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Abstract: We prove that each complete flat cone metric on a surface with regular or irregular punctures can be
triangulated with finitely many types of triangles. We derive the Gauss–Bonnet formula for this kind of cone metrics.
In addition, we prove that each free homotopy class of paths has a geodesic representative.
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1. Introduction
Flat cone metrics appear in several areas of mathematics. For example, they are studied in the Teichmüller
theory through quadratic differentials and in dynamics of billiard tables [5, 10]. These objects are also interesting
for their own sake. Classification of certain families of these metrics may yield interesting results in several areas
of mathematics such as hypergeometric functions and (real and complex) hyperbolic geometry [2, 4, 6, 7, 11, 12].
In addition, regarding combinatorial triangulations or quadrangulations as cone metrics as in [12], one can
parametrize certain families of dessins d’enfants. See [1, 17, 19].

Flat cone metrics on compact surfaces have been studied well. We know that there is a length-minimizing
path between any two points of such a surface. Also, each free homotopy class of loops on a compact surface
with a flat metric contains a length-minimizing geodesic. Indeed, these properties follow from the general
theory of length spaces [3, 8]. Furthermore, the Gauss–Bonnet formula holds for these surfaces, and they can
be triangulated with finitely many triangles. See [13–15].

The Teichmüller theory is related with the theory of cone metrics in a natural way. Let S be a closed,
orientable surface, x1, . . . , xn ∈ S . Pick a1, . . . an ∈ R so that

∑n
i=1 ai = 2πχ(S) , where χ(S) is Euler

characteristics of S . Consider the curvature divisor

D =

n∑
i=1

aixi.

It is known that each conformal class on S includes a flat metric with n singular points of divisor D .
Furthermore, this metric is unique up to homothety. See the papers by Troyanov [13, 14] in the case where
ai < 2π for each 1 ≤ i ≤ n , otherwise see the paper by Hulin and Troyanov [16].

Flat surfaces regular punctures have been also studied well. By a regular puncture on a flat surface,
we mean a puncture which has a neighborhood isometric to that of point at infinity of a cone. The Gauss–
∗Correspondence: isaglamtrfr@gmail.com
2000 AMS Mathematics Subject Classification: 51F99, 57M50

This work is licensed under a Creative Commons Attribution 4.0 International License.
813

https://orcid.org/0000-0002-1283-6396


SAĞLAM/Turk J Math

Bonnet formula holds for the surfaces with regular punctures. Also, there is length-minimizing geodesic in any
homotopy class of loops in such a surface. In addition, these surfaces may be triangulated with finitely many
types of triangles.

Our objective is to verify that any complete flat metric on a given surface, with regular or irregular
punctures, has the above-mentioned properties. Let S̄ be a surface with a complete flat cone metric. We
summarize the results of the present paper as follows.

1. In Section 3, we show that S̄ can be triangulated with finitely many types of triangles.

2. In Section 4, we show that a variant of the Gauss–Bonnet formula holds for S̄ .

3. In Section 5, we show that each loop on S̄ has a geodesic representative in its free homotopy class.

We want to study complete flat metrics at the highest level of generality. The surfaces that we consider are
of finite type and may have punctures and boundary. We do not omit the surfaces having punctured boundary
components from our discussion. Therefore, we start with introducing a convenient notation.

1.1. Notation
Definition 1. Let S be a compact, connected topological surface perhaps with boundary B . Let l, p, l′, p′ be
finite disjoint subsets of S so that

• l and p are subsets of the interior of S ,

• p′, l′ are subsets of B .

An element in l will be called labeled interior point. An element in p will be called punctured interior
point. Other points in interior of S called ordinary interior points. An element in B will be called boundary
point. An element in l′ will be called a labeled boundary point. An element in p′ will be called punctured
boundary point. Other points in boundary will be called ordinary boundary points. A doubly labeled surface,
shortly DL surface, is the tuple

(S,B, l, p, l′, p′)

Also, we will use the following notation:

1. SB = S −B .

2. Sl = S − l

3. SB,l = S − (B ∪ l)

4. …

We will denote a doubly labeled surface (S,B, l, p, l′, p′) as SL . Underlying compact surface of SL will
simply be denoted as S .

DL surfaces can be considered to be punctured surfaces, with puncture set p ∪ p′ . Indeed, Sp,p′ is the
punctured surface that we consider. Observe that punctured and labeled points may also lie in boundary.
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2. Flat DL surfaces
Flat compact surfaces can be triangulated with finitely many triangles. For noncompact surfaces, we need to
modify the definition of triangulation. The reason for this is that punctured surfaces may require infinitely
many triangles and arbitrary triangulations possibly induce noncomplete cone metrics.

Definition 2. An Euclidean triangulation of a DL surface SL is a set of pairs T = {(Tα, fα)α∈A} where each
Tα is a compact subset of Sp,p′ and fα : Tα → R2 is a homeomorphism onto a nondegenarete triangle fα(Tα)

in the Euclidean plane. Tα is called a triangle. Let e be a subset of Tα . e is called an edge if fα(e) is an
edge for the Euclidean triangle fα(Tα) . Similary, v ∈ Tα is called a vertex if fα(v) is a vertex of the triangle
fα(Tα) . The Euclidean triangulation also satisfies the following properties:

1. Sp,p′ = ∪α∈ATα

2. If α ̸= β , then Tα ∩ Tβ is either empty or an edge, or a vertex.

3. If Tα ∩ Tβ is not empty, then there is a gαβ ∈ E(2) (the group of isometries of Euclidean plane) so that
fα = gαβfβ on the intersection.

4. (Local finiteness) Each compact subset of Sp,p′ intersect with finitely many triangles, edges, and vertices.

5. Set of triangles fα(Tα) consists of finitely many isometry classes of Euclidean triangles.

Observe that our definition is a generalization of the one given in [15]. We just added two more conditions:
(4) and (5). Note that Euclidean triangulations on compact surfaces always have these properties. We will show
that these triangulations induce complete flat cone metrics on DL surfaces and DL surfaces with complete cone
metrics can be triangulated. See Proposition 2 and Theorem 3.

The Notions of angle and curvature for DL surfaces having Euclidean triangulations

Definition 3. Let SL be a DL surface together with a Euclidean triangulation. Let x be a vertex in SB . x is
called a point having angle θ if

θ = θ(x) =
k∑

j=1

ϕj , (1)

where ϕ1, . . . , ϕk are angles of the triangles incident to x , at the vertex x . The curvature at x is

κ = κ(x) = 2π − θ(x). (2)

Similarly, let y be a vertex in B − p′ . y is called a point having angle θ if

θ = θ(y) =

r∑
j=1

ϕ′j , (3)

where ϕ′1, . . . , ϕ
′
r are angles of the triangles incident to y , at the vertex y . The curvature at y is

κ = κ(y) = π − θ(y). (4)

Curvature at the points which are not vertices is defined to be 0 . If a point, either on the boundary or not, has
curvature 0 , then it is called nonsingular, otherwise it is called singular.
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Definition 4. A flat doubly labeled (FDL) surface (SL,T) is a DL surface SL together with an Euclidean
triangulation T such that its set of singular points is l ∪ l′ .

In Section 4, we will extend the notions of the curvature and the angle to the punctured interior and
punctured boundary points.

2.1. Induced length structure

An FDL surface (SL,T) has natural area measure which coincides with the 2 dimensional Lebesque measure
at each triangle Tα . Also, as in [15], we can define the length l(c) of a curve c : [a, b] → Sp,p′ (a, b ∈ R, a < b)
as follows:

• If c is contained in a triangle Tα of T , then l(c) is its Euclidean length.

• If c is concatenation of two curves c1 and c2 , then l(c) = l(c1) + l(c2) .

When there is no risk of confusion, we will refer curves on Sp,p′ as curves on SL . Also, we will use the
notation [a, b] → SL instead of [a, b] → Sp,p′ .

Lemma 1. Let SL be an FDL surface. Any two points in Sp,p′ can be joined by a curve of finite length.

Proof Take two points x, y ∈ Sp,p′ and a curve c : [0, 1] → SL joining them. Since image of the curve is
compact it is contained in a finite number of triangles. One can easily construct a finite length curve joining x

and y which lies in the union of these triangles.

Consider the following function d : Sp,p′ × Sp,p′ → R

d(x, y) = inf{l(α) : α is a curve joining x to y }. (5)

Proposition 1. d is a metric on Sp,p′ :

1. d(x, x) = 0 for all x ∈ Sp,p′ .

2. ∞ > d(x, y) > 0 , when x ̸= y .

3. d(x, y) = d(y, x) for all x, y ∈ Sp,p′ .

4. d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ Sp,p′ .

Proof (1), (3), and (4) are obvious. (2) follows from local finiteness property of the Euclidean triangulations
and Lemma 1.

If there is no risk of confusion, we will refer to this metric as a metric on SL instead of a metric on Sp,p′ .
Now we state an elementary lemma from Euclidean geometry. See Figure 1.

Lemma 2. Let H be hinge of two triangles. Let E be a line segment on H joining two edges which are not
adjacent. The length of E is greater than or equal to one of the altitudes of the triangles.

Proof We assume that α ≥ β . It follows that the length of E is greater than or equal to the length of L ,
which is greater than or equal to the length of h .
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Figure 1. Length of E is greater than or equal to length of h .

Lemma 3. Let (SL, d) be an FDL surface with induced metric d . Let Tα be a triangle on it, and δ be the
minimum of altitudes of the triangles on it. Let x ∈ Tα , and y be a point which is not in Tα or triangles
intersecting Tα . Then it follows that

d(x, y) > δ.

Proof Let
U = {x ∈ Sp,p′ : x is in one of the triangles intersecting with Tα}.

Consider the following subset of U :

V = {x ∈ U : x is in an edge which does not intersect with Tα}.

See Figure 2. Note that

1. if SL ̸= U , then SL − V is disconnected,

2. if T is a triangle of U so that its edge e is in V , then distance between a point in Tα and a point in e

is greater than or equal to δ . See Lemma 2.

Take a curve joining y to x . It follows that the curve and V intersect. Hence, d(x, y) is strictly greater than
the distance between the sets V and Tα . Since the distance between V and Tα is greater than or equal to δ ,
it follows that d(x, y) > δ .

Proposition 2. (SL, d) is complete metric space.

Proof Let x1, . . . , xn, . . . be a Cauchy sequence in Sp,p′ . There exists m ∈ Z+ such that for all n ≥ m

d(xn, xm) < δ , where δ is minimum of the lengths of the altitudes of all triangles T ∈ T . Let Tα be one of the
triangles which contains xm . By locally finiteness, the set of all triangles incident to Tα , either from a vertex
or from an edge, is finite. Consider the following compact set:

U = {x ∈ Sp,p′ : x is in one of the triangles incident to Tα}.

If U = SL , then SL is compact and so it is complete. If U ̸= SL , Lemma 3 implies that U contains a ball of
radius δ around xm . Hence, xm, xm+1, . . . are contained in U . Since U is compact, this sequence converges
to some element in U . This means that the sequence (xn)

∞
n=1 is convergent.
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Figure 2. The triangular neighborhood U of Tα . Dashed line segments correspond to V .

Remark 1. (SL, d) is a length space, see [8].

Proposition 3. The following properties hold for an FDL surface Sp,p′ .

1. Given any two points on Sp,p′ , there exists a path joining them which has minimum length.

2. If p ∪ p′ is not empty then T contains infinitely many triangles.

3. If p ∪ p′ is not empty then d is unbounded.

Proof We prove each of the above items separately.

1. This follows from the Hopf–Rinow theorem for complete length spaces.

2. If there are finitely many triangles then Sp,p′ is compact. This is impossible.

3. A complete metric space together with a bounded metric is compact.

2.2. Cones
A cone having angle θ , or equivalently curvature κ = 2π − θ , is the set

{(r, ψ) : r ∈ R≥0, ψ ∈ R/θZ} (6)

with the metric

µ = dr2 + r2dψ2. (7)

See [13] for more information about cones. A cone can be considered to be an FDL sphere with one punctured
and one labeled point. The point (0, 0) is called vertex or the origin of the cone in the Euclidean plane. We
will denote it by v0 . Since a cone can be considered to be a piecewise flat surface, it makes sense to talk about
the punctured point or the point at infinity. We will denote this point as v∞ .
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Definition 5. Consider a cone with angle θ > 0 .

1. κ(v∞) = 2π + θ is called curvature at v∞ .

2. θ(v∞) = −θ is called the angle at v∞ .

Remark 2. Observe that κ(v0) + κ(v∞) = 4π : the Gauss–Bonnet formula for the sphere holds.

A cone with angle θ will be denoted by Cθ .

Definition 6. A section of a cone of angle θ is the once punctured disk obtained by cutting a cone of angle θ

along a geodesic directing from its origin, and will be denoted as Vθ .

A section of cone can be regarded as an FDL disk with one punctured point and one labeled point at its
boundary. As usual, angle and curvature at the labeled point are θ and π− θ , respectively. For the punctured
point, angle and curvature at the punctured point are −θ and π + θ , respectively. Hence, the Gauss–Bonnet
formula for the closed disk holds. See Figure 3.

Definition 7. A section of a cylinder, I(r) , is the twice punctured disk together with a metric which is isometric
to an infinite strip in the Euclidean plane. Width of the strip, r , is called width of the cut.

A section of cylinder can be regarded as an FDL disk with two punctured points at its boundary. By definition,
the angle and the curvature at each of the punctured points are 0 and π , respectively. Hence, the Gauss–Bonnet
formula for the closed disks holds. See the Figure 3.

Definition 8. A cylinder of width r , C0r , is a metric space obtained by identifying edges of a cut of a cylinder
having width r through opposite points.

Observe that a cylinder can be considered to be an FDL sphere with two punctured points. By convention,
angles at these punctures are 0 . We can also call a cylinder a cone of angle 0 . Also, again by convention, the
curvature at each of the punctured points, is 2π . Observe that the Gauss–Bonnet formula for the sphere holds.

2.3. Cone metrics on disk
Definition 9. A (flat) cone metric on a DL surface SL is a metric on Sp,p′ so that each point x in Sp,p′ has
a neighborhood isometric to a neighborhood of the apex of cone Cθ = Cθx or a section of a cone Vθ = Vθx , and

1. l = {y ∈ Sp,B : θy ≠ 2π} ,

2. l′ = {y ∈ B − p′ : θy ̸= π} .

Angle at x , θ(x) is defined to be θx . If x ∈ Sp,B , then the curvature at x , κ(x) , is defined as 2π − θ(x) .
If x ∈ B − p′ , then the curvature is κ(x) = π − θ(x) . x is called singular if κ(x) ̸= 0 , otherwise it is called
nonsingular.

Observe that the two conditions above guarantee that set of singular points of SL is l ∪ l′ .
Cones, cylinders, sections of cones, and sections of cylinders are examples of cone metrics. Observe that

each FDL surface can be regarded as a cone metric on the underlying DL surface. Note that by an isometry of
cone metrics on DL surfaces SL and S̄L , we mean an isometry of underlying metric spaces Sp,p′ and S̄p̄,p̄′ .

Now we state some elementary facts about cones, cylinders, sections of cones, and sections of cylinders
without proof.
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θ

width= r

Figure 3. A section of a cone of angle θ and a section of a cylinder of width r .

Proposition 4. The following statements hold:

1. Let d be a complete cone metric on a 1-punctured and 1-labeled DL sphere SL . SL is isometric to Cθ ,
for some θ > 0 .

2. Let d be a complete cone metric on the 2-punctured DL sphere SL . SL is isometric to C0,r , for some
r > 0 .

3. Let d be a complete cone metric on the 2-punctured DL disk SL , where the punctures are on the boundary.
SL is isometric to I(r) , for some r > 0 .

4. Let d be a complete cone metric on the a DL disk SL with one punctured and one labeled boundary points.
SL is isometric to a cut of a cylinder Vθ , for some θ > 0 .

Proposition 5. The following statements hold:

1. Two cones Cθ and Cθ′ are isometric if and only if θ = θ′ ,

2. Two sections of cones Vθ and Vθ′ are isometric if and only if θ = θ′ ,

3. Two sections of cylinders I(r) and I(r′) are isometric if and only if r = r′ ,

4. Two cylinders C0,r and C0,r′ are isometric if and only if r = r′ .

2.3.1. Cone metrics on disk with one punctured and two labeled boundary points

Our next objective is to classify cone metrics on a DL disk SL with 1 punctured and 2 labeled boundary points.
See Figure 4. Let x, y be the labeled points of the boundary and g be the part of the boundary which connects
x and y . Note that we want to classify cone metrics up to isometries which fix x and y .
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Figure 4.

Proposition 6. 1. For each triple of positive numbers (θx, θy, l) , θx + θy ≥ π , there exists a complete cone
metric on SL so that the angle at x is θx , the angle at y is θy and length of g is l .

2. Each complete cone metric on SL is uniquely determined by its angles and length of g .

Proof

1. There are two cases to be considered separately.

(a) Assume one of θx and θy is less than or equal to π
2 . Without loss of generality, let this be θx .

Therefore, θy ≥ π
2 . If θx = θy = π

2 , we know that there exists such a region in the Euclidean plane.
If not, form a complete cone metric on a 2-labeled 1-punctured disk with cone angles at θx , π − θx

and length of the segment joining labeled points is l . Indeed, such a surface can be drawn in plane.
Let us denote the vertices of the surface with angles θx and π− θy by x and y , respectively. Let us
denote the half line on the surface originating from y as Ly . Now, take a section of a cone of angle
θy − π + θx . Glue one of the boundaries of the section of the cone with Ly . The resulting surface
has the properties that we want.

(b) Assume θx, θy >
π
2 . By the first part, there exists a complete cone metric on a 2-labeled and 1-

punctured disk with cone angles π
2 , and θy and the length of the segment joining these labeled points

is l . Call the vertices on this surface with angles π
2 and θy as x and y , respectively. Let us denote

the half line on this surface originating from x by Lx . Glue one of the boundary geodesics of the
cut of a cone of angle θx − π

2 with the Lx . The resulting metric has the desired properties.

2. Take two complete cone metrics d1, d2 on SL with the same angle and length data, (θx, θy, l) . We will
consider the following two cases separately:

(a) For each i = 1, 2, let gi be the half line on the boundary of surface which is based at y , with respect
to di . For each i = 1, 2, let g′i be the half line on the boundary of surface which is based at y , with
respect to di . Let yim,m ∈ N, be the point on gi whose distance with y is m , with respect to di .
Let Li

m be the line segment joining yim with g′i so that the angle between Li
m and the line segment

[y, yim] is π − θy . If we cut (S, di) through Li
m , we will get convex polygons, P i

m , for each i = 1, 2
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and for each m ∈ N , which are evidently isometric. For each i = 1, 2 , ∪m∈NP
i
m = Sp,p′ ; therefore,

(S, d1) and (S, d2) are isometric. See Figure 4.

(b) If one of θx and θy is greater than or equal to π , one can cut both of the cone metrics through
half-lines originating from x and y to reduce the problem to the previous case. We omit the details.

SL together with such a cone metric will be denoted by D(θ1, θ2, l) .

Remark 3. There is no complete cone metric on SL having angle data (θ1, θ2) so that θ1 + θ2 < π .

Remark 4. Assume that θ1 + θ2 ≥ π . For each positive real number r , Dκ̄(l) can be triangulated so that

1. The length of edges of triangles lying in half-lines of the boundary is r .

2. The triangulation satisfies properties in Definition 2.

3. The metric obtained by triangulation is the exactly that of Dκ̄(l) .

One can manage to do this by decomposing Dκ̄(l) as in the proof of Proposition 6.

2.4. Cone metrics on the closed disk with one punctured interior or one punctured boundary
point

Let DL
1,n be a DL disk with one punctured point at its interior and n labeled points on its boundary so that

p′ and l are empty. Similarly, let D̄L
1,n be a DL disk with one punctured and n labeled boundary points so

that p, l are empty. The aim of this section is to give a complete classification of cone metrics of nonpositive
curvature on DL

1,n . It turns out that the length and the curvature data on the boundary of such a disk explicitly

describe the cone metric. We also give a similar result for the case of D̄L
1,n .

Lemma 4. Consider a complete cone metric on DL
1,n and a boundary point x . Assume that curvature at each

boundary point is nonpositive. Let g be a geodesic starting at x and pointing the interior of DL
1,n . g does not

hit the boundary and it is not self intersecting.

Proof If curvature at each boundary point is 0 , then DL
1,n is isometric to half of a cylinder and the statement

is true. Assume that this is not the case. Observe that a geodesic with above properties cannot intersect itself
without winding once around the puncture. Otherwise, we get a disk with only one singular point, and this
singular point is on the boundary. Clearly, such a disk cannot exist. Assume that it intersects the boundary or
itself.

There are two cases to be considered. First, consider the case in which the geodesic intersects the
boundary before it intersects itself. In that case, some part of the geodesic and the boundary form a polygon
which has at most two vertices, having angles less than π . Vertices at the intersection of the geodesic with the
boundary, and all the other vertices have angles bigger than or equal to π . By the Gauss–Bonnet theorem for
compact surfaces with boundary, such a polygon does not exist [14].

Second, assume that the geodesic first intersects itself. We can cut SL through the loop formed by
the geodesic and obtain a cone metric on a closed annulus. Total curvature for the boundary component of
the annulus, which results from the boundary of DL

1,n , is negative. Total curvature for the other boundary
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Figure 5. Complete cone metrics on once punctured disk can be obtained from cone metrics on the disk with one
puncture on its boundary.

component is nonpositive. Indeed, it contains at most one singular point which has nonpositive curvature. This
contradicts with the Gauss–Bonnet theorem since such an annulus should have zero total curvature [14].

We point out that geodesics on disks above tend to the punctured point, or the point at infinity of the
disk. Let b1, b2, . . . bn be the labeled points given in a cyclic order on the boundary. Let κi and li, i = 1, . . . , n,

be real numbers so that κi < 0 and li > 0 for each i .

Lemma 5. There exists a complete cone metric on DL
1,n so that for each i = 1, 2 . . . , n the curvature at bi is

κi and the length of [bi, bi+1] is li .

Proof Let θi = π−κi . Consider D( θ12 ,
θ2
2 , l1), . . . , D( θn2 ,

θ1
2 , ln) . For i < n− 1 , glue D( θi2 ,

θi+1

2 , li) , along the

geodesic originating from the vertex having angle θi+1

2 , with D( θi+1

2 , θi+2

2 , li+1) , along the geodesic originating

from the vertex having angle θi+1

2 . Do the same for D( θn2 ,
θ1
2 , ln) and D( θ12 ,

θ2
2 , l1) . One will get a metric of

the desired type. See Figure 5

Remark 5. Assume that DL
1,n has a complete metric with curvature at each boundary point less than or equal to

0 . Let x and y be two distinct boundary points so that there is a straight boundary segment joining them. Take
two half-lines originating from x and y which are perpendicular to the segment considered. The Gauss–Bonnet
theorem implies that these two half-lines do not intersect.

Lemma 6. Consider DL
1,1 . Let κ1 and l1 be as above. Then there is a unique cone metric on DL

1,1 having
curvature κ1 at b1 and the length of the boundary is l1 .

Proof We proved the existence of the metric. See Lemma 5. Take such a metric on DL
1,1 . Let θ = π − κ1 .

If we cut DL
1,1 through the geodesic making an angle θ

2 with the boundary, then the resulting surface is a disk

with a punctured and two labeled boundary points. Therefore, it is isometric to D( θ2 ,
θ
2 , l1) . If we glue back,

we get the metric we started. Thus, any metric with these properties obtained by gluing the half lines of the
boundary of D( θ2 ,

θ
2 , l) . Hence, there exists a unique metric having properties stated in the present lemma.
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Theorem 1. Let κi < 0 and li > 0 , i = 1, . . . , n , be real numbers. There is a unique complete cone metric on
DL

1,n , up to isometries respecting labeling, so that curvature at bi is κi and length of the segment [bi, bi+1] is
li for each i = 1, . . . , n .

Proof We proved the existence of such a metric. See Lemma 5.
Uniqueness

We use induction on number of labeled points to prove the statement. Lemma 6 asserts that the statement is
true if number of labeled points is one. Assume that the statement is true for the case that there are n or less
labeled points. Let d1 and d2 be metrics on DL

1,n+1 having same curvature data. Consider the the segment
joining bn and bn+1 , call it g . By assumption, g has the same length with respect to two metrics. For each
i = 1, 2 , let gi and hi be the half-lines originating from bn and bn+1 , with respect to di , so that gi and hi are
perpendicular to g . Cut (DL

1,n, di) through gi and hi . For each i , we get two DL surfaces Si and D(π2 ,
π
2 , l)

where l is the length of the segment g . Glue Si through the half-lines on the boundary to get complete cone
metrics on the disk with n labeled points and one puncture. Call these surfaces, together with induced metrics,
(S′

i, d
′
i) . By induction hypothesis (S′

1, d
′
1) and (S′

2, d
′
2) are isometric. Thus, metrics on DL

1,n obtained from d′1

and d′2 by reversing the cutting and gluing operation above are same. Therefore, these induced metrics should
coincide with d1 and d2 . Hence, (DL

1,n, d1) and (DL
1,n, d2) are isometric.

Remark 6. If a cone metric on DL
1,n is complete, then

∑
x∈l′ κ(x) ≤ 0 .

A DL surface together with the metric having curvature data κ̄ = (κ1, . . . , κn) and length data l̄ =

(l1, . . . , ln) will be denoted by Dκ̄(l̄) , where κi < 0, li > 0 .

Corollary 1. Dκ̄(l̄) can be triangulated so that the triangulation has properties in Definition 2 and the induced
metric coincides with the metric of Dκ̄(l̄) .

Proof By Theorem 1, DL
1,n can be decomposed into finite numbers of disks of the form D(θ1, θ2, l) . Hence,

the result follows from Remark 4.

Corollary 2. Assume that κi and li satisfy the above conditions, and also κi = κj = κ > −π and i = j = l

for all i, j = 1, . . . , n . Dκ̄(l̄) can be embedded in a cone.

Proof Consider the cone with angle −nκ . Obviously, there is a compact polygonal part of the cone,
homeomorphic to a disk, having the apex as an interior point and n boundary edges of length l , n boundary
points of angle π+κ . Closure of the complement of this disk has the same length and curvature data with that
of Dκ̄(l̄) . The result follows from the uniqueness part of the above theorem.

Example. Consider the cone metric on DL
1,3 obtained by gluing two copies of D( 5π6 ,

5π
6 , 1) and one copy of

D( 5π6 ,
5π
6 , 2) . DL

1,3 , together with this metric, cannot be embedded into a cone. Otherwise, by the Gauss–Bonnet
formula, this cone would have the angle at its apex equal to 2π . Hence, it would be the Euclidean plane. This
embedding produces a triangle in the plane having edge lengths 1, 1, 2 and angles π

3 ,
π
3 ,

π
3 on the plane, which

does not exist. Also observe that one cannot embed DL
1,3 into a cone even after removing any compact set. This

means that DL
1,3 has an irregular puncture. See Figure 6.
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Figure 6. A nonplanar cone metric on once punctured disk. This disk also has an irregular puncture.

Now we state the analogous results for D̄L
1,n . We omit the proofs since they are entirely analogous to the

proofs of the facts we obtained for complete cone metrics on DL
1,n . Assume that b1, . . . bn are labeled boundary

points so that b1, . . . , bn and the punctured point are in a cyclic order in the boundary. Note that this labeling
implies that b1 and bn share the same edges with the puncture.

Theorem 2. Assume that we are given numbers κ1, . . . , κn , n ≥ 1 , so that

• κ1, κn < π ,

• κ2, . . . , κn−1 < 0

•
∑n

i=1 κi ≤ π

and 1, . . . , n−1 so that li > 0 for each i . There exists a unique complete cone metric on D̄L
1,n so that curvature

at bi is κi and length of the segment [bi, bi+1] is li . Also, two cone metrics having the same length and curvature
data are isometric.

Remark 7. If a cone metric on D̄L
1,n is complete, then

∑
x∈l′ κ(x) ≤ π .

We will denote D̄L
1,n together with such a metric by D̄κ̄, (l̄) , where κ̄ = (κ1, . . . , κn) , l̄ = (l1, . . . , ln−1) .

Note D̄L
1,1 is nothing else than a cut of cone Vθ . See Proposition 4.

Corollary 3. Let κ̄ , l̄ be the curvature and the length data satisfying properties in Theorem 2. D̄L
1,n can

be triangulated so that the triangulation satisfies the properties of Definition 2 and the induced cone metric
coincides with the metric of Dκ̄(l̄) .

2.5. Modification
We conclude this section by some results about cone metrics on DL disks without labeled interior points.
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Figure 7. D̄L
1,m and γ . γ is length-minimizing curve joining b1 with bm .

Modification: By a modification of a cone metric on a DL closed disk without labeled interior points, we
mean the resulting surface (with the induced metric) obtained after recursively cutting finitely many Euclidean
triangles which are incident to the boundary at least at one edge. Note that we require the triangles to be
incident with the boundary at most at one edge.

Proposition 7. Every complete cone metric on D̄L
1,n can be modified as follows:

1. If x ∈ B , then θ(x) < 2π .

2. If x ∈ l′ and does not share an edge with the puncture, then κ(x) < 0 .

Proof First of all, consider D̄L
1,1 . A complete cone metric on it is nothing else than a cut of cone, and the

statement is true if its angle θ < 2π . The statement is also is true for D̄L
1,0 which is half plane.

Consider a complete flat metric on D̄L
1,n , n ≥ 2 , or on D̄L

1,1 where the angle at the singular vertex is
greater than or equal to 2π .

• If there is a boundary point having an angle greater than or equal to 2π , then we can remove a polygon
about it so that resulting singular points have angle less than 2π . Therefore, by removing a polygon
about each singular point x such that θ(x) ≥ 2π , we get a complete DL disk for which boundary points
have angle less than 2π .

• If, after the operation above, we get D̄L
1,0, D̄

L
1,1 or D̄L

1,2 , then we are done. Thus, assume that we get a

complete cone metric on D̄L
1,m, m ≥ 3 . Let us label its singular points as b1, . . . bm . See Figure 7. Take

a loop joining b1 with bn . There is a length-minimizing curve in its homotopy class. See [8]. Call this γ .
If we cut DL

1,m , then we get a surface of the type we want. If this is not the case, then γ has two edges
making the angle less than π . This implies that γ is not length-minimizing. See Figure 8.

There is a similar result for the cone metrics on the closed disk having one punctured interior point. The
proof is also similar. We state it and outline its proof.

Lemma 7. Each complete cone metric on a DL
1,n, n ≥ 2 can be modified so that the resulting surface has the

following properties:
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Figure 8. The curve with edges e1, e2, e3, e4 cannot be length-minimizing since |e2|+ |e3| > |e| .

1. Each point on the boundary has and angle less than 2π .

2. There is at most one singular point of positive curvature.

Proof First, modify the cone metric so that there are no singular points having an angle greater than and
equal to 2π . One can do this as in the proof of Proposition 7. Then take a boundary point x and consider a
loop based at x and winding once around the puncture. Take a length-minimizing path in the homotopy class
of the loop and cut the surface through this path. The resulting cone metric has at most one singular point of
positive curvature, x .

Proposition 8. Let DL
1,n be an FDL surface satisfying the following conditions:

1. It has one singular point of positive curvature,

2. Each boundary point has an angle less than 2π ,

then DL
1,n has a modification so that for each boundary point x , π ≤ θ(x) < 2π .

Proof Since total curvature at the boundary of DL
1,n is nonpositive, n ̸= 0, 1 . Assume that n = 2 . Let p

be the singular point with positive curvature. Take a length-minimizing loop which is based at p and winds
once around boundary. If we cut the disk through this loop, we get a disk at most one singular point, p . The
curvature at p is not positive, since modification does no change the total curvature. Also, it is clear that the
angle at p is less than 2π .

We do induction on number of singular points. Consider a flat metric on DL
1,n , n ≥ 3 . We denote the

singular point with positive curvature by p , and singular points which share an edge with p by q and r . See
Figure 9. In this figure, θ is the angle at p , α = π+ κ(q) , β = π+ κ(r) . There are two cases to be considered:

a) θ < α+ β . In this case, we can extend the edges E and F to form the quadrangle Q . See left of Figure 9.
If we remove Q , we get a surface with at most one singular point of positive curvature, and it is clear that
the number of singular points of this surface is less than n .

b) θ ≥ α+β . Draw a line segment joining q and r to form a triangle. Call the segment G and the triangle T .
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Figure 9. If θ < α+ β , then we remove the quadrilateral Q to obtain the desired modification. See left of the figure.
If θ ≥ α+ β , then we remove the triangle T to obtain the desired modification. See right of the figure.

See right of Figure 9. Let θ1 and θ2 be the angles at q and r , respectively. Since π − θ1 − θ2 = θ , we have

π − θ1 − θ2 ≥ α+ β,

π ≥ α+ θ1 + β + θ2.

Therefore, one of α+ θ1 and β+ θ2 is less than π . This means that when we remove the triangle, we reduce
the number of singular points and the resulting surface has at most one singular point of positive curvature.

Corollary 4. Each complete cone metric on DL
1,n , n ≥ 0 , can be modified so that the resulting disk does not

have points with positive curvature on its boundary.

Proof The statement immediately follows from Lemma 7 and Proposition 8

3. DL surfaces with complete cone metrics can be triangulated

In this section, we prove that DL surfaces together with complete cone metrics can be triangulated so that
the resulting metric coincides with the given one. This theorem is well-known for compact surfaces [14]. Our
strategy is to cut such a surface around its punctures and reduce the problem to the cases for compact surfaces
and the surfaces D̄(κ̄, l̄), D(κ̄, l̄) .

Theorem 3. Every DL surface SL together with a complete metric d can be triangulated as in Definition 2 so
that the resulting metric coincides with d .

Proof For each point p ∈ p , take a nonself intersecting polygonal loop around p such that the punctured
disk bounded by p and the loop has no labeled point on its interior and no punctured point on it except p . For
each point p′ ∈ p′ , take a polygonal path joining to half-lines incident p′ such that the punctured disk bounded
by p′ and the path has no labeled points on its interior and no punctured point on it except p′ . Also observe
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that we can choose these loops and paths so that the resulting disks are pairwise disjoint. Note that we may
assume that these disks satisfy properties in Proposition 7 and Corollary 4. Now we know that these disks can
be triangulated nicely. See Definition2 and Corollaries 1, 3. If we remove interiors of these disks, what we get
is a compact surface together with a cone metric. It is well known that such a surface can be triangulated with
only finitely many triangles. Therefore, we can use triangulations on these pieces to obtain a triangulation on
SL . This triangulation has the properties in Definition 2 and metric d coincides with the metric induced by
the triangulation at each triangle. Hence, these metrics coincide globally.

4. The Gauss–Bonnet formula
The Gauss–Bonnet formula for compact flat surface is well-known. There is a variant of the formula for the
noncompact case. However, it preassumes that each punctured interior point has a neighborhood isometric to
a neighborhood of point at infinity of a cone. See [14, 16].

We start with defining curvature at the punctures of a DL surface with a complete cone metric. Then
we will state and prove the Gauss–Bonnet formula.

Remark 8. A modification of a complete cone metric on DL
1,n does not change the total curvature of the

boundary of DL
1,n . Similarly, a modification of a complete cone metric on D̄L

1,n does not change the total

curvature of the boundary of D̄L
1,n .

Definition 10. 1. If D̄L
1,n has a complete flat metric, then the curvature at its puncture p′ is defined as

κ(p′) = 2π −
∑
x∈l′

κ(x).

The angle at p′ is θ(p′) = π − κ(p′) .

2. If DL
1,n has a complete flat metric, then the curvature at its puncture p is defined as

κ(p) = 2π −
∑
x∈l′

κ(x).

The angle at p is θ(p) = 2π − κ(p) .

3. Let SL be a DL surface (together with a complete cone metric) and p ∈ p . The curvature at p , κ(p) , is
the curvature of p as a punctured point of a disk in SL containing p and having no singular points on its
interior. The angle at p is θ(p) = 2π − κ(p) .

4. Let S′L be a DL surface (together with a complete cone metric) and p′ ∈ p′ . The curvature at p′ , κ(p′) ,
is the curvature of p′ as a punctured point of a disk in S′L containing p′ and having no singular points
on its interior. The angle at p′ is θ(p′) = π − κ(p′) .

Remark 9. By Remark 8, the last two items of the above definition make sense. Any two such disks containing
p can be modified to a common disk and hence have the same total curvature at their boundaries.

Theorem 4 (the Gauss–Bonnet formula). Let SL be a DL surface together with a complete cone metric. The
following formula holds:
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∑
x∈S

κ(x) = 2πχ(S). (8)

Proof Assume that SL has n punctured points on its interior and m punctured points on its boundary. As
in the proof of Theorem 3, choose disks around the punctures. Let S′ be the compact surface, with induced
metric, obtained by removing these disks. Observe that

• χ(S′) = χ(S)− n , and

•
∑

y∈S′ κ(y) = 2πχ(S′)

by the Gauss-Bonnet Formula for compact surfaces. Now, observe that removing one appropriate disk around
a punctured interior point decreases the total curvature 2π . Therefore, if we remove n such disks, the total
curvature decreases 2nπ . Also, observe that removing an appropriate disk around a punctured boundary point
does not change the total curvature. Therefore, we have

∑
x∈S

κ(x) = 2nπ +
∑
y∈S′

κ(y) = 2nπ + 2πχ(S′) = 2πχ(S).

5. Existence of geodesic representatives in free homotopy classes of loops
It is well known that any loop in any compact flat surface has a length-minimizing closed geodesic representative
in its free homotopy class [8]. Recall that by a length-minimizing closed geodesic, we mean a closed geodesic
which has a length less than or equal to the length of each curve in its free homotopy class. We prove that this
property is valid for any FDL surfaces. The idea of our proof is to cut the surface through the punctures and
reduce the problem to the case of compact surfaces. We start with some observations.

Remark 10. Let SL be an FDL surface so that p, p′ are empty. Assume that it has a boundary component of
nonnegative curvature. Any geodesic loop in SL either lies in this boundary component or does not intersect with
this component. See Figure 10. If the loop lies in this boundary component, then this component is nonsingular;
each point at this component has zero curvature.

Remark 11. Let SL be an FDL surface. As in the proof of Proposition 7 and Corollary 4, cut SL through
disks around its punctures so that at each point of each resulting boundary component, curvature is nonnegative.
Let D be the resulting compact surface. For each loop L in SL which intersects such a component, there exists
a loop in its homotopy class which has a length less than or equal to the length of L and lies in D . See Figure
11. The part of the loop L which does not lie in D has a length greater than |[a, v]| + |[v, b]| . This happens
since the boundary points of D has nonnegative curvature.

Theorem 5. Given an FDL surface SL and a loop L on it, there exists a length- minimizing geodesic on its
free homotopy class.

Proof We cut the surface around its punctures as in Lemma 7 and Corollary 4 so that the resulting disks
do not intersect L . Thus, the part left is a compact surface D containing L , and there exists a length-
minimizing geodesic g in the homotopy class of L in D . Since the curvature at each point of a resulting
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L

Figure 10. A sphere with 3 boundary components where the boundary components are in blue. The loop L , thick
black one, is not a geodesic since it is not length-minimizing.

Figure 11. Since boundary points of D have nonnegative curvature, a loop which intersects with D and its complement
cannot be length-minimizing.

boundary component is nonnegative, we see that either g lies in such a boundary component and this boundary
component is nonsingular, or it does not intersect such a boundary component. See Remark 10. This shows
that g is indeed a geodesic in SL and it is in homotopy class of L .

Assume that there is a geodesic g′ in homotopy class of g whose length is less than the length of g . It
follows that g′ does not lie completely in D , and Remark 11 implies that there is a shorter loop g′′ in the same
homotopy class which lies in D . This implies that the length of g′′ is greater than or equal to the length of g ,
which is a contradiction.
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