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Abstract: In this article we give an explicit formula for the number of k -normal elements, hence answering Problem
6.1. of Huczynska et al. (Existence and properties of k -normal elements over finite fields, Finite Fields Appl 2013;
24: 170-183). Furthermore, for some cases we provide formulas that require the solutions of some linear Diophantine
equations. Our results depend on the explicit factorization of cyclotomic polynomials.
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1. Introduction
Let q be a prime power. For a positive integer n let Fq and Fqn denote finite fields of size q and qn , respectively.
Fqn forms a vector space over Fq of dimension n . An element α ∈ Fqn is called a normal element if the set of

conjugates B := {α, αq, . . . , αqn−1} forms a basis of Fqn over Fq . In this case B is called a normal basis of Fqn

over Fq .
Normal bases are widely used in areas such as cryptography, coding theory, and signal processing. They

are practical in implementing finite field arithmetic, especially in multiplication and exponentiation due to the
structure of finite fields (see, for example, [4, 8, 11, 14]). It is well known that there exists a normal basis of
Fqn over Fq (see [9, Theorem 2.35]). Furthermore, for some special values of q and n there exist normal bases
allowing finite field arithmetic with low complexities called optimal normal bases and Gaussian normal bases;
see [11, Theorem 3.1 and Theorem 3.2] and [4, Lemma 1].

Quasinormal bases were introduced in [12], which is a class of Fq -bases of Fqn that offer efficient
multiplication in finite fields. These are useful when there is no optimal normal base for a given finite field
and Gaussian normal bases of this field have high complexity. Extending the definition of normal elements,
k -normal elements were first introduced in [7], which also arise implicitly in constructing quasinormal bases.

Structures of k -normal elements were studied and an implicit formula for the number of k -normal
elements was given in [7] (see Theorem 2). To obtain the number of k -normal elements one needs an explicit
factorization of cyclotomic polynomials. In this article we give some results concerning this problem. Let Qn(x)

be the nth cyclotomic polynomial over the field Fq . It is defined as the unique monic polynomial having exactly
the nth primitive roots of unity as its zeros under the assumption that n is not divisible by the characteristic
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of Fq ; that is,

Qn(x) =

n∏
s=1

gcd(s,n)=1

(x− ζs) ,

where ζ is a primitive nth root of unity (see, for example, [9, Definition 2.44]). Factorization of Qn(x) was
given in [9, Theorem 3.75] for the case q ≡ 1 (mod 4) and n = 2m . The case where q is prime, q ≡ 3 (mod 4) ,
and n = 2m was studied in [1] and generalization of this case, i.e. for a prime power q ≡ 3 (mod 4) and
n = 2m , was done in [9, Theorem 3.76] and [10, Theorem 1], which gives the complete factorization of Qn .

In [6] the authors studied the relationship between cyclotomic polynomials and Dickson polynomials.
They studied the case where n = 2mr , with r being an odd prime and q ≡ ∓1 (mod r) . Hence, the complete
factorization for the case n = 2m3 for any characteristic greater than 3 was obtained. The case n = 2mr in
which q and r are odd with gcd(q, r) = 1 was studied in [16] and complete factorization for the case n = 2m5

for any odd characteristic field was settled. Complete factorization for the case n = 2m7 for any characteristic
was given in [5]. The relationship between cyclotomic polynomials Q2mr and Qr was given in [15] where r and
q are odd. The work in [3] covers a complete factorization of Qn where n = 2mpk , p being an odd prime such
that q ≡ 1 (mod p) . Lastly, in [17], the authors studied the relationship between Qpmr and Qr , where r is
odd. Furthermore, they gave a complete factorization for the cases n = 3m, n = 3m5 , and n = 3m7 . We will
exploit some of these results, while the remaining can be done similarly.

Four problems concerning k -normal elements were posed in [7]. In this article we investigate one of these
problems (Problem 6.1 in [7]), given as follows:

For which values of q, n , and k can “nice” formulae (in q and n) be obtained for the number of k -normal
elements of Fqn over Fq ?

We give an explicit formula for the number of k -normal elements of Fqn over Fq for some cases, hence answering
the problem above and, furthermore, for some cases we provide formulas involving solutions of some linear
Diophantine equations. Our results depend on the explicit factorizations of cyclotomic polynomials.

2. Preliminaries
In this section we give some notations and some preliminary results that will be used throughout the paper.

We denote the set of all nth roots of unity by R(n) and the set of all primitive nth roots of unity by
Ω(n) . For x, y ∈ Ω(n) , the relation ∼ defined by x ∼ y if and only if x+ x−1 = y+ y−1 yields an equivalence
relation on Ω(n) . We denote the set of representatives of equivalence classes under this equivalence by S(n) .

For a prime r , let vr(n) be the r -adic valuation of n defined as the greatest integer power of r such
that rvr(n) divides n . Formally, for any positive integer n , vr(n) is defined as

vr(n) = max{v ∈ N : rv | n}.

In the following sections we present the factorization of the cyclotomic polynomial Qn(x) depending on the
values of vr(q − 1) for some specific r .

For h ∈ Fq[x] , the Euler phi function Φq(h) gives the number of nonzero polynomials with degree smaller
than the degree of h and that are relatively prime to h . If h is a nonzero constant, then it is assumed to be
Φq(h) = 1 .
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A well-known characterization of normal elements over finite fields (see [9, Theorem 2.39]) is given by
the following result:

Theorem 1 [9] For α ∈ Fqn , {α, αq, . . . , αqn−1} is a normal basis for Fqn over Fq if and only if the polynomials

xn − 1 and αxn−1 + αqxn−2 + · · ·+ αqn−1 are relatively prime in Fqn [x] .

As a consequence of this theorem, the notion of normal elements was extended in [7] as follows.

Definition 1 [7] Let α ∈ Fqn and gα(x) := αxn−1 + αqxn−2 + · · · + αqn−1

=
∑n−1

i=0 αqixn−1−i ∈ Fqn [x] . If
gcd(xn − 1, gα(x)) over Fqn has degree k (where 0 ≤ k ≤ n − 1), then α is a k -normal element of Fqn over
Fq .

Here we note that a normal element of Fqn over Fq becomes 0 -normal in this definition. Therefore, the
notion of k -normality generalizes the notion of normality. The following theorem gives the number of k -normal
elements of Fqn over Fq implicitly. It depends on the factorization of xn − 1 , which in turn depends on the
factorization of cyclotomic polynomials. To the best of our knowledge it is the only general but implicit result
concerning the number of k -normal elements.

Theorem 2 [7] The number of k -normal elements of Fqn over Fq is given by∑
h|xn − 1

deg(h) = n− k

Φq(h), (1)

where divisors are monic and polynomial division is over Fq[x] .

In this article, we give the exact number of k -normal elements of Fqn over Fq for some values of q and n .
Furthermore, for some other values we will reduce the formula in Theorem 2 to a sum that depends on the
solution of a certain linear Diophantine equation.

3. Number of k -normal elements
In this section we present explicit formulas for the number of k -normal elements of Fqn over Fq depending on
the values of n and q . In our computations we mainly use the following useful result given in [9, Theorem 2.47].

Theorem 3 [9] If gcd(q, n) = 1 , then Qn(x) factors into ϕ(n)/d distinct monic irreducible polynomials in
Fq[x] of the same degree d , where d is the least positive integer such that qd ≡ 1 mod n .

The main difficulty in Theorem 3 is to obtain the values of d depending on q and n . Once we obtain
the values of d then one can get the number of k -normal elements of Fqn over Fq using Theorem 2. It is

well known that xn − 1 =
∏
m|n

Qm(x) , whenever char(Fq) does not divide n and one needs to find d values

corresponding to each Qm as in Theorem 3.
First we present the following simple case. Assume that n = pm , where p = char(Fq) . In this case

xn − 1 = xpm

− 1 = (x− 1)p
m

= (x− 1)n. (2)

797



SAYGI et al./Turk J Math

Using this simple identity we get the following result on the number of k -normal elements.

Proposition 1 Let char(Fq) = p and n = pm for some positive integer m . Then the number of k -normal
elements of Fqn over Fq is given by

f(k) = (q − 1)qn−k−1,

where k = 0, 1, . . . , n− 1 .

Proof Since the characteristic of Fq is p , equation (2) gives

xn − 1 = (x− 1)n.

Then by using Theorem 2 for 0 ≤ k ≤ n− 1 we get

f(k) =
∑

h | (x− 1)n, h− monic
degh = n− k

Φq(h) = Φq

(
(x− 1)n−k

)

= qn−k − qn−k−1 = (q − 1)qn−k−1.

2

Remark 1 To consider the general case in which gcd(q, n) ̸= 1 we assume that n = ps · n0 and gcd(q, n0) = 1

where char(Fq) = p . Then we have xn − 1 = (xn0 − 1)p
s . Therefore, one only needs to evaluate d values

in Theorem 3 for n0 and q . Combining this result with the proof of Proposition 1 one obtains the number of
k -normal elements of Fqn over Fq .

In the following subsections we consider the values of n = 2m , n = 3m , n = rm for some prime r ̸= 2, 3

and n = 2m · r for some prime r ̸= 2 separately and explicitly obtain the number of k -normal elements.

3.1. Case n = 2m

Now let us consider one of the earliest results about factorization of cyclotomic polynomials. By using the
following proposition we consider the extension fields of Fq , where the degrees of the extensions are powers of
2. Here we note that the general form of the factors of cyclotomic polynomials in this case is presented in [6,
Proposition 1] and it was obtained from the results of Theorem 3.35 and Theorem 2.47 in [9].

Proposition 2 [6, Proposition 1] Let q ≡ 1 (mod 4) be a prime power, n = 2m for some positive integer m

and L = v2(q − 1) , i.e. L ≥ 2 . Then the cyclotomic polynomial Q2m factorizes over Fq as

Q2m(x) =


∏

ζ∈Ω(2m)

(x− ζ), if 2 ≤ m ≤ L,∏
ζ∈Ω(2L)

(x2m−L

− ζ), if m > L.

Combining this result with Theorem 2, we obtain the following explicit result on the number of k -normal
elements.
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Theorem 4 Let q ≡ 1 (mod 4) be a prime power and n = 2m for some positive integer m . Let L = v2(q−1) ,
i.e. L ≥ 2 . Then the number of k -normal elements of Fqn over Fq is given as follows:

f(k) =



(
n

k

)
(q − 1)n−k, if L ≥ m

∑[
m−L∏
i=1

(
2L−1

ai

)
(q2

i

− 1)ai

](
2L

b

)
(q − 1)b, if L < m,

where the summation is over integers 0 ≤ ai ≤ 2L−1 (i = 1, . . . ,m − L), 0 ≤ b ≤ 2L , such that n − k =

2m−Lam−L + · · ·+ 2a1 + b.

Proof Let us consider the proof in two cases: L ≥ m and L < m .
First assume that L ≥ m . From Proposition 2 we know the factorization of cyclotomic polynomials and hence
we have

xn − 1 = x2m − 1

= Q2m(x)Q2m−1(x) · · ·Q1(x)

=
∏

ζ∈Ω(2m)

(x− ζ)
∏

ζ∈Ω(2m−1)

(x− ζ) · · ·
∏

ζ∈Ω(1)

(x− ζ)

=
∏

ζ∈R(2m)

(x− ζ) =
∏

ζ∈R(n)

(x− ζ).

In the last step, we use the fact that R(n) = R(2m) = ∪m
i=0Ω(2

i) ; that is, the union of all primitive 2i th
(i = 0, . . . ,m) roots of unity gives the set of all 2m th root of unity. Therefore, we see that xn − 1 splits in
Fq in this case. Now assume that {ζ1, . . . , ζn−k} ⊆ R(2m) . Then the number of k -normal elements is given as
follows:

f(k) =
∑

h | xn − 1
degh = n− k
h− monic

Φq(h) =

(
n

n− k

)
Φq((x− ζ1)(x− ζ2) · · · (x− ζn−k))

=

(
n

n− k

)
Φq(x− ζ1)Φq(x− ζ2) · · ·Φq(x− ζn−k)

=

(
n

n− k

)
(q − 1)n−k =

(
n

k

)
(q − 1)n−k,

which completes the first part of the proof.
Now we consider the case L < m . Again from Proposition 2 we have Q2i(x) =

∏
ζ∈Ω(2i)(x− ζ), for i =
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0, 1, . . . , L, and Q2i(x) =
∏

ζ∈Ω(2L)(x
2i−L −ζ), for i = L+1, . . . ,m . Hence, the factorization of xn−1 becomes

x2m − 1 = Q2m(x) · · ·Q2L+1(x)Q2L(x)Q2L−1(x) · · ·Q1(x)

=
∏

ζ∈Ω(2L)

(
x2m−L

− ζ
)
· · ·

∏
ζ∈Ω(2L)

(
x2 − ζ

)
×

∏
ζ∈Ω(2L)

(x− ζ)
∏

ζ∈Ω(2L−1)

(x− ζ) · · ·
∏

ζ∈Ω(1)

(x− ζ)

=
∏

ζ∈Ω(2L)

(
x2m−L

− ζ
)
· · ·

∏
ζ∈Ω(2L)

(
x2 − ζ

) ∏
ζ∈R(2L)

(x− ζ). (3)

Now that we know the factorization of xn − 1 from (3), we can assume that a divisor h(x) of xn − 1 is of the
form

h(x) =
∏

ζ ∈ Am−L ⊆ Ω(2L)
|Am−L| = am−L

(
x2m−L

− ζ
)
· · ·

∏
ζ ∈ A1 ⊆ Ω(2L)

|A1| = a1

(
x2 − ζ

) ∏
ζ ∈ A ⊆ R(2L)

|A| = b

(x− ζ)

where the integers ai, i = 1, . . . ,m− L and b comes from the the degree of h(x) , i.e.

n− k = 2m−Lam−L + · · ·+ 2a1 + b

and

0 ≤ b ≤ 2L, 0 ≤ ai ≤ 2L−1, i = 1, . . . ,m− L.

Here we note that A ⊆ R(2L) and |R(2L)| = 2L , which gives |A| = b ≤ 2L . Similarly, for i ∈ {1, . . . ,m − L}
we have Ai ⊆ Ω(2L) and |Ω(2L)| = 2L−2L−1 = 2L−1 , which gives |Ai| = ai ≤ 2L−1 . Then the Euler phi value
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of h(x) is evaluated as follows:

Φq(h(x)) = Φq

( ∏
ζ ∈ Am−L ⊆ Ω(2L)
|Am−L| = am−L

(
x2m−L

− ζ
)
· · ·

∏
ζ ∈ A1 ⊆ Ω(2L)

|A1| = a1

(
x2 − ζ

)

×
∏

ζ ∈ A ⊆ R(2L)
|A| = b

(x− ζ)

)

=
∏

ζ ∈ Am−L ⊆ Ω(2L)
|Am−L| = am−L

Φq

(
x2m−L

− ζ
)
· · ·

∏
ζ ∈ A1 ⊆ Ω(2L)

|A1| = a1

Φq

(
x2 − ζ

)

×
∏

ζ ∈ A ⊆ R(2L)
|A| = b

Φq(x− ζ)

=
∏

ζ ∈ Am−L ⊆ Ω(2L)
|Am−L| = am−L

(
q2

m−L

− 1
)
· · ·

∏
ζ ∈ A1 ⊆ Ω(2L)

|A1| = a1

(
q2 − 1

)

×
∏

ζ ∈ A ⊆ R(2L)
|A| = b

(q − 1)

=
(
q2

m−L

− 1
)am−L

· · ·
(
q2 − 1

)a1
(q − 1)

b
. (4)

Here note that for fixed am−L, . . . , a1 and b , the number of monic h(x) with degree n− k is

(
2L−1

am−L

)
· · ·
(
2L−1

a1

)(
2L

b

)
(5)

since |Ω(2L)| = 2L − 2L−1 = 2L−1 , |R(2L)| = 2L , and for each different selection of the root of unity we obtain
a different polynomial h(x) having degree n− k . Therefore, applying (4) to the formula (1) and using (5) we
find the number of k -normal elements as

f(k) =
∑

h | xn − 1, h− monic, degh = n− k

Φq(h)

=
∑[

m−L∏
i=1

(
2L−1

ai

)
(q2

i

− 1)ai

](
2L

b

)
(q − 1)b,

where the last summation is over 0 ≤ ai ≤ 2L−1 (i = 1, . . . ,m − L), 0 ≤ b ≤ 2L satisfying n − k =

2m−Lam−L + · · ·+ 2a1 + b . This completes the proof. 2

As an immediate consequence of Theorem 4 we have the following result on the number of 0 -normal
and 1 -normal elements. Note that for each of these cases the Diophantine equation in Theorem 4 has a unique
solution.
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Corollary 1 Let q ≡ 1 (mod 4) be a prime power and n = 2m for some positive integer m . Then the number
of 0-normal and 1-normal elements is given as follows:

f(0) =

{
(q − 1)n, if L ≥ m,

(q2
m−L − 1)a · · · (q2 − 1)a(q − 1)b, if L < m,

f(1) =

{
n(q − 1)n−1, if L ≥ m,

2L(q2
m−L − 1)a · · · (q2 − 1)a(q − 1)b−1, if L < m,

where L = v2(q − 1) , a = 2L−1 , and b = 2L . By taking the ratio we get

f(0)

f(1)
=

{
q−1
n , if L ≥ m,

q−1
2L

, if L < m.

Remark 2 From Corollary 1 we see that f(1) = f(0) whenever q − 1 = n and L ≥ m or q − 1 = 2L and
L < m . Furthermore, we know that there exist primitive normal elements for all finite fields. This suggests
that it is highly probable that there exist primitive 1-normal elements for all finite fields Fqn over Fq such that
q − 1 = n and L ≥ m or q − 1 = 2L and L < m .

Now we present numerical examples related to our formulas in Theorem 4.

Example 1 (Case 1) Let q = 9 and n = 8 . Then we have L = v2(q − 1) = 3 and m = 3 . In this case the
formula for the number of k -normal elements becomes

f(k) =

(
8

k

)
88−k.

In Table 1 we give the number of k -normal elements evaluated in Magma [2]. They are consistent with the
formula of Theorem 4.

Table 1. Number of k -normal elements of F98 over F9 .
k 0 1 2 3 4 5 6 7
f(k) 16777216 16777216 7340032 1835008 286720 28672 1792 64

Example 2 (Case 2) Now let us consider the finite field F58 over F5 . In this case we have q− 1 = 5− 1 = 4

and n = 2m = 8 , and hence L = v2(q − 1) = 2 and m = 3 . Then from Theorem 4 we have

f(k) =
∑(

2

a1

)(
4

b

)
(q2 − 1)a1(q − 1)b,

where 0 ≤ a1 ≤ 2, 0 ≤ b ≤ 4 , and 8− k = 2a1 + b . We can compute f(k) depending on the value of k and the
solutions of the Diophantine equation given in Table 2.
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Table 2. Integer solutions (a1, b) of the equation 8− k = 2a1 + b where 0 ≤ a1 ≤ 2, 0 ≤ b ≤ 4 .

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

(2,4) (2,3) (2,2)
(1,4)

(2,1)
(1,3)

(2,0),(1,2)
(0,4)

(1,1)
(0,3)

(1,0)
(0,2) (0,1)

Thus, the number of k -normal elements is as follows:

f(0) = (q2 − 1)2(q − 1)4, f(1) = 4(q2 − 1)2(q − 1)3,

f(2) = 6(q2 − 1)2(q − 1)2 + 2(q2 − 1)(q − 1)4, f(3) = 4(q2 − 1)2(q − 1) + 8(q2 − 1)(q − 1)3,

f(4) = (q2 − 1)2 + 12(q2 − 1)(q − 1)2 + (q − 1)4,

f(5) = 8(q2 − 1)(q − 1) + 4(q − 1)3, f(6) = 2(q2 − 1) + 6(q − 1)2, f(7) = 4(q − 1).

These values are consistent with the values computed with Magma given in Table 3.

Table 3. Number of k -normal elements of F58 over F5 .
k 0 1 2 3 4 5 6 7
f(k) 147456 147456 67584 21504 5440 1024 144 16

For any positive integer m ≥ 2 and for each ζ ∈ Ω(2m) we know that ζ−1 is also in Ω(2m) . Now assume
that Ω(2m) = {ζ1, ζ−1

1 , ζ2, ζ
−1
2 , . . . , ζ2m−2 , ζ−1

2m−2} and define Ω′(2m) = {ζ1, ζ2, . . . , ζ2m−2} . We will use this set

Ω′ in the Proposition 3. The complete factorization of x2m + 1 over Fq with q ≡ 3 (mod 4) is given in [10,
Theorem 1]. Using this factorization, we have the following result.

Proposition 3 [10] Let q ≡ 3 (mod 4) be a prime power, n = 2m for some positive integer m , and
L = v2(q + 1) , i.e. L ≥ 2 . Then the cyclotomic polynomial Q2m factorizes over Fq as

Q2m(x) =


∏

ζ∈Ω′(2m)

(x2 + (ζ + ζ−1)x+ 1), if 2 ≤ m ≤ L,∏
ζ∈Ω(2L)

(x2m−L

+ (ζ − ζ−1)x2m−L−1

− 1), if m > L.

Here we remark that the m > L case of this result comes from the proof of [9, Theorem 3.76], which uses
Waring’s formula. Furthermore, this result was proven in [10, Theorem 1] by considering the polynomial
factorization over the extension field Fq2 instead of Fq . Combining Proposition 3 with Theorem 2, we again
obtain the following explicit result on the number of k -normal elements. Here we assume that

(
r
s

)
= 0 if r < s .

Theorem 5 Let q ≡ 3 (mod 4) be a prime power and n = 2m for some positive integer m . Let L = v2(q+1) ,
i.e. L ≥ 2 , n0 = n/2 , and k0 = ⌊k/2⌋ . Then the number of k -normal elements of Fqn over Fq is given as
follows:

f(k) =


(

n0−1
n0−1−k0

)
(q2 − 1)n0−1−k0(q − 1)2 +

(
n0−1
n0−k0

)
(q2 − 1)n0−k0 , if k is even,

2
(

n0−1
n0−1−k0

)
(q2 − 1)n0−1−k0(q − 1), if k is odd,
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when m ≤ L , and for m > L we have

f(k) =
∑[

m−L∏
i=2

(
2L−1

ai

)
(q2

i

− 1)ai

](
2L − 1

a

)(
2

b

)
(q2 − 1)a(q − 1)b,

where the sum is over 0 ≤ b ≤ 2, 0 ≤ a ≤ 2L − 1 , and 0 ≤ ai ≤ 2L−1, i = 2, . . . ,m − L such that
n− k = 2m−Lam−L + · · ·+ 22a2 + 2a+ b .

Proof Here we omit the proof, which is very similar to the proof of Theorem 4. Note that in the proof of
Theorem 4 the factors of xn − 1 were linear and factors of the form x2m−L − ζ (see Proposition 2). Instead of
these factors, here we deal with 2 linear factors x − 1 , x + 1 , 2L − 1 quadratic factors, and the other factors
having degree 2i (i = 2, . . . ,m− L) of the polynomial xn − 1 given in Proposition 3. 2

Example 3 (Case 1) Let q = 7 and n = 8 , and then we have L = v2(q+1) = 3 and m = 3 . In this case the
formula for the number of k -normal elements becomes

f(k) =


(

3
3−k0

)
(q2 − 1)3−k0(q − 1)2 +

(
3

4−k0

)
(q2 − 1)4−k0 , is k is even

2
(

3
3−k0

)
(q2 − 1)3−k0(q − 1), if k is odd,

where k0 = ⌊k/2⌋ . By counting all k -normal elements by Magma [2] we get Table 4, which is consistent with
the formula given in Theorem 5.

Table 4. Number of k -normal elements of F76 over F7 .
k 0 1 2 3 4 5 6 7
f(k) 3981312 1327104 359424 82944 12096 1728 180 12

Example 4 (Case 2) Now let us consider the finite field F316 over F3 . In this case we have q+1 = 3+1 = 4

and n = 2m = 16 , and hence L = v2(q + 1) = 2 and m = 4 . Then from Theorem 5 we have

f(k) =
∑(

2

a2

)(
3

a

)(
2

b

)
(q4 − 1)a2(q2 − 1)a(q − 1)b,

where 0 ≤ a2 ≤ 2, 0 ≤ a ≤ 3, 0 ≤ b ≤ 2 , and 16 − k = 4a2 + 2a + b . We can compute f(k) depending
on the value of k . Solutions (a2, a, b) of the Diophantine equation 0 ≤ a2 ≤ 2, 0 ≤ a ≤ 3, 0 ≤ b ≤ 2 , and
16− k = 4a2 + 2a+ b are given in Table 5.
By counting all k -normal elements by Magma [2] we get Table 6, consistent with the formula given in Theorem
5.

3.2. Case n = 3m

Recently, the authors in [17] studied the factorization of cyclotomic polynomials for some cases. Using these
results we will give an explicit formula for the number of k -normal elements. For the sake of completeness we
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Table 5. Positive integer solutions (a2, a, b) of the equation 16− k = 4a2 + 2a+ b .

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

(2,3,2) (2,3,1) (2,3,0)
(2,2,2) (2,2,1)

(2,2,0)
(2,1,2)
(1,3,2)

(2,1,1)
(1,3,1)

(2,1,0)
(2,0,2)
(1,3,0)
(1,2,2)

(2,0,1)
(1,2,1)

k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 k = 14 k = 15
(2,0,0)
(1,2,0)
(1,1,2)
(0,3,2)

(1,1,1)
(0,3,1)

(1,1,0)
(1,0,2)
(0,3,0)
(0,2,2)

(1,0,1)
(0,2,1)

(1,0,0)
(0,2,0)
(0,1,2)

(0,1,1) (0,1,0)
(0,0,2) (0,0,1)

Table 6. Number of k -normal elements of F316 over F3 .
k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
13107200 13107200 8192000 4915200 2170880 942080 384000 148480

k = 8 k = 9 k = 10 k = 11 k = 12 k = 13 k = 14 k = 15
54528 17408 5760 1408 448 96 28 4

will state the result of [17] below. Let ζ be an element in some extension field of Fq and define gn(ζ, x) as
follows:

gn(ζ, x) = x2n − (ζ + ζ−1)xn + 1.

We use this polynomial in the following proposition.

Proposition 4 [17] For a positive integer m the factorization of cyclotomic polynomial Q3m(x) over Fq is
given as follows:

If q ≡ 1 (mod 3) , then when m ≤ v3(q − 1) ,

Q3m(x) =
∏

ζ∈Ω(3m)

(x− ζ),

and when m > v3(q − 1) ,

Q3m(x) =
∏

ζ∈Ω(3v3(q−1))

(
x3m−v3(q−1)

− ζ
)
.

If q ≡ 2 (mod 3) , then when m ≤ v3(q + 1) ,

Q3m(x) =
∏

ζ∈S(3m)

g1(ζ, x),

and when m > v3(q + 1) ,

Q3m(x) =
∏

ζ∈S(3v3(q+1))

g3m−v3(q+1)(ζ, x).
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Combining Proposition 4 with Theorem 2, we obtain the number of k -normal elements of Fqn over Fq

for n = 3m . In this case we have two results depending on the value of q (mod 3) . For q ≡ 1 (mod 3)

the factorization of Q3m(x) in Proposition 4 is very similar to the factorization of Q2m(x) in Proposition
2. Furthermore, for the case q ≡ 2 (mod 3) the factorization of Q3m(x) in Proposition 4 is similar to the
factorization of Q2m(x) in Proposition 3. Therefore, we state our results without the proof, which is very
similar to the proof given in the previous section.

Theorem 6 Let q ≡ 1 (mod 3) and n = 3m for some positive integer m . Then the number of k -normal
elements is given by

f(k) =


(
n

k

)
(q − 1)n−k, if L ≥ m,

∑[
m−L∏
i=1

(
2 · 3L−1

ai

)
(q3

i

− 1)ai

](
3L

b

)
(q − 1)b, if L < m,

where L = v3(q−1) and the sum in the last equation is over integers am−L, . . . , a1, b such that 0 ≤ ai ≤ 2 ·3L−1

(i = 1, . . . ,m− L), 0 ≤ b ≤ 3L , and n− k = 3m−Lam−L + · · ·+ 3a1 + b .

Before giving our next result we present some examples for the results in Theorem 6. In these examples
we see that the summation given in terms of Diophantine equations is easy to compute. Results given in these
examples are verified by evaluating k -normal elements in Magma [2].

Example 5 (Case 1) Let us consider the finite field F193 over F19 . In this case m = 1 and v3(q − 1) =

v3(18) = 2 . Then from Theorem 6 we know that the number of k -normal elements equals f(k) =
(
n
k

)
(q−1)n−k =(

3
k

)
18n−k for k = 0, 1, 2 . Evaluating with Magma we find that the number of k -normal elements f(k) is given

as in Table 7, and this is consistent with the formula given in Theorem 6.

Table 7. Number of k -normal elements of F193 over F19 .
k 0 1 2
f(k) 5832 972 54

Example 6 (Case 2) Now let us consider the finite field F49 over F4 . In this case we have q − 1 = 3 and
3m = 9 , and hence L = v3(q − 1) = 1 and m = 2 . Then from Theorem 6 we have

f(k) =
∑(

2

a1

)(
3

b

)
(q3 − 1)a1(q − 1)b,

where 0 ≤ a1 ≤ 2, 0 ≤ b ≤ 3 , and 9− k = 3a1 + b . We can compute f(k) depending on the value of k and the
solutions of the Diophantine equation given in Table 8.
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Table 8. Positive integer solutions (a1, b) of the equation 9− k = 3a1 + b where 0 ≤ a1 ≤ 2 and 0 ≤ b ≤ 3 .

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

(2,3) (2,2) (2,1) (2,0)
(1,3) (1,2) (1,1) (1,0)

(0,3) (0,2) (0,1)

The number of k -normal elements is:

f(0) = (q3 − 1)2(q − 1)3, f(1) = 3(q3 − 1)2(q − 1)2, f(2) = 3(q3 − 1)2(q − 1),

f(3) = (q3 − 1)2 + 2(q3 − 1)(q − 1)3, f(4) = 6(q3 − 1)(q − 1)2,

f(5) = 6(q3 − 1)(q − 1), f(6) = 2(q3 − 1) + (q − 1)3,

f(7) = 3(q − 1)2, f(8) = 3(q − 1).

These values are consistent with the values computed with Magma given in Table 9.

Table 9. Number of k -normal elements of F49 over F4 .
k 0 1 2 3 4 5 6 7 8
f(k) 107163 107163 35721 7371 3402 1134 153 27 9

Example 7 In this example we will consider the finite field F10936 over F109 . In this case we have q−1 = 4 ·33

and 3m = 36 , and hence L = v3(q − 1) = 3 and m = 6 . Then from Theorem 6 we have

f(k) =
∑(

18

a1

)(
18

a2

)(
18

a3

)(
27

b

)
(q3

3

− 1)a3(q3
2

− 1)a2(q3 − 1)a1(q − 1)b,

where 0 ≤ a1, a2, a3 ≤ 18, 0 ≤ b ≤ 27 , and 729 − k = 27a3 + 9a2 + 3a1 + b . We can easily compute f(k)

depending on the value of k .
For instance, for k = 0 our Diophantine equation becomes 729 = 27a3 +9a2 +3a1 + b , which has unique

solution (a3, a2, a1, b) = (18, 18, 18, 27) . Hence, the number of 0-normal elements or normal elements is f(0)

= (q3
3 − 1)18(q3

2 − 1)18(q3 − 1)18(q − 1)27 ≈ 24933.65 ≈ q728.947 where qn = q729 . Note that this number is
more than half of qn − 1 ≈ 24934 .

Similarly, for k = 1 our Diophantine equation becomes 728 = 27a3 + 9a2 + 3a1 + b , which has unique
solution (a3, a2, a1, b) = (18, 18, 18, 26) . Hence, the number of 1-normal elements is f(1) = 27(q3

3 − 1)18(q3
2 −

1)18(q3 − 1)18(q − 1)26 ≈ 24931.647 .
For k = 2 we get the equation 727 = 27a3 + 9a2 + 3a1 + b , which has unique solution (a3, a2, a1, b) =

(18, 18, 18, 25) . Hence, the number of 2-normal elements is f(2) = 351(q3
3 −1)18(q3

2 −1)18(q3−1)18(q−1)25 ≈
24928.593 .

Lastly, for k = 3 , we obtain the equation 726 = 27a3 + 9a2 + 3a1 + b , which has two solutions
(a3, a2, a1, b) ∈ {(18, 18, 18, 24), (18, 18, 17, 27)} . Hence, the number of 3-normal elements is f(3) = 2925(q3

3 −

1)18(q3
2 − 1)18(q3 − 1)18(q − 1)24 + 18(q3

3 − 1)18(q3
2 − 1)18(q3 − 1)17(q − 1)27 ≈ 24924.906 .
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By a similar argument as in Corollary 1, we have the following result using Theorem 6.

Corollary 2 Let q ≡ 1 (mod 3) be a prime power and n = 3m for some positive integer m . Then the ratio of
the number of normal elements and 1-normal elements is

f(0)

f(1)
=

{
q−1
n , if L ≥ m,

q−1
3L

, if L < m.

Again by combining Proposition 4 with Theorem 2, we obtain the number of k -normal elements of Fqn

over Fq where q ≡ 2 (mod 3) and n = 3m .

Theorem 7 Let q ≡ 2 (mod 3) and n = 3m for some positive integer m . Then if v3(q + 1) ≥ m , the number
of k -normal elements is given by

f(k) =


(

(n− 1)/2

(n− k − 1)/2

)
(q2 − 1)(n−k−1)/2(q − 1), if k is even,(

(n− 1)/2

(n− k)/2

)
(q2 − 1)(n−k)/2, if k is odd,

and if L = v3(q + 1) < m we have

f(k) =
∑[

m−L∏
i=1

(
3L−1

ai

)
(q2·3

i

− 1)ai

]( 3L−1
2

a

)
(q2 − 1)a(q − 1)b,

where the sum is over 0 ≤ a ≤ (3L − 1)/2, 0 ≤ b ≤ 1 , and 0 ≤ ai ≤ 3L−1, i = 1, . . . ,m − L such that
n− k = 2 · 3m−Lam−L + · · ·+ 2 · 3a1 + 2a+ b .

Now we present examples for Theorem 7 for the two cases separately.

Example 8 (Case 1) Let q = 53 and n = 32 . In this case we have L = v3(q + 1) = 3 and m = 2 . Hence,
the formula in Theorem 7 becomes

f(k) =


(

4

(8− k)/2

)
(532 − 1)(8−k)/2 · 8, if k is even,(

4

(9− k)/2

)
(532 − 1)(9−k)/2, if k is odd.

From this formula we get the number of k -normal elements given in Table 10.

Example 9 (Case 2) Let q = 17 and n = 33 . We get L = v3(q + 1) = 2 and m = 3 . By the second part of
Theorem 7 we have

f(k) =
∑(

3

a1

)(
4

a

)
(172·3 − 1)a1(172 − 1)a16b,

where the sum is over 0 ≤ a ≤ 4, 0 ≤ b ≤ 1 , and 0 ≤ a1 ≤ 3, such that 9 − k = 2 · 3a1 + 2a + b . Positive
solutions (a1, a, b) of this Diophantine equation are given in Table 11.
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Table 10. Number of k -normal elements of F539 over F53 .
k 0 1 2 3 4
f(k) 226324139 224324138 222318137 220318136 215313135

k 5 6 7 8
f(k) 213313134 21036133 2836132 2213

Table 11. Positive integer solutions (a1, a, b) of the equation 9 − k = 3a1 + 2a + b where 0 ≤ a ≤ 4, 0 ≤ b ≤ 1 , and
0 ≤ a1 ≤ 3 .

k = 0 k = 1 k = 2 k = 3 k = 4
(1,1,1)
(0,4,1)

(1,1,0)
(0,4,0)

(1,0,1)
(0,3,1)

(1,0,0)
(0,3,0) (0,2,1)

k = 5 k = 6 k = 7 k = 8
(0,2,0) (0,1,1) (0,1,0) (0,0,1)

Therefore, the number of k -normal elements is:

f(0) = 12(172·3 − 1)(172 − 1)16 + (172 − 1)416,

f(1) = 12(172·3 − 1)(172 − 1) + (172 − 1)4,

...

f(8) = 16.

3.3. Case n = pm

Proposition 4 was partially generalized by taking arbitrary odd prime p instead of 3 [17]. First we state this
result for completeness and then find the number of k -normal elements in this case.

Proposition 5 [17] Given a prime power q and an odd prime p such that q ≡ 1 (mod p) , let n = pm for
some positive integer m and L = vp(q − 1) . Then the cyclotomic polynomial Qn(x) factorizes over Fq into
irreducibles as follows:

Qn(x) =

{∏
ζ∈Ω(n)(x− ζ), if L ≥ m,∏
ζ∈Ω(pL)(x

pm−L − ζ), if L < m.

Now using Proposition 5 we can extend our Theorem 4 and Theorem 6 to arbitrary characteristics p

instead of 2 and 3. We will state it without the proof, since its proof is similar to the proof of Theorem 4.

Theorem 8 Given a prime power q and an odd prime p such that q ≡ 1 (mod p) , let n = pm for some
positive integer m and L = vp(q − 1) . Then the number of k -normal elements of Fqn over Fq is given as
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follows:

f(k) =


(
n

k

)
(q − 1)n−k, if L ≥ m,∑[
m−L∏
i=1

(
(p− 1)pL−1

ai

)
(qp

i

− 1)ai

](
pL

b

)
(q − 1)b, if L < m,

where the summation is over integers 0 ≤ ai ≤ (p− 1)pL−1, 0 ≤ b ≤ pL such that n− k = pm−Lam−L + · · ·+
pa1 + b.

Example 10 Let q = 251 and n = 53 . Then we have L = v5(q − 1) = 3 and m = 3 . In this case the formula
for the number of k -normal elements becomes

f(k) =

(
125

k

)
250125−k.

Example 11 Let q = 11 and n = 52 . Then we have L = v5(q − 1) = 1 and m = 2 . In this case the formula
for the number of k -normal elements becomes

f(k) =
∑(

4

a1

)(
5

b

)
(115 − 1)a110b,

where the summation is over integers 0 ≤ a1 ≤ 4, 0 ≤ b ≤ 5 such that 25− k = 5a1 + b. Taking k = 0 we have
unique solution (a1, b) = (4, 5) and hence the number of 0-normal (normal) elements equals f(0) = (115−1)4105 .
Similarly, for k = 1 , we have unique solution (a1, b) = (4, 4) and hence the number of 1-normal elements equals
f(1) = 5(115 − 1)4104 .

3.4. Case n = 2m · r
In this section we consider the number of k -normal elements of Fqn over Fq where n = 2m · r for some odd
prime r . In [6], using [9, Theorem 2.47, Theorem 3.35], the general forms of the factors of the cyclotomic
polynomials were given depending on the values of q ≡ ±1 mod r . Now we first present this factorization and
then, combining this result, Proposition 2, and Proposition 3 with Theorem 2, we give our results.

Proposition 6 [6] Let L = v2(q
2 − 1) .

1. Suppose q ≡ 1 mod r . Then:

(a) For 0 ≤ m ≤ v2(q − 1) , Q2mr(x) is a product of linear factors.

(b) For v2(q − 1) < m ≤ L, Q2mr is a product of irreducible quadratic polynomials.

(c) For m > L, Q2mr(x) =
∏

fi(x
2m−L

) , where Q2Lr =
∏

fi(x) .

2. Suppose q ≡ −1 mod r . Then:

(a) For 0 ≤ m ≤ L , Q2mr is a product of irreducible quadratic factors.

(b) For m > L , Q2mr(x) =
∏

fi(x
2m−L

) , where Q2Lr(x) =
∏

fi(x) .
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Theorem 9 Let q ≡ 1 (mod r) be a prime power and n = 2mr for some positive integer m and an odd prime
r . Assume that L2 = v2(q − 1) ≥ m . Then the number of k -normal elements of Fqn over Fq is

f(k) =

(
n

k

)
(q − 1)n−k.

Remark 3 In Theorem 9 we only considered q ≡ 1 (mod r) and m ≤ v2(q − 1) . In other cases due to the
degrees of the factors of xn − 1 there are many cases to be considered, and hence for these cases the formulas
will not be that simple, which are not included here.

4. Conclusion
In this paper, we give positive answers to Problem 6.1. in [7] by obtaining explicit formulas for the number
of k -normal elements over finite fields under some conditions. In some cases, we show how to obtain explicit
formulas requiring solutions of some linear Diophantine equations, which can be easily solved depending on
values of n and k . For some special values of n and k these numbers can be evaluated explicitly.

Lastly, [13] deserves comment since it also considered the existence of k -normal elements over finite
fields. The main problem considered in [13] is the existence of primitive k -normal elements over finite fields,
which is not directly related to our main focus. On the other hand, [13, Section 5.2] has results that appear
similar to ours. In fact, there is a little overlap, proved independently. The cases v2(q − 1) ≥ m in Theorem 4
and v3(q − 1) ≥ m in Theorem 6 were also obtained in [13, Corollary 5.7]. Furthermore, [13, Example 5.6] is
equivalent to our Proposition 1.
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