→ λ is the operator defined by Pn(σ) = σ[n] for σ = (σk)
∞
k=0 ∈ λ , then we have

χ(Q) = lim
n

(
sup
σ∈Q

∥Rn(σ)∥
)
.

Lemma 4.3 [10, Lemma 3.5] Let λ and µ be Banach sequence spaces, Ψ be a triangle and L ∈ B(λ, µ(Ψ)) .
Then we have

∥L∥(χ,χΨ) = ∥LΨ ◦ L∥χ.

We establish identities or estimates for the Hausdorff measures of noncompactness of matrix operators LA ∈
B(c0(∆(α̃)), c0(Ψ)) , LA ∈ B(c(∆(α̃)), c(Ψ)) and LA ∈ B(ℓ1(∆(α̃)), ℓ1(Ψ)) , and obtain necessary and sufficient
compactness conditions for those operators.

Theorem 4.4 Let Ψ be triangle and the operator LA ∈ B(c0(∆(α̃)), c0(Ψ)) be given by a matrix A ∈
(c0(∆

(α̃)), c0(Ψ)) . Then we have ∥LA∥χ = Υ , where

Υ = lim
r→∞

sup
n>r

 ∞∑
k=0

|
n∑

i=0

∞∑
j=k

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃− j + k + 1)
ψniaij |

 .

Proof Applying equality (4.1) and Lemma 4.2, we have

∥LA∥χ = χΨ (LA(Sλ)) = χ (Ψ(LA(Sλ))) .

Then we also obtain

∥LA∥χ = χ (Q) = lim
r→∞

(
sup
σ∈Q

∥(I − Pr) (x)∥
)

= lim
r→∞

(
sup
σ∈Sλ

∥(I − Pr)Ψ(Ax)∥
)

by Lemma 4.2 because the set Q = Ψ(LA(Sλ)) is included by c0 .
Taking into account the equality Ψ(Aσ) = (ΨA)σ for each σ ∈ c0(Ψ) , we have

∥LA∥χ = χ (Q) = lim
r→∞

(
sup
σ∈Sλ

∥(I − Pr) ((ΨA)σ)∥
)

= lim
r→∞

(
sup
σ∈Sλ

∥(0, 0, 0, . . . , (ΨA)r+1σ, (ΨA)r+2σ, · · · )∥
)
.
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Bearing those equalities in mind and the fact that A ∈ (λ(Ψ), µ) implies ∥LA∥ =
∥∥LÂ

∥∥ when λ has AK ; and

∥LA∥ = ∥A∥ , we have ∥LA∥χ = Υ since ΨA ∈ (c0(∆
(α̃)), c0) .

2

Theorem 4.5 Let Ψ be triangle and the operator LA ∈ B(c(∆(α̃)), c(Ψ)) be given by a matrix A ∈ (c(∆(α̃)), c(Ψ)) .
Then we have

1

2
·Ω ≤ ∥LA∥χ ≤ Ω,

where Ω = lim
r→∞

sup
n>r

(Ω1 +Ω2) ;

Ω1 =
∞∑
k=0

∣∣∣∣∣ n∑
i=0

∞∑
j=k

(−1)j−k Γ(−α̃+1)
(j−k)!Γ(−α̃−j+k+1)ψniaij − ξ̂k

∣∣∣∣∣ ,
Ω2 =

∣∣∣∣ ∞∑
k=0

ξ̂k − ξn − ζ

∣∣∣∣
and also ξ̂k , ξn and ζ are defined in Theorem 3.5.

Proof Taking into account A ∈ (c(∆(α̃)), c(Ψ)) , [8, Theorem 3.7 (a)] and Lemma 4.3 we write

1

2
· lim sup

n→∞
(Φn(B)) ≤ ∥L∥χ ≤ lim sup

n→∞
(Φn(B)) ,

where B = ΨA and Φ is a matrix given for n ∈ N by

Φ(B) =

∞∑
k=0

∣∣∣b̂nk − ξ̂k

∣∣∣+ ∣∣∣∣∣
∞∑
k=0

ξ̂k − ξn − ζ

∣∣∣∣∣ ,
where ξn = lim

m→∞
w

(Bn)
mk for n = 0, 1, . . . ,

ζ = lim
n→∞

(
∞∑
k=0

b̂nk − ξn) and

ξ̂ = (ξk)
∞
k=0 with ξ̂k = lim

n→∞
b̂nk for k = 0, 1, . . . .

Since A ∈ (c(∆(α̃)), c(Ψ)) if and only if B = ΨA ∈ (c(∆(α̃)), c) . Applying Remark 3.2, we have
B = ΨA ∈ (c(∆(α̃)), c) if and only if B̂ ∈ (c0, c) , W (Bn) ∈ (c, c) for all n and B̂e − ξn ∈ c . The condition
B̂ ∈ (c0, c) implies that

lim
n→∞

n∑
i=0

∞∑
j=k

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃− j + k + 1)
ψniaij = ξ̂k exists for all k.

Also the condition W (Bn) ∈ (c, c) implies that

lim
m→∞

m∑
k=0

n∑
i=0

∞∑
j=k

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃+ j − k + 1)
ψniaij = ξn exists for each n.
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Finally, the condition B̂e− ξn ∈ c implies that

lim
n→∞

 ∞∑
k=0

n∑
i=0

∞∑
j=k

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃+ j − k + 1)
ψniaij − ξn

 = ζ exists.

Therefore, we have the existences of ξn, ζ , and ξ̂ and therefore Ω . This completes the proof by Lemma 4.3
and [8, Theorem 3.7 (a)]. 2

Theorem 4.6 Let Ψ be triangle and the operator LA ∈ B(ℓ1(∆(α̃)), ℓ1(Ψ)) be given by a matrix A ∈
(ℓ1(∆

(α̃)), ℓ1(Ψ)) . Then we have ∥LA∥χ = Λ , where

Λ = lim
r→∞

sup
k

 ∞∑
n=r

|
n∑

i=0

∞∑
j=k

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃− j + k + 1)
ψniaij |

 .

Proof Taking into account Lemma 4.3 and the definition of fractional triangle, we have

∥L∥(χ
∆(α̃) ,χΨ) = ∥LΨ ◦ LA∥(χ

∆(α̃) ,χ)

= ∥LΨA∥(χ
∆(α̃) ,χ)

= lim
r→∞

sup
k

 ∞∑
n=r

|
n∑

i=0

∞∑
j=k

(−1)j−k Γ(−α̃+ 1)

(j − k)!Γ(−α̃− j + k + 1)
ψniaij |

 ,

which completes the proof. 2

We close this section with a corollary giving the compactness conditions for the classes (c0(∆
(α̃)), c0(Ψ)) ,

(c(∆(α̃)), c(Ψ)) , and (ℓ1(∆
(α̃)), ℓ1(Ψ)) , where Ψ is an arbitrary triangle, by Theorems 4.4–4.6, and the statement

in (4.2).

Corollary 4.7 Let Ψ be a triangle. Then the following statements hold:

(a) If A ∈ (c0(∆
(α̃)), c0(Ψ)) then LA ∈ C(c0(∆(α̃)), c0(Ψ)) if and only if Υ = 0 , where Υ is defined as in

Theorem 4.4.

(b) If A ∈ (c(∆(α̃)), c(Ψ)) then LA ∈ C(c(∆(α̃)), c(Ψ)) if and only if Ω = 0 , where Ω is defined as in Theorem
4.5.

(c) If A ∈ (ℓ1(∆
(α̃)), ℓ1(Ψ)) then LA ∈ C(ℓ1(∆(α̃)), ℓ1(Ψ)) if and only if Λ = 0 , where Λ is defined as in

Theorem 4.6.
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