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Abstract: Let ξ and η be two noncommuting isometries of the hyperbolic 3 -space H3 so that Γ = ⟨ξ, η⟩ is a purely
loxodromic free Kleinian group. For γ ∈ Γ and z ∈ H3 , let dγz denote the hyperbolic distance between z and γ(z) .
Let z1 and z2 be the midpoints of the shortest geodesic segments connecting the axis of ξ to the axes of ηξη−1 and
η−1ξη , respectively. In this manuscript, it is proved that if dγz2 < 1.6068... for every γ ∈ {η, ξ−1ηξ, ξηξ−1} and
dηξη−1z2 ≤ dηξη−1z1 , then |trace2(ξ) − 4| + |trace(ξηξ−1η−1) − 2| ≥ 2 sinh2

(
1
4

logα
)
= 1.5937.... Above α = 24.8692...

is the unique real root of the polynomial 21x4 − 496x3 − 654x2 + 24x + 81 that is greater than 9 . Generalizations of
this inequality for finitely generated purely loxodromic free Kleinian groups are also proposed.

Key words: Free Kleinian groups, Jörgensen’s inequality, the log 3 theorem, loxodromic isometries, hyperbolic dis-
placements

1. Introduction
A Kleinian group Γ is a nonelementary discrete subgroup of the group PSL(2,C) of orientation-preserving
isometries of the hyperbolic 3 -space H3 . Any orientable hyperbolic 3 -manifold M can be viewed as a quotient
H3/Γ for a Kleinian group Γ . By Mostow’s rigidity [16], this reduces the study of hyperbolic 3 -manifolds to
the study of Kleinian groups. This, in turn, makes the investigation of criteria for discreteness of the subgroups
of PSL(2,C) one of the main topics of interest in the theory of 3 -dimensional hyperbolic manifolds.

It was proved by Jørgensen [12] that Γ ≤ PSL(2,C) is discrete if and only if every nonelementary two-
generator subgroup of Γ is discrete. Accordingly, significant progress in the literature has occurred since then
towards a resolution of the discreteness problem for subgroups of PSL(2,C) through the examination of two-
generator subgroups (see [7], [11], [10], [14], [17] and the references therein). A particularly remarkable result
was presented by Gilman in [8] with an algorithm for deciding the discreteness of the subgroups of PSL(2,R) .
In this paper, we will concentrate on two-generator purely loxodromic free subgroups of PSL(2,C) and provide
some necessary discreteness criteria for these groups satisfying certain conditions. Furthermore, we will suggest
discreteness criteria for finitely generated such groups.

There is a large class of subgroups of PSL(2,C) in the aforementioned category. In fact, all finitely
generated Schottky groups are purely loxodromic and free [13, H.2.Proposition]. However, the main motivation
behind this text for focusing on these particular subgroups of PSL(2,C) is that every two-generator subgroup
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of the fundamental group π1(M) of an orientable closed hyperbolic 3 -manifold M is purely loxodromic and
free provided that the first Betti number of M is at least 3 (see [4, Propositions 9.2 and 10.2]). Culler and
Shalen used this fact to show that the volume of M is at least 0.92 (see [4, Theorem 10.3]), connecting the
geometry of such hyperbolic 3 -manifolds to their topology. This volume bound, later superseded by Gabai et
al. [6] and Milley [15] by the introduction of Mom technology, is calculated by computing the lower bound log 3
for the maximum of the hyperbolic displacements given by the generators of two-generator subgroups of π1(M)

[4]. The statement in [4, Theorem 9.1] in which the lower bound log 3 is computed is known in the literature
as the log 3 theorem.

Due to an extension introduced in [18, 19] by the author, the techniques developed by Culler and Shalen
in the proof of the log 3 theorem can be used to calculate a lower bound for the maximum of the hyperbolic
displacements under any finite set of isometries in a purely loxodromic finitely generated free Kleinian group
Γ . In particular, in the case of two-generator, e.g., if Γ = ⟨ξ, η⟩ , it is possible to compute a lower bound for the
maximum of the hyperbolic displacements given by the set Γ∗ of isometries

{1} ∪ Γ1 ∪ {ξηξ−1, ξ−1ηξ, ηξη−1, η−1ξη, ξη−1ξ−1, ξ−1η−1ξ, ηξ−1η−1, η−1ξ−1η}, (1.1)

where Γ1 = {ξ, η, η−1, ξ−1} . Explicitly, in Section 4, we shall prove the statement below:

Theorem 1.1 Suppose that Γ = ⟨ξ, η⟩ is a purely loxodromic free Kleinian group. Then, for Γ∗ in (1.1), we
have maxγ∈Γ∗ {dγz} ≥ 1.6068... for any z ∈ H3 .

This theorem leads to a reversal of the roles of trace and hyperbolic displacements in the statement of the
following theorem of Beardon [1, Theorem 5.4.5]:

Theorem 1.2 If ⟨ξ, η⟩ is a Kleinian group so that ξ is elliptic or strictly loxodromic and |trace2(ξ)− 4| < 1
4 ,

then for any z in H3 we have max{sinh( 12dξz), sinh( 12dηξη−1z)} ≥ 1
4 .

In other words, we will show in Section 4 that Theorem 1.1 implies the main result of this paper, which can be
stated as follows:

Theorem 1.3 If dγz2 < 1.6068... for γ ∈ Φ1 = {η, ξ−1ηξ, ξηξ−1} and dηξη−1z2 ≤ dηξη−1z1 , then we have
|trace2(ξ)− 4|+ |trace(ξηξ−1η−1)− 2| ≥ 1.5937....

Above z1 and z2 denote the midpoints of the shortest geodesic segments connecting the axis of ξ to the axes of
ηξη−1 and η−1ξη , respectively. Theorems 1.1 and 1.3 are restated as Theorems 4.2 and 4.3, respectively, in Sec-
tion 4. The expressions trace2(ξ) and trace(ξηξ−1η−1) are used in place of trace2(A) and trace(ABA−1B−1) ,
where A represents the loxodromic isometry ξ and B represents the loxodromic isometry η in PSL(2,C).

Theorem 1.3 can be considered as a refinement of the best general discreteness criterion for the subgroups
of PSL(2,C) for the groups under consideration in this paper. This criterion is due to Jørgensen [12], called
the Jørgensen’s inequality, given below.

Theorem 1.4 If ⟨ξ, η⟩ is a Kleinian group, then |trace2(ξ)− 4|+ |trace(ξηξ−1η−1)− 2| ≥ 1, where the lower
bound is the best possible.
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Theorem 1.2 is an implication of Theorem 1.4 (see [1, Theorem 5.4.5]).
In the rest of this section, we will summarize the proofs of Theorems 1.1 and 1.3. In particular, we

will introduce some notation and review the Culler–Shalen machinery introduced in [4], which will be used to
calculate a lower bound for the maximum of the hyperbolic displacements needed here. The proof of Theorem
1.3 will involve the computations given in the proof of Theorem 5.4.5 in [1], which uses the geometry of the
action of loxodromic isometries together with some elementary inequalities involving hyperbolic trigonometric
functions. However, most of the technical work in this paper will be required to prove Theorem 1.1.

Let us define Ψ as the set of isometries in Γ = ⟨ξ, η⟩ whose elements are listed and enumerated below:

ξη−1ξ−1 7→ 1, η−1ξ−1η−1 7→ 8, ηξ−1η−1 7→ 15, ξ−1η−1ξ−1 7→ 22,
ξη−1ξ 7→ 2, η−1ξ−1η 7→ 9, ηξ−1η 7→ 16, ξ−1η−1ξ 7→ 23,
ξη−2 7→ 3, η−1ξ−2 7→ 10, ηξ−2 7→ 17, ξ−1η−2 7→ 24,
ξη2 7→ 4, η−1ξ2 7→ 11, ηξ2 7→ 18, ξ−1η2 7→ 25,
ξηξ−1 7→ 5, η−1ξη−1 7→ 12, ηξη−1 7→ 19, ξ−1ηξ−1 7→ 26,
ξηξ 7→ 6, η−1ξη 7→ 13, ηξη 7→ 20, ξ−1ηξ 7→ 27,
ξ2 7→ 7, η−2 7→ 14, η2 7→ 21, ξ−2 7→ 28.

(1.2)

We shall denote this enumeration by p : Ψ → {1, . . . , 28} . Let Ψr = Γ1 = {ξ, η−1, η, ξ−1} . Since it is assumed
that Γ = ⟨ξ, η⟩ is free, it can be decomposed as follows:

Γ = {1} ∪Ψr ∪
∪
ψ∈Ψ

Jψ, (1.3)

where Jψ denotes the set of all words starting with the word ψ ∈ Ψ . We will name this decomposition ΓD∗ .
Let us define JΦ = ∪ψ∈ΦJψ for Φ ⊆ Ψ . A group-theoretical relation for a given decomposition of Γ = ⟨ξ, η⟩ is
a relation among the sets Jψ . As an example,

ξηξ−1Jξη−1ξ−1 = Γ−
(
{ξ} ∪ J{ξ2,ξη−1ξ−1,ξη−1ξ,ξη−2,ξη2,ξηξ−1,ξηξ}

)
(1.4)

is a group-theoretical relation of the decomposition in (1.3), which indicates that when multiplied on the left
by ξηξ−1 the set of words in Γ = ⟨ξ, η⟩ starting with ξη−1ξ−1 translates into the set of words starting with
the words whose initial letters are different than ξ . Isometries in Ψr that appear in the relations have no
effect in the upcoming computations. Therefore, we shall denote a generic group-theoretical relation of ΓD∗ by
(γ, s(γ), S(γ)) , where γ ∈ Γ∗ , s(γ) ∈ Ψ , and S(γ) ⊂ Ψ . In (1.4) we have

γ = ξηξ−1, s(γ) = ξη−1ξ−1, S(γ) = {ξ2, ξη−1ξ−1, ξη−1ξ, ξη−2, ξη2, ξηξ−1, ξηξ}.

There are 128 group-theoretical relations for ΓD∗ in total, but we will be interested in 60 of them listed in
Lemma 2.1 (see Tables 1, 2, 3, and 4) for which γ ∈ Γ∗ ⊂ Ψr ∪ Ψ defined in (1.1). Then we consider the
following cases:

(I) when Γ = ⟨ξ, η⟩ is geometrically infinite; that is, ΛΓ·z = S∞ for every z ∈ H3 ;

(II) when Γ = ⟨ξ, η⟩ is geometrically finite.

Above the expression S∞ denotes the boundary of the canonical compactification H3 of H3 . Note that
S∞ ∼= S2 . The notation ΛΓ·z means the limit set of the Γ -orbit of z ∈ H3 on S∞ . In case (I), we first
prove the statement below:
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Theorem 1.5 Let Γ = ⟨ξ, η⟩ be a purely loxodromic, free, and geometrically infinite Kleinian group. Let ΓD∗

be the decomposition of Γ in (1.3). If z denotes a point in H3 , then there is a family of Borel measures {νψ}ψ∈Ψ

defined on S∞ such that we have (i) Az =
∑
ψ∈Ψ νψ ; (ii) Az(S∞) = 1 ; and for γ ∈ Γ∗

(iii)

∫
S∞

(λγ,z)
2
dνs(γ) = 1−

∑
ψ∈S(γ)

∫
S∞

dνψ

for all group-theoretical relations (γ, s(γ), S(γ)) of ΓD∗ , where Az is the area measure on S∞ based at z .

This theorem basically states that the normalized area measure Az on the sphere at infinity can be
decomposed as a sum of Borel measures νψ indexed by ψ ∈ Ψ so that each group-theoretical relation of ΓD∗

translates into a measure-theoretical relation among the Borel measures {νψ}ψ∈Ψ as described in part (iii) of
the theorem. In particular, each measure νψ is transformed to the complement of certain measures in the set
{νγ : γ ∈ Ψ − {ψ}} . For example, Theorem 1.5 (iii) and the group-theoretical relation given in (1.4) imply
that ∫

S∞

λ2ξηξ−1,z dνξη−1ξ−1 = 1−
∑

ψ∈{ξ2,ξη−1ξ−1,ξη−1ξ,ξη−2,ξη2,ξηξ−1,ξηξ}
νψ(S∞). (1.5)

By a formula proved in [4] and improved in [5] by Culler and Shalen, each hyperbolic displacement dγz for
γ ∈ Γ∗ has a lower bound involving the Borel measures in {νψ}ψ∈Ψ . This formula is given as follows:

Lemma 1.6 [4, Lemma 5.5] [5, Lemma 2.1] Let a and b be numbers in [0, 1] that are not both equal to 0 and
are not both equal to 1 . Let γ be a loxodromic isometry of H3 and let z be a point in H3 . Suppose that ν is
a measure on S∞ such that ν ≤ Az , ν (S∞) ≤ a , and

∫
S∞

(λγ,z)
2dν ≥ b . Then a > 0 , b < 1 , and

dγz ≥ 1
2 log σ(a)

σ(b)
,

where σ(x) = 1/x− 1 for x ∈ (0, 1) .

Provided that 0 < νs(γ)(S∞) < 1 for every group-theoretical relation (γ, s(γ), S(γ)) of ΓD∗ , when we let
ν = νs(γ) , a = νs(γ)(S∞) , and b =

∫
S∞

(λγ,z0)
2dνs(γ) , Theorem 1.5 and Lemma 1.6 produce a set G = {fl}60l=1

of real-valued functions on ∆27 such that

e2dγz ≥ fl(m) = σ

 ∑
ψ∈S(γ)

∫
S∞

dνψ

σ

(∫
S∞

dνs(γ)

)
(1.6)

for every γ ∈ Γ∗ for some l = 1, . . . , 60 . This is established in Proposition 2.3, in which formulas of the
functions in G are explicitly stated. In the equation in (1.6) above, m = (νξη−1ξ−1(S∞), . . . , νξ−2(S∞)) is a
point of the set

∆27 =

{
x = (x1, x2, . . . , x28) ∈ R28

+ :

28∑
l=1

xi = 1

}
,

836



YÜCE/Turk J Math

whose entries are ordered by p in (1.2). As a particular example, by the group-theoretical relation in (1.4), the
equality in (1.5), Lemma 1.6, and Proposition 2.3, for z ∈ H3 , we have dξηξ−1z ≥ 1

2 log f1(m) , where

f1(x) =
1− x1 − x2 − x3 − x4 − x5 − x6 − x7
x1 + x2 + x3 + x4 + x5 + x6 + x7

· 1− x1
x1

.

As a consequence of Theorem 1.5, Lemma 1.6, and Proposition 2.3, in case (I), Theorem 1.1 follows from the
statement below and the inequality following;

Theorem 1.7 If G : ∆27 → R is the function defined by x 7→ max{f(x) : f ∈ G} , then we have infx∈∆27 G(x) =
24.8692...,

max
γ∈Γ∗

{dγz} ≥ 1
2 logG(m) ≥ 1

2 log
(

inf
x∈∆27

G(x)
)
. (1.7)

To prove Theorem 1.7, we shall show that there exists a subset F = {f1, . . . , f28} of G such that the equality
infx∈∆27 G(x) = infx∈∆27 F (x) holds for F (x) = max{f(x) : f ∈ F} . We will compute infx∈∆27 F (x) by using
the following properties of F :

(A) inf
x∈∆27

F (x) = min
x∈∆27

F (x) = α∗ at some x∗ ∈ ∆27 ,

(B) x∗ is unique and x∗ ∈ ∆27 = {x ∈ ∆27 : fi(x) = fj(x) for every fi, fj ∈ F} .

Property A is proved in Lemma 3.1, which exploits the fact that on any sequence {xn} ⊂ ∆27 that limits on
the boundary of the simplex ∆27 some of the displacement functions fi ∈ F approach infinity.

Each statement in Property B is proved in Proposition 3.11 and Proposition 3.14, respectively. We shall
first prove Proposition 3.11. We will see that the functions in F ′ = {f1, f5, f9, f13, f15, f19, f23, f27} in F play
a more important role in computing α∗ . At least one of the functions in F ′ takes the value α∗ . This is showed
in Lemma 3.2. Each function fl in F ′ is a strictly convex function on an open convex subset Cfl , defined in
(3.3), of ∆27 for l ∈ J = {1, 5, 9, 13, 15, 19, 23, 27} . Moreover, by Lemma 3.4 and Lemma 3.5 we shall show
that x∗ ∈ C =

∩
l∈J Cfl , which is itself convex. The minimum of the maximum of the functions in F ′ on C is

calculated as α∗ in Lemma 3.7. Then, by standard facts from convex analysis, Proposition 3.11 will follow.
Proposition 3.11 reduces the computation of α∗ to the comparison of only four values, f1(x∗) = α∗ ,

f2(x∗) ≤ α∗ , f3(x∗) ≤ α∗ , and f7(x∗) ≤ α∗ , which is proved in Lemma 3.12. Considering ∆27 as a submanifold
of R28 , if fl(x∗) < α∗ for some l ∈ {2, 3, 7} , the fact that there are directions in the tangent space Tx∗∆27 of
∆27 at x∗ so that all of the displacement functions in F take values strictly less than α∗ on the line segments
extending in these directions will prove Proposition 3.14. Existence of these directions will be showed either by
a direct calculation or by Lemma 3.13.

Since the coordinate sum of x∗ is 1 , Proposition 3.11 and Proposition 3.14 together give a method to
calculate the coordinates of x∗ explicitly. By evaluating any of the displacement functions in F at x∗ , we find
the value of α∗ . Details of this method will be given in Theorem 3.15. Finally, we will show that f(x∗) < α∗

for every f ∈ G − F , which implies that α∗ = infx∈∆27 G(x) , completing the proof of Theorem 3.16.
Let X denote the character variety PSL(2,C) × PSL(2,C) and GF be the set of pairs of isometries

(ξ, η) ∈ X such that ⟨ξ, η⟩ is free, geometrically finite, and without any parabolic. In case (II), when Γ = ⟨ξ, η⟩
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is geometrically finite, for a fixed z ∈ H3 , we define the function fz : X → R for Γ∗ , described in (1.1), with
the formula

fz(ξ, η) = max
ψ∈Γ∗

{dist(z, ψ · z)}.

This function is continuous and proper. Moreover, by similar arguments given in [4, Theorem 9.1], [18, Theorem
5.1], and [19, Theorem 4.1], it can be shown that it takes its minimum value in the boundary GF−GF of the
open set GF . It is known by [4, Propositions 9.3 and 8.2], [3, Main Theorem], and [2] that the set of (ξ, η) such
that ⟨ξ, η⟩ is free, geometrically infinite, and without any parabolic is dense in GF−GF and every (ξ, η) ∈ X

with ⟨ξ, η⟩ that is free and without any parabolic is in GF . This reduces the geometrically finite case to the
geometrically infinite case, completing the proof of Theorem 1.1.

We shall use the geometry of the action of the loxodromic elements of Isom+(H3) to prove Theorem 1.3.
Let ξ and η be two noncommuting loxodromic isometries of H3 and z ∈ H3 . Then the displacement dξz given
by ξ can be expressed as

sinh2 1
2dξz = sinh2

(
1
2Tξ
)

cosh2 dzA+ sin2 θ sinh2 dzA,

where Tξ , θ , and A are the translation length, rotational angle, and axis of ξ , respectively. Above, dzA
denotes the distance between z and A . Let B be the axis of ηξη−1 . Similarly, dηξη−1z can be expressed as

sinh2 1
2dηξη−1z = sinh2

(
1
2Tξ
)

cosh2 dzB + sin2 θ sinh2 dzB.

Because dξz1 = dηξη−1z1 , by reversing the inequalities used to prove [1, Theorem 5.4.5], it is possible to show
that

|trace2(ξ)− 4|+ |trace(ξηξ−1η−1)− 2| ≥ 2 sinh2 1
2dξz1

for the midpoint z1 of the shortest geodesic segment joining A and B . Then the main result of this paper,
Theorem 1.3, follows from the inequality above, Lemma 4.1, and Theorem 1.1.

All of the computations summarized above to prove Theorem 1.1 and Theorem 1.3 for purely loxodromic
2 -generator free Kleinian groups can be generalized to prove analogous results for purely loxodromic finitely
generated free Kleinian groups. We will finish this paper by phrasing these generalizations in Conjectures 4.4
and 4.5 and presenting their proof sketches.

2. Displacement functions for the isometries in Γ∗

In this section, we shall determine the displacement functions for the hyperbolic displacements given by the
isometries in Γ∗ . We introduce the following subsets of Ψ defined in (1.2): Let Γ1 = {ξ, η−1, η, ξ−1} and
Ψ = {ξ2, η−2, η2, ξ−2} ∪

∪8
l=1 Ψl , where

Ψ1 = {ξη−1ξ−1, ξη−1ξ, ξη−2}, Ψ2 = {ξη2, ξηξ−1, ξηξ}, Ψ3 = {η−1ξ−1η−1, η−1ξ−1η, η−1ξ−2},
Ψ4 = {η−1ξ2, η−1ξη−1, η−1ξη}, Ψ5 = {ηξ−1η−1, ηξ−1η, ηξ−2}, Ψ6 = {ηξ2, ηξη−1, ηξη},
Ψ7 = {ξ−1η−1ξ−1, ξ−1η−1ξ, ξ−1η−2}, Ψ8 = {ξ−1η2, ξ−1ηξ−1, ξ−1ηξ}.

First, we prove the statement below, which gives the relevant group-theoretical relations of the decom-
position ΓD∗ for the isometries in Γ∗ :
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Lemma 2.1 Let Γ = ⟨ξ, η⟩ be a 2-generator free group and ΓD∗ be the decomposition of Γ in (1.3). Then
there are 60 group-theoretical relations (γ, s(γ), S(γ)) for γ ∈ Γ∗ .

Proof We list all of the group-theoretical relations of ΓD∗ for γ ∈ Γ∗ , defined in (1.1), in the following tables.

Table 1. Group-theoretical relations of ΓD∗ with 3 -cancellation.
l γ s(γ) S(γ) l γ s(γ) S(γ)
1 ξηξ−1 ξη−1ξ−1 {ξ2} ∪Ψ1 ∪Ψ2 5 ηξη−1 ηξ−1η−1 {η2} ∪Ψ5 ∪Ψ6

2 ξη−1ξ−1 ξηξ−1 {ξ2} ∪Ψ1 ∪Ψ2 6 ηξ−1η−1 ηξη−1 {η2} ∪Ψ5 ∪Ψ6

3 η−1ξη η−1ξ−1η {η−2} ∪Ψ3 ∪Ψ4 7 ξ−1ηξ ξ−1η−1ξ {ξ−2} ∪Ψ7 ∪Ψ8

4 η−1ξ−1η η−1ξη {η−2} ∪Ψ3 ∪Ψ4 8 ξ−1η−1ξ ξ−1ηξ {ξ−2} ∪Ψ7 ∪Ψ8

Table 2. Group-theoretical relations of ΓD∗ with 2 -cancellation.
l γ s(γ) S(γ) l γ s(γ) S(γ)
9 ξηξ−1 ξη−2 Ψ−Ψ1 13 ηξη−1 ηξ−2 Ψ−Ψ5
10 ξη−1ξ−1 ξη2 Ψ−Ψ2 14 ηξ−1η−1 ηξ2 Ψ−Ψ6
11 η−1ξη η−1ξ−2 Ψ−Ψ3 15 ξ−1ηξ ξ−1η−2 Ψ−Ψ7
12 η−1ξ−1η η−1ξ2 Ψ−Ψ4 16 ξ−1η−1ξ ξ−1η2 Ψ−Ψ8

Table 3. Group-theoretical relations of ΓD∗ with 1 -cancellation.
l γ s(γ) S(γ) l γ s(γ) S(γ)
17 ξ−1 ξη−1ξ−1 Ψ−Ψ3 31 η−1 ηξ−1η−1 Ψ−Ψ7
18 ξ−1 ξη−1ξ Ψ−Ψ4 32 η−1 ηξ−1η Ψ−Ψ8
19 ξ−1 ξη−2 Ψ− {η−2} 33 η−1 ηξ−2 Ψ− {ξ−2}
20 ξ−1 ξη2 Ψ− {η2} 34 η−1 ηξ2 Ψ− {ξ2}
21 ξ−1 ξηξ−1 Ψ−Ψ5 35 η−1 ηξη−1 Ψ−Ψ1
22 ξ−1 ξηξ Ψ−Ψ6 36 η−1 ηξη Ψ−Ψ2
23 ξ−1 ξ2 Ψ− {ξ2} ∪Ψ1 ∪Ψ2 37 η−1 η2 Ψ− {η2} ∪Ψ5 ∪Ψ6

24 η η−1ξ−1η−1 Ψ−Ψ7 38 ξ ξ−1η−1ξ−1 Ψ−Ψ3
25 η η−1ξ−1η Ψ−Ψ8 39 ξ ξ−1η−1ξ Ψ−Ψ4
26 η η−1ξ−2 Ψ− {ξ−2} 40 ξ ξ−1η−2 Ψ− {η2}
27 η η−1ξ2 Ψ− {ξ2} 41 ξ ξ−1η2 Ψ− {η−2}
28 η η−1ξη−1 Ψ−Ψ1 42 ξ ξ−1ηξ−1 Ψ−Ψ5
29 η η−1ξη Ψ−Ψ2 43 ξ ξ−1ηξ Ψ−Ψ6
30 η η−2 Ψ− {η−2} ∪Ψ3 ∪Ψ4 44 ξ ξ−2 Ψ− {η−2} ∪Ψ7 ∪Ψ8

Table 4. Group-theoretical relations of ΓD∗ with 2 -cancellation.
l γ s(γ) S(γ) l γ s(γ) S(γ)
45 ξη−1ξ−1 ξηξ Ψ− {ξ2} 49 ηξ−1η−1 ηξη Ψ− {η2}
46 ξηξ−1 ξη−1ξ Ψ− {ξ2} 50 ηξη−1 ηξ−1η Ψ− {η2}
47 η−1ξ−1η η−1ξη−1 Ψ− {η−2} 51 ξ−1η−1ξ ξ−1ηξ−1 Ψ− {ξ−2}
48 η−1ξη η−1ξ−1η−1 Ψ− {η−2} 52 ξ−1ηξ ξ−1η−1ξ−1 Ψ− {ξ−2}

Table 5. Group-theoretical relations of ΓD∗ with 1 -cancellation.
l γ s(γ) S(γ) l γ s(γ) S(γ)
53 ξη−1ξ−1 ξ2 Ψ− {ξη−1ξ} 57 ξηξ−1 ξ2 Ψ− {ξηξ}
54 η−1ξ−1η η−2 Ψ− {η−1ξ−1η−1} 58 η−1ξη η−2 Ψ− {η−1ξη−1}
55 ηξ−1η−1 η2 Ψ− {ηξ−1η} 59 ηξη−1 η2 Ψ− {ηξη}
56 ξ−1η−1ξ ξ−2 Ψ− {ξ−1η−1ξ−1} 60 ξ−1ηξ ξ−2 Ψ− {ξ−1ηξ−1}
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In Tables 1–5 all of the group-theoretical relations (γ, s(γ), S(γ)) of ΓD∗ for γ ∈ Γ∗ are counted. This
completes the proof. 2

Given the group-theoretical relations in Lemma 2.1, we decompose the area measure on S∞ accordingly.
This is stated in the following theorem. To save space, we will not give a proof of this theorem, which uses
analogous arguments presented in the proofs of [4, Lemma 5.3], [18, Lemma 3.3, Theorem 3.4], and [19, Theorem
2.1].

Theorem 2.2 Let Γ = ⟨ξ, η⟩ be a free, purely loxodromic, and geometrically infinite Kleinian group. Let ΓD∗

be the decomposition of Γ given in (1.3). If z denotes a point in H3 , then there is a family of Borel measures
{νψ}ψ∈Ψ defined on S∞ such that (i) Az =

∑
ψ∈Ψ νψ ; (ii) Az(S∞) = 1 ; and

(iii)

∫
S∞

(λγ,z)
2
dνs(γ) = 1−

∑
ψ∈S(γ)

∫
S∞

dνψ

for each group-theoretical relation (γ, s(γ), S(γ)) of ΓD∗ , where Az is the area measure on S∞ based at z .

Let I = J1 ∪ J2 ∪ J3 ∪ J4 = {1, 2, . . . , 28} and Il for l ∈ {1, . . . , 8} be the following index sets:

I1 = {1, 2, 3}, I5 = {15, 16, 17}, J1 = {1, 2, 3, 4, 5, 6, 7},
I2 = {4, 5, 6}, I6 = {18, 19, 20}, J2 = {8, 9, 10, 11, 12, 13, 14},
I3 = {8, 9, 10}, I7 = {22, 23, 24}, J3 = {15, 16, 17, 18, 19, 20, 21},
I4 = {11, 12, 13}, I8 = {25, 26, 27}, J4 = {22, 23, 24, 25, 26, 27, 28}.

(2.1)

We shall use the functions σ : (0, 1) → (0,∞) , ΣiJ : ∆27 → (0, 1) , ΣJi : ∆27 → (0, 1) , ΣjI : ∆27 → (0, 1) , and
Σn : ∆27 → (0, 1) with formulas σ(x) = 1/x− 1 ,

ΣJi (x) =
∑

l∈I−Ji

xl, ΣiJ(x) =
∑
l∈Ji

xl, ΣjI(x) =
∑

l∈I−Ij

xl, Σn(x) =
∑

l∈I−{n}

xl, (2.2)

for i ∈ {1, 2, 3, 4} , j ∈ {1, 2, 3, 4, 5, 6, 7, 8} , and n ∈ {1, 2, . . . , 28} , respectively, to express the displacement
functions compactly. In particular, we prove the following:

Proposition 2.3 Let Γ = ⟨ξ, η⟩ be a purely loxodromic, free, and geometrically infinite Kleinian group. Let
ΓD∗ be the decomposition of Γ defined in (1.3). For any z ∈ H3 and for each γ ∈ Γ∗ , the value e2dγz is
bounded below by fl(x) , gi(x) , hj(x) , or un(x) for x ∈ ∆27 for at least one of the displacement functions fl ,
gi , hj , or un whose formulas are listed in the tables below

Table 6. Displacement functions obtained from the group-theoretical relations in Table 1.
l l
1 f1(x) = σ

(
Σ1
J(x)

)
σ(x1) 5 f15(x) = σ

(
Σ3
J(x)

)
σ(x15)

2 f5(x) = σ
(
Σ1
J(x)

)
σ(x5) 6 f19(x) = σ

(
Σ3
J(x)

)
σ(x19)

3 f9(x) = σ
(
Σ2
J(x)

)
σ(x9) 7 f23(x) = σ

(
Σ4
J(x)

)
σ(x23)

4 f13(x) = σ
(
Σ2
J(x)

)
σ(x13) 8 f27(x) = σ

(
Σ4
J(x)

)
σ(x27)
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Table 7. Displacement functions obtained from the group-theoretical relations in Table 2.
l l
9 f3(x) = σ

(
Σ1
I(x)

)
σ(x3) 13 f17(x) = σ

(
Σ5
I(x)

)
σ(x17)

10 f4(x) = σ
(
Σ2
I(x)

)
σ(x4) 14 f18(x) = σ

(
Σ6
I(x)

)
σ(x18)

11 f10(x) = σ
(
Σ3
I(x)

)
σ(x10) 15 f24(x) = σ

(
Σ7
I(x)

)
σ(x24)

12 f11(x) = σ
(
Σ4
I(x)

)
σ(x11) 16 f25(x) = σ

(
Σ8
I(x)

)
σ(x25)

Table 8. Displacement functions obtained from the group-theoretical relations in Table 3.

l l

17 g1(x) = σ
(
Σ3
I(x)

)
σ(x1) 31 g15(x) = σ

(
Σ7
I(x)

)
σ(x15)

18 f2(x) = σ
(
Σ4
I(x)

)
σ(x2) 32 f16(x) = σ

(
Σ8
I(x)

)
σ(x16)

19 g3(x) = σ
(
Σ14(x)

)
σ(x3) 33 g17(x) = σ

(
Σ28(x)

)
σ(x17)

20 g4(x) = σ
(
Σ21(x)

)
σ(x4) 34 g18(x) = σ

(
Σ7(x)

)
σ(x18)

21 g5(x) = σ
(
Σ5
I(x)

)
σ(x5) 35 g19(x) = σ

(
Σ1
I(x)

)
σ(x19)

22 f6(x) = σ
(
Σ6
I(x)

)
σ(x6) 36 f20(x) = σ

(
Σ2
I(x)

)
σ(x20)

23 f7(x) = σ
(
ΣJ1 (x)

)
σ(x7) 37 f21(x) = σ

(
ΣJ3 (x)

)
σ(x21)

24 f8(x) = σ
(
Σ7
I(x)

)
σ(x8) 38 f22(x) = σ

(
Σ3
I(x)

)
σ(x22)

25 g9(x) = σ
(
Σ8
I(x)

)
σ(x9) 39 g23(x) = σ

(
Σ4
I(x)

)
σ(x23)

26 g10(x) = σ
(
Σ28(x)

)
σ(x10) 40 g24(x) = σ

(
Σ14(x)

)
σ(x24)

27 g11(x) = σ
(
Σ7(x)

)
σ(x11) 41 g25(x) = σ

(
Σ21(x)

)
σ(x25)

28 f12(x) = σ
(
Σ1
I(x)

)
σ(x12) 42 f26(x) = σ

(
Σ5
I(x)

)
σ(x26)

29 g13(x) = σ
(
Σ2
I(x)

)
σ(x13) 43 g27(x) = σ

(
Σ6
I(x)

)
σ(x27)

30 f14(x) = σ
(
ΣJ2 (x)

)
σ(x14) 44 f28(x) = σ

(
ΣJ4 (x)

)
σ(x28)

Table 9. Displacement functions obtained from the group-theoretical relations in Table 4.
l l

45 h1(x) = σ
(
Σ28(x)

)
σ(x1) 49 h15(x) = σ

(
Σ14(x)

)
σ(x15)

46 h5(x) = σ
(
Σ28(x)

)
σ(x5) 50 h19(x) = σ

(
Σ14(x)

)
σ(x19)

47 h9(x) = σ
(
Σ21(x)

)
σ(x9) 51 h23(x) = σ

(
Σ7(x)

)
σ(x23)

48 h13(x) = σ
(
Σ21(x)

)
σ(x13) 52 h27(x) = σ

(
Σ7(x)

)
σ(x27)

Table 10. Displacement functions obtained from the group-theoretical relations in Table 5.
l l

53 h7(x) = σ
(
Σ2(x)

)
σ(x7) 57 u7(x) = σ

(
Σ6(x)

)
σ(x7)

54 h14(x) = σ
(
Σ8(x)

)
σ(x14) 58 u14(x) = σ

(
Σ12(x)

)
σ(x14)

55 h21(x) = σ
(
Σ16(x)

)
σ(x21) 59 u21(x) = σ

(
Σ20(x)

)
σ(x21)

56 h28(x) = σ
(
Σ22(x)

)
σ(x28) 60 u28(x) = σ

(
Σ26(x)

)
σ(x28).

Proof Let {νψ}ψ∈Ψ be the family of Borel measures on S∞ given by Theorem 2.2. Since every isometry
ψ ∈ Ψ other than ξη−2 , ξη2 , η−1ξ−2 , η−1ξ2 , ηξ−2 , ηξ2 , ξ−1η−2 , and ξ−1η2 has an inverse in Ψ , an analogous
argument used in [19, Proposition 2.1] shows that 0 < νψ(S∞) < 1 for these isometries.

It is clear that νξη−2(S∞) ̸= 1 because otherwise we get νψ(S∞) = 0 for every ψ ∈ Ψ − {ξη−2} by
Theorem 2.2 (i), a contradiction. Assume that νξη−2(S∞) = 0 . By the group-theoretical relation in Table 2,

841



YÜCE/Turk J Math

(2), and Theorem 2.2 (iii), we derive that νψ(S∞) = 0 for every ψ ∈ Ψ1 = {ξη−1ξ−1, ξη−1ξ, ξη−2} . This is a
contradiction. By using the group-theoretical relations in Table 2 together with similar arguments given above
for ξη−2 , we conclude that 0 < νψ(S∞) < 1 for every ψ ∈ Ψ .

Let mp(ψ) =
∫
S∞

dνψ for the bijection p in (1.2). Also let m = (m1,m2, . . . ,m28) ∈ ∆27 . Since

0 < νψ(S∞) < 1 for every ψ ∈ Ψ , we see by Theorem 2.2 (iii) and (ii) that νs(γ)(S∞) and
∫
S∞

λ2γ,z0dµVs(γ)

satisfy the hypothesis of Lemma 1.6 for each group-theoretical relation (γ, s(γ), S(γ)) of ΓD∗ for γ ∈ Γ∗ . By
setting ν = νs(γ) , a = νs(γ)(S∞) , and b =

∫
S∞

λ2γ,z0dµVs(γ)
in Lemma 1.6, we obtain the lower bound

e2dγz ≥ σ

 ∑
ψ∈S(γ)

mp(ψ)

σ
(
mp(s(γ))

)
(2.3)

for each group-theoretical relation (γ, s(γ), S(γ)) of ΓD∗ so that γ ∈ Γ∗ . We replace each constant mp(ψ)

appearing in (2.3) with the variable xp(ψ) , which gives the functions listed in Tables 6, 7, 8, 9, and 10, proving
the proposition. 2

Let G = {f1, . . . , f28, g1, g3, . . . , g27, h1, h5, . . . , h27, u7, u14, . . . , u28} be the set of all displacement func-
tions given in the tables in the proposition above. Let F = {f1, . . . , f28} . Let G be the continuous function
defined as

G : ∆27 → R
x 7→ max{f(x) : f ∈ G}. (2.4)

In the next section, we calculate infx∈∆27 G(x) by using the subset F of functions in G .
We finish Section 2 by listing explicit formulas of some of the displacement functions from each group

{fl} , {gi} , {hj} , and {uk} in G as examples to clarify the use of compact forms in these functions. For the
index sets J1 = {1, 2, 3, 4, 5, 6, 7} , J2 = {8, 9, 10, 11, 12, 13, 14} , and I3 = {8, 9, 10} we have

f9(x) = σ(Σ2
J(x))σ(x9) =

1− x8 − x9 − x10 − x11 − x12 − x13 − x14
x8 + x9 + x10 + x11 + x12 + x13 + x14

· 1− x9
x9

,

f7(x) = σ(ΣJ1 (x))σ(x7) =
1− x8 − x9 − · · · − x27 − x28
x8 + x9 + · · ·+ x27 + x28

· 1− x7
x7

,

g1(x) = σ(Σ3
I(x))σ(x1) =

1− x1 − x2 − · · · − x7 − x11 − · · · − x28
x1 + x2 + · · ·+ x7 + x11 + · · ·+ x28

· 1− x1
x1

,

g18(x) = σ(Σ7(x))σ(x18) =
1− x1 − x2 − · · · − x6 − x8 − · · · − x28
x1 + x2 + · · ·+ x6 + x8 + · · ·+ x28

· 1− x18
x18

,

h1(x) = σ(Σ28(x))σ(x1) =
1− x1 − x2 − x3 − · · · − x27
x1 + x2 + x3 + · · ·+ x27

· 1− x1
x1

,

u7(x) = σ(Σ6(x))σ(x7) =
1− x1 − · · · − x5 − x7 − · · · − x28
x1 + · · ·+ x5 + x7 + · · ·+ x28

· 1− x7
x7

.

Note that in the formula of f9 only variables enumerated by the elements of J2 appear in the first multiple.
In the formula of f7 , variables enumerated by the elements of J1 are missing in the first factor. Similarly, in
the formula of g1 variables enumerated by the elements of I3 are missing. In the formulas of g18 , h1 , and u7 ,
variables x7 , x28 , and x6 are missing, respectively, in the first quotients.
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3. Infima of the maximum of the functions in G on ∆27

In this section, we will mostly be dealing with the functions in F = {fl}l∈I , where I = {1, 2, . . . , 28} . We will
show that infx∈∆27 G(x) = infx∈∆27 F (x) (see Theorems 3.15 and 3.16), such that F is the continuous function
that has the formula

F : ∆27 → R
x 7→ max (f1(x), f2(x), . . . , f28(x)) .

(3.1)

Therefore, it is enough to calculate infx∈∆27 F (x) . We start with the following lemma:

Lemma 3.1 If F is the function defined in (3.1), then infx∈∆27 F (x) is attained in ∆27 and contained in the
interval [1, α] , where α = 24.8692... , the only real root of the polynomial 21x4 − 496x3 − 654x2 +24x+81 that
is greater than 9 .

Proof To save space, we refer readers to [18, Lemma 4.2] and [19, Lemma 3.1] for details of the proof of
the statement infx∈∆27 F (x) = minx∈∆27 F (x) . Briefly, the equality follows from the observation that on any
sequence in ∆27 that limits on the boundary of ∆27 some of the functions in F approach infinity.

For some l ∈ I = {1, 2, . . . , 28} , we have fl(x) > 1 for every x ∈ ∆27 , which shows minx∈∆27 F (x) ≥ 1 .
Consider the point y∗ = (y1, y2, . . . , y28) in ∆27 such that yl = 1/(1 + 3α) = 0.0132... for l ∈ {7, 14, 21, 28} ,
yl = 3/(3 + α) = 0.1076... for l ∈ {1, 5, 9, 13, 15, 19, 23, 27} , and yl = 3(α− 1)/(21α2 + 14α− 3) = 0.0053... for
indices l ∈ {2, 6, 8, 12, 16, 20, 22, 26} and l ∈ {3, 4, 10, 11, 17, 18, 24, 25} . Then we see that fl(y∗) = α for every
l ∈ I . This completes the proof. 2

In the rest of this text, we will consider ∆27 as a submanifold of R28 . The tangent space Tx∆
27 at any

x ∈ ∆27 consists of vectors whose coordinates sum to 0 . Note that each displacement function fi for i ∈ I

is smooth in an open neighborhood of ∆27 . Therefore, the directional derivative of fi in the direction of any
v⃗ ∈ Tx∆

27 is given by ∇fi(x) · v⃗ for any i ∈ I = {1, 2, . . . , 28} . The notation x∗ = (x∗1, x
∗
2, . . . , x

∗
28) will be

used to denote a point at which the infimum of F is attained on ∆27 . We shall use α∗ to denote the infimum
of the maximum of the functions in F on ∆27 , i.e.

α∗ = min
x∈∆27

F (x).

The displacement functions {fl}l∈J for J = {1, 5, 9, 13, 15, 19, 23, 27} in F play a special role in com-
puting α∗ . In particular, we have the following statement:

Lemma 3.2 Let x∗ ∈ ∆27 so that F (x∗) = α∗ . We have fl(x∗) = α∗ for some l ∈ J .

Proof Assume on the contrary that fl(x∗) < α∗ for every l ∈ J . Let Cji denote the partial derivative of fi
with respect to xj at x∗ = (x∗1, x

∗
2, . . . , x

∗
28) . We form the 20 × 28 matrix below, whose rows are ∇fl(x∗) for
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l ∈ I − J :



C1
2 C2

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 0 0 0 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2

0 0 C3
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3

C1
4 C1

4 C1
4 C4

4 0 0 C1
4 C1

4 C1
4 C1

4 C1
4 C1

4 C1
4 C1

4 C1
4 C1

4 C1
4 C1

4 C1
4 C1

4 C1
4 C1

4 C1
4 C1

4 C1
4 C1

4 C1
4 C1

4

C1
6 C1

6 C1
6 C1

6 C1
6 C6

6 C1
6 C1

6 C1
6 C1

6 C1
6 C1

6 C1
6 C1

6 C1
6 C1

6 C1
6 0 0 0 C1

6 C1
6 C1

6 C1
6 C1

6 C1
6 C1

6 C1
6

0 0 0 0 0 0 C7
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7

C1
8 C1

8 C1
8 C1

8 C1
8 C1

8 C1
8 C8

8 C1
8 C1

8 C1
8 C1

8 C1
8 C1

8 C1
8 C1

8 C1
8 C1

8 C1
8 C1

8 C1
8 0 0 0 C1

8 C1
8 C1

8 C1
8

C1
10 C1

10 C1
10 C1

10 C1
10 C1

10 C1
10 0 0 C10

10 C1
10 C1

10 C1
10 C1

10 C1
10 C1

10 C1
10 C1

10 C1
10 C1

10 C1
10 C1

10 C1
10 C1

10 C1
10 C1

10 C1
10 C1

10

C1
11 C1

11 C1
11 C1

11 C1
11 C1

11 C1
11 C1

11 C1
11 C1

11 C11
11 0 0 C1

11 C1
11 C1

11 C1
11 C1

11 C1
11 C1

11 C1
11 C1

11 C1
11 C1

11 C1
11 C1

11 C1
11 C1

11

0 0 0 C4
12 C4

12 C4
12 C4

12 C4
12 C4

12 C4
12 C4

12 C12
12 C4

12 C4
12 C4

12 C4
12 C4

12 C4
12 C4

12 C4
12 C4

12 C4
12 C4

12 C4
12 C4

12 C4
12 C4

12 C4
12

C1
14 C1

14 C1
14 C1

14 C1
14 C1

14 C1
14 0 0 0 0 0 0 C14

14 C1
14 C1

14 C1
14 C1

14 C1
14 C1

14 C1
14 C1

14 C1
14 C1

14 C1
14 C1

14 C1
14 C1

14

C1
16 C1

16 C1
16 C1

16 C1
16 C1

16 C1
16 C1

16 C1
16 C1

16 C1
16 C1

16 C1
16 C1

16 C1
16 C16

16 C1
16 C1

16 C1
16 C1

16 C1
16 C1

16 C1
16 C1

16 0 0 0 C1
16

C1
17 C1

17 C1
17 C1

17 C1
17 C1

17 C1
17 C1

17 C1
17 C1

17 C1
17 C1

17 C1
17 C1

17 0 0 C17
17 C1

17 C1
17 C1

17 C1
17 C1

17 C1
17 C1

17 C1
17 C1

17 C1
17 C1

17

C1
18 C1

18 C1
18 C1

18 C1
18 C1

18 C1
18 C1

18 C1
18 C1

18 C1
18 C1

18 C1
18 C1

18 C1
18 C1

18 C1
18 C18

18 0 0 C1
18 C1

18 C1
18 C1

18 C1
18 C1

18 C1
18 C1

18

C1
20 C1

20 C1
20 0 0 0 C1

20 C1
20 C1

20 C1
20 C1

20 C1
20 C1

20 C1
20 C1

20 C1
20 C1

20 C1
20 C1

20 C20
20 C1

20 C1
20 C1

20 C1
20 C1

20 C1
20 C1

20 C1
20

C1
21 C1

21 C1
21 C1

21 C1
21 C1

21 C1
21 C1

21 C1
21 C1

21 C1
21 C1

21 C1
21 C1

21 0 0 0 0 0 0 C21
21 C1

21 C1
21 C1

21 C1
21 C1

21 C1
21 C1

21

C1
22 C1

22 C1
22 C1

22 C1
22 C1

22 C1
22 0 0 0 C1

22 C1
22 C1

22 C1
22 C1

22 C1
22 C1

22 C1
22 C1

22 C1
22 C1

22 C22
22 C1

22 C1
22 C1

22 C1
22 C1

22 C1
22

C1
24 C1

24 C1
24 C1

24 C1
24 C1

24 C1
24 C1

24 C1
24 C1

24 C1
24 C1

24 C1
24 C1

24 C1
24 C1

24 C1
24 C1

24 C1
24 C1

24 C1
24 0 0 C24

24 C1
24 C1

24 C1
24 C1

24

C1
25 C1

25 C1
25 C1

25 C1
25 C1

25 C1
25 C1

25 C1
25 C1

25 C1
25 C1

25 C1
25 C1

25 C1
25 C1

25 C1
25 C1

25 C1
25 C1

25 C1
25 C1

25 C1
25 C1

25 C25
25 0 0 C1

25

C1
26 C1

26 C1
26 C1

26 C1
26 C1

26 C1
26 C1

26 C1
26 C1

26 C1
26 C1

26 C1
26 C1

26 0 0 0 C1
26 C1

26 C1
26 C1

26 C1
26 C1

26 C1
26 C1

26 C26
26 C1

26 C1
26

C1
28 C1

28 C1
28 C1

28 C1
28 C1

28 C1
28 C1

28 C1
28 C1

28 C1
28 C1

28 C1
28 C1

28 C1
28 C1

28 C1
28 C1

28 C1
28 C1

28 C1
28 0 0 0 0 0 0 C28

28



,

where the entries are given as follows:

C1
2 = − σ(x∗2)

(Σ4
I(x∗))

2 , C2
2 = − σ(x∗2)

(Σ4
I(x∗))

2 −
σ
(
Σ4
I(x∗)

)
(x∗2)

2
, C3

3 = −
σ
(
Σ1
I(x∗)

)
(x∗3)

2

C4
3 = − σ(x∗3)

(Σ1
I(x∗))

2 , C1
4 = − σ(x∗4)

(Σ2
I(x∗))

2 , C4
4 = −

σ
(
Σ2
I(x∗)

)
(x∗4)

2 ,

C1
6 = − σ(x∗6)

(Σ6
I(x∗))

2 , C6
6 = − σ(x∗6)

(Σ6
I(x∗))

2 −
σ
(
Σ6
I(x∗)

)
(x∗6)

2
, C7

7 = −
σ
(
ΣJ1 (x∗)

)
(x∗7)

2 ,

C8
7 = − σ(x∗7)(

ΣJ1 (x∗)
)2 , C8

8 = − σ(x∗8)

(Σ7
I(x∗))

2 −
σ
(
Σ7
I(x∗)

)
(x∗8)

2
, C1

8 = − σ(x∗8)

(Σ7
I(x∗))

2 ,

C1
10 = − σ(x∗10)

(Σ3
I(x∗))

2 , C10
10 = −

σ
(
Σ3
I(x∗)

)
(x∗10)

2 , C1
11 = − σ(x∗11)

(Σ4
I(x∗))

2 ,

C11
11 = −

σ
(
Σ4
I(x∗)

)
(x∗11)

2 , C12
12 = − σ(x∗12)

(Σ1
I(x∗))

2 −
σ
(
Σ1
I(x∗)

)
(x∗12)

2
, C4

12 = − σ(x∗12)

(Σ1
I(x∗))

2 ,

C1
14 = − σ(x∗14)(

ΣJ2 (x∗)
)2 , C14

14 = −
σ
(
ΣJ2 (x∗)

)
(x∗14)

2 , C1
16 = − σ(x∗16)

(Σ8
I(x∗))

2 ,

C1
17 = − σ(x∗17)

(Σ5
I(x∗))

2 , C16
16 = − σ(x∗16)

(Σ8
I(x∗))

2 −
σ
(
Σ8
I(x∗)

)
(x∗16)

2
, C17

17 = −
σ
(
Σ5
I(x∗)

)
(x∗17)

2 ,

C1
18 = − σ(x∗18)

(Σ6
I(x∗))

2 , C18
18 = −

σ
(
Σ6
I(x∗)

)
(x∗18)

2 , C1
20 = − σ(x∗20)

(Σ2
I(x∗))

2 ,

C1
21 = − σ(x∗21)(

ΣJ3 (x∗)
)2 , C20

20 = − σ(x∗20)

(Σ2
I(x∗))

2 −
σ
(
Σ2
I(x∗)

)
(x∗20)

2
, C21

21 = −
σ
(
ΣJ3 (x∗)

)
(x∗21)

2 ,

C1
22 = − σ(x∗22)

(Σ3
I(x∗))

2 , C22
22 = − σ(x∗22)

(Σ3
I(x∗))

2 −
σ
(
Σ3
I(x∗)

)
(x∗22)

2
, C1

24 = − σ(x∗24)

(Σ7
I(x∗))

2 ,
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C24
24 = −

σ
(
Σ7
I(x∗)

)
(x∗24)

2 , C1
25 = − σ(x∗25)

(Σ8
I(x∗))

2 , C25
25 = −

σ
(
Σ8
I(x∗)

)
(x∗25)

2 ,

C1
26 = − σ(x∗26)

(Σ5
I(x∗))

2 , C26
26 = − σ(x∗26)

(Σ5
I(x∗))

2 −
σ
(
Σ5
I(x∗)

)
(x∗26)

2
C1

28 = − σ(x∗28)(
ΣJ4 (x∗)

)2 ,
C28

28 = −
σ
(
ΣJ4 (x∗)

)
(x∗28)

2 .

Consider the vector u⃗ ∈ Tx∗∆27 with the following coordinates:

(u⃗)i =


1 if i = 2, 3, 4, 6, 7, 8, 10, 11, 12, 16, 17, 18, 20, 21, 22, 24, 25, 26,

−3 if i = 5, 9, 13, 19, 23, 27,
2 if i = 14, 28,

−2 if i = 1, 15.

For l ∈ {2, 3, 6, 7, 8, 16, 17, 20, 21, 22} , i ∈ {14, 28} , j ∈ {4, 10, 11, 18, 24, 25} , and k ∈ {12, 26} , we compute
that

∇fl(x∗) · u⃗ = Cll < 0, ∇fi(x∗) · u⃗ = 2Cii < 0, ∇fj(x∗) · u⃗ = C1
j + Cjj < 0,

∇fk(x∗) · u⃗ = C4
k + Ckk < 0.

This implies that the values of fl for l ∈ I − J decrease along a line segment in the direction of u⃗ . For a
sufficiently short distance along u⃗ the values of fl for l ∈ J are smaller than α∗ . Thus, there exists a point
z ∈ ∆27 such that fl(z) < α∗ for every l ∈ I = {1, 2, . . . , 28} . This is a contradiction. Hence, fl(x∗) = α∗ for
some l ∈ J = {1, 5, 9, 13, 15, 19, 23, 27} . 2

Let ∆ = {(x, y) ∈ R2 : x+ y < 1, 0 < x, 0 < y} . Introduce the function g : ∆ → (0, 1) defined by

g(x, y) =
1− x− y

x+ y
· 1− y

y
. (3.2)

Given a displacement function fl in F for l ∈ J = {1, 5, 9, 13, 15, 19, 23, 27} , it can be expressed as

fl(x) = g
(
ΣiJ(x)− xl, xl

)
for some i ∈ {1, 2, 3, 4} . The function g was also used in [19]. In fact, the following statement [19, Lemma 3.2]
was proved for g :

Lemma 3.3 Let Cg = {(x, y) ∈ ∆ : x + 2y − xy − y2 < 3
4} . Then Cg is an open convex set and g(x, y) is a

strictly convex function on Cg .

Therefore, by this lemma, each displacement function fl for l ∈ J is a strictly convex function over the open
convex subset

Cfl = {x = (x1, . . . , x28) ∈ ∆27 : Σ(x) + 2xl − Σ(x)xl − (xl)
2 < 3

4} (3.3)

of ∆27 , where we set Σ(x) = ΣiJ(x)− xl for a chosen i ∈ {1, 2, 3, 4} depending on l .
If Cfl for l ∈ J are as described above, then the subset C = ∩l∈JCfl of ∆27 is nonempty. This is

because, if we consider the point y∗ given in the proof of Lemma 3.1, then

ΣiJ(y∗)− yl = 0.1423...
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for every i ∈ {1, 2, 3, 4} . We find that Σ(y∗) + 2yl −Σ(y∗)yl − (yl)
2 = 0.3307... < 3

4 for every l ∈ J . Thus, y∗

is in C . Additionally, we have x∗ = (x∗1, x
∗
2, . . . , x

∗
28) ∈ C implied by the following two lemmas:

Lemma 3.4 Let x∗ ∈ ∆27 so that α∗ = F (x∗) . Then x∗ ∈ Cf1 , defined in (3.3), where

f1(x) = σ(Σ1
J)σ(x1) =

1− x1 − x2 − x3 − x4 − x5 − x6 − x7
x1 + x2 + x3 + x4 + x5 + x6 + x7

· 1− x1
x1

.

Proof Assume on the contrary that x∗ ̸∈ Cf1 . Then, by the definition of Cf1 , we have

7∑
l=2

x∗l +

(
2−

7∑
l=2

x∗l

)
x∗1 − (x∗1)

2 ≥ 3

4
. (3.4)

Let us say N = 1
4 (3 −

√
3) ≈ 0.3170. Also, let Σ∗

1 =
∑7
l=1 x

∗
l = Σ1

J(x∗) , Σ∗
2 =

∑14
l=8 x

∗
l = Σ2

J(x∗) ,

Σ∗
3 =

∑21
l=15 x

∗
l = Σ3

J(x∗) , and Σ∗
4 =

∑28
l=22 x

∗
l = Σ4

J(x∗) . Consider the following cases:

(A) Σ(x∗) ≥ N, x∗1 ≥ N, (B) Σ(x∗) ≥ N > x∗1, (C) x∗1 ≥ N > Σ(x∗), (3.5)

where Σ(x∗) = Σ1
J(x∗)− x∗1 =

∑7
l=2 x

∗
l . Assume that (A) is the case. Note that Σ∗

1 ≥ 2N . Then we have

Σ∗
2 +Σ∗

3 +Σ∗
4 ≤M = 1− 2N ≈ 0.3660. (3.6)

If Σ∗
2 ≤ M/3 ≈ 0.1220 , using Lemma 3.1 and σ(M/3)σ(x∗l ) ≤ σ(Σ∗

2)σ(x
∗
l ) ≤ α , we find for every l ∈ {9, 13}

that

x∗l ≥
σ(M/3)

(α− 1) + σ(M/3)
=

3−M

(α− 2)M + 3
≈ 0.2317.

Then we see that x∗9 > Σ∗
2 , a contradiction. This implies that Σ∗

2 > M/3 . We can repeat this argument with
Σ∗

3 and Σ∗
4 to show that Σ∗

3 > M/3 and Σ∗
4 > M/3 . This is a contradiction, so (A) is not the case.

Assume that (B) holds. Since we have Σ(x∗) ≥ N , we obtain the following inequality:

x∗1 +Σ∗
2 +Σ∗

3 +Σ∗
4 ≤M = 1−N ≈ 0.6830. (3.7)

If Σ∗
2 ≤ M/4 ≈ 0.1707 , then by the inequality σ(M/4)σ(x∗l ) ≤ σ(Σ∗

2)σ(x
∗
l ) ≤ α , we find for every l ∈ {9, 13}

that

x∗l ≥
σ(M/4)

α+ σ(M/4)
=

4−M

(α− 2)M + 4
≈ 0.1691. (3.8)

Note that x∗9 + x∗13 > Σ∗
2 , a contradiction. Thus, we get Σ∗

2 > M/4 . Similar arguments for Σ∗
3 and Σ∗

4 show
that Σ∗

3 > M/4 and Σ∗
4 > M/4 . Then we compute from (3.7) that x∗1 ≤M/4 . By (3.4), we calculate that

Σ(x∗) ≥ L =
3− 2M

4−M
≈ 0.4926. (3.9)

This implies Σ(x∗)+Σ∗
2 +Σ∗

3 +Σ∗
4 > L+3M/4 ≈ 1.0049 > 1 , a contradiction. Hence, (B) is also not the case.

Assume that (C) in (3.5) holds. Since x∗1 ≥ N , we have

Σ(x∗) + Σ∗
2 +Σ∗

3 +Σ∗
4 ≤M = 1−N ≈ 0.6830. (3.10)
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If Σ∗
2 ≤M/4 , then by (3.8), we derive that x∗9 + x∗13 > Σ∗

2 as in case (B), a contradiction. Therefore, we must
have Σ∗

2 > M/4 . Similar computations for Σ∗
3 and Σ∗

4 imply as in case (B) that Σ∗
3 > M/4 and Σ∗

4 > M/4 .
Then we find that Σ(x∗) ≤M/4 . Since (2− Σ(x∗))x∗1 < 2x∗1 , using the inequality in (3.4), we calculate that

x∗1 ≥ L =
1

4

(
4−

√
5 +

√
3

)
≈ 0.3513. (3.11)

Since Σ∗
2 + Σ∗

3 + Σ∗
4 > 3M/4 , we find that Σ∗

1 < 1 − 3M/4 . By Lemma 3.1 and using the inequality
σ(1− 3M/4)σ(x∗5) < σ(Σ∗

1)σ(x
∗
5) = f5(x∗) ≤ α, we compute that

x∗5 >
σ(1− 3M/4)

α+ σ(1− 3M/4)
=

3M

(4− 3M)α+ 3M
≈ 0.0405.

We have x∗1 + Σ∗
2 + Σ∗

3 + Σ∗
4 < 1 . By (3.11), we get Σ∗

2 + Σ∗
3 + Σ∗

4 < 1 − L ≈ 0.6487 . By the inequality
σ(1− L)σ(x∗7) < σ(Σ∗

2 +Σ∗
3 +Σ∗

4)σ(x
∗
7) = f7(x∗) ≤ α, we derive that

x∗7 >
σ(1− L)

α+ σ(1− L)
=

L

(1− L)α+ L
≈ 0.0213.

We claim that Σ∗
2 <

1
4 because otherwise we calculate that

x∗1 + x∗5 + x∗7 +Σ∗
2 +Σ∗

3 +Σ∗
4 > L+

3M

(4− 3M)α+ 3M
+

L

(1− L)α+ L
+
M

2
+

1

4
≈ 1.0047 > 1, (3.12)

a contradiction. Similarly, we find a contradiction in each case if we assume Σ∗
3 ≥ 1

4 or Σ∗
4 ≥ 1

4 . Therefore, we
have Σ∗

r <
1
4 for every r ∈ {2, 3, 4} . Then, for every l ∈ {9, 13, 15, 19, 23, 27} , we obtain

x∗l >
σ(1/4)

α+ σ(1/4)
≈ 0.1076

by the inequalities σ(M/4)σ(x∗l ) ≤ σ(Σ∗
r)σ(x

∗
l ) ≤ α . Finally, we get the contradiction

x∗1 + x∗5 + x∗7 + x∗9 + x∗13 + x∗15 + x∗19 + x∗23 + x∗27 ≈ 1.0591 > 1.

This shows that (C) is not the case either, which completes the proof. 2

Lemma 3.5 Let x∗ ∈ ∆27 so that α∗ = F (x∗) . Then x∗ ∈ Cfl , defined in (3.3), for l ∈ {5, 9, 13, 15, 19, 23, 27} .

Proof The proof of Lemma 3.4 is symmetric in the sense that it can be repeated for every index l ∈
{5, 9, 13, 15, 19, 23, 27} . In particular, if l = 5 , we interchange x∗1 with x∗5 and let Σ(x) = Σ1

J(x) − x5 . Then
we reiterate the computations carried out in the proof above by keeping the same organizations in (3.6), (3.7),
(3.10), and (3.12).

For some l ∈ {9, 13, 15, 19, 23, 27} , we replace x∗1 with x∗l , let Σ(x) = Σ1
J(x)−xl for some i ∈ {1, 2, 3, 4} ,

and reorganize the inequalities in (3.6), (3.7), (3.10), and (3.12) by choosing relevant sums from Σ∗
1 , Σ∗

2 , Σ∗
3 ,

and Σ∗
4 . Then we carry out analogous calculations given in the proof of Lemma 3.4 for the chosen index l . 2

We shall also need the observation below about g , defined in (3.2), in the computation of α∗ . Its proof
is elementary. Therefore, we shall omit it. We have:
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Lemma 3.6 For (x, y) ∈ Cg , the inequality g(x, y) < α = 24.8692... holds if and only if 0.1670... < y < 1
2 and

0 < x < (−3 + 8y − 4y2)/(−4 + 4y) or

0.0134... =
1 + 3α−

√
1− 10α+ 9α2

8α
< y <

1

1− α
+

√
α

(α− 1)2
= 0.1670...

and 1− 2y + (1− α)y2

1 + (α− 1)y
< x <

−3 + 8y − 4y2

−4 + 4y
.

As mentioned earlier, the displacement functions {fl} for l ∈ J = {1, 5, 9, 13, 15, 19, 23, 27} play a more
important role in the computation of α∗ . These functions take larger values on C =

∩
l∈J Cfl than the values

of the rest of the displacement functions in F at the points that are significant to calculate the infimum of the
maximum of F . In other words, we have the following:

Lemma 3.7 Let F̃ (x) = maxx∈C{fl(x) : l ∈ J} for C =
∩

l∈J
Cfl . Then, F̃ (x) ≥ α∗ .

Proof Assume on the contrary that F̃ (z) < α∗ for some z ∈ C . Then, by Lemma 3.1 for every l ∈ J , we
have fl(z) < α∗ ≤ α = 24.8692... . Let z = (z1, z2, . . . , z28) .

Assume that zl > 3/(3+α) for every l ∈ {1, 5} . Also assume that zl ≤ 3/(3+α) for every l ∈ {9, 15, 23} .
By the inequalities fl(z) = σ(ΣiJ(z))σ(zl) < α for every l ∈ {9, 15, 23} , for every i ∈ {2, 3, 4} , we get

ΣiJ(z) >
σ
(

3
3+α

)
α+ σ

(
3

3+α

) =
1

4
. (3.13)

Since Σ1
J(z) + Σ2

J(z) + Σ3
J(z) + Σ4

J(z) = 1 , we have Σ1
J(z) < 1

4 . This implies that

Σ1
J(z)− z1 <

1

4
− 3

3 + α
= 0.1423.... (3.14)

Because z ∈ C ⊂ Cf1 , by Lemma 3.6 for g = f1 , x = Σ1
J − z1 , and y = z1 , we find z1 > 0.4237... > Σ1

J(z) , a
contradiction. Thus, zl > 3/(3 + α) for some l ∈ {9, 15, 23} .

Assume without loss of generality that z9 > 3/(3 + α) and zl ≤ 3/(3 + α) for every l ∈ {15, 23} . Then
we have ΣiJ(z) > 1

4 for every i ∈ {3, 4} by the inequalities fl(z) = σ(ΣiJ(z))σ(zl) < α for l ∈ {15, 23} . This
implies that Σ1

J(z) + Σ2
J(z) < 1/2 . If Σ1

J(z) < 1
4 , then by the argument in the previous paragraph, we obtain

a contradiction. If Σ2
J(z) < 1

4 , we have Σ2
J(z)− z9 < 0.1423.... Using Lemma 3.6 for g = f9 , x = Σ2

J(z)− z9 ,
and y = z9 , we find the contradiction z9 > Σ2

J(z) . This implies that zl > 3/(3 + α) for at least two distinct
l ∈ {9, 15, 23} .

Assume again without loss of generality that zl > 3/(3 + α) for every l ∈ {9, 15} and z23 ≤ 3/(3 + α) .
Then Σ4

J(z) > 1
4 by the inequality f23(z) = σ(Σ4

J(z))σ(z23) < α . This implies that Σ1
J(z)+Σ2

J(z)+Σ3
J(z) < 3

4 ,
which in turn gives that ΣiJ(z) < 1

4 for some i ∈ {1, 2, 3} . Since zl > 3/(3 + α) for every l ∈ {1, 5, 9, 15} ,
depending on i , using z1 and g = f1 , or z9 and g = f9 , or z15 and g = f15 in (3.14) and Lemma 3.6, we
obtain a contradiction in each case by repeating the arguments given above. We must have zl > 3/(3 + α) for
every l ∈ {9, 15, 23} .
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We already know that Σ1
J(z) + Σ2

J(z) + Σ3
J(z) + Σ4

J(z) = 1 as z ∈ C ⊂ ∆27 . Then we get ΣiJ(z) ≤ 1
4

for some i ∈ {1, 2, 3, 4} . Given i , by choosing appropriate zl from the list {z1, z9, z15, z23} , we repeat the
relevant argument carried out above and derive a contradiction using Lemma 3.6. As a result, we conclude that
zl ≤ 3/(3 + α) for some l ∈ {1, 5} .

Notice that the computations used to show that zl ≤ 3/(3 +α) for some l ∈ {1, 5} are symmetric in the
sense that they can be deployed to prove zl ≤ 3/(3 + α) for some l in any given pair {9, 13} , {15, 19} , and
{23, 27} . This implies that there exist entries zm , zn , zr , and zs for m ∈ {1, 5} n ∈ {9, 13} , r ∈ {15, 19} , and
s ∈ {23, 27} such that zl ≤ 3/(3 + α) for every l ∈ {m,n, r, s} . By the inequalities fl(z) = σ(ΣiJ(z))σ(zl) < α

for l ∈ {m,n, r, s} , we find that ΣiJ(z) > 1
4 for every i ∈ {1, 2, 3, 4} , a contradiction. Hence, the conclusion of

the lemma follows. 2

Before we proceed to prove Proposition 3.11, we review three facts from convex analysis. These facts
were also used in [19, Theorem 3.2, Theorem 3.3, and Proposition 3.3]. For their proofs interested readers may
refer to this source and the references therein.

Theorem 3.8 If {Ci} for i ∈ I is a collection of finitely many nonempty convex sets in Rd with C = ∩i∈ICi ̸=
∅ , then C is also convex.

Theorem 3.9 If {fi} for i ∈ I is a finite set of strictly convex functions defined on a convex set C ⊂ Rd ,
then maxx∈C{fi(x) : i ∈ I} is also a strictly convex function on C .

Proposition 3.10 Let F be a convex function on an open convex set C ⊂ Rd . If x∗ is a local minimum of
F , then it is a global minimum of F , and the set {y∗ ∈ C : F (y∗) = F (x∗)} is a convex set. Furthermore, if
F is strictly convex and x∗ is a global minimum, then the set {y∗ ∈ C : F (y∗) = F (x∗)} consists of x∗ alone.

With these facts, we can prove the following statement, which gives the first part of Property B:

Proposition 3.11 Let F = {fi} for i ∈ I = {1, 2, . . . , 28} be the set of displacement functions listed in
Proposition 2.3 and F be as in (3.1). If x∗ and y∗ are two points in ∆27 so that α∗ = F (x∗) = F (y∗) ,
then x∗ = y∗ .

Proof We know by Lemma 3.3 that each fl for l ∈ J is a strictly convex function over the open convex set
Cfl . Therefore, F̃ (x) defined in Lemma 3.6 is also strictly convex on C = ∩l∈JCfl , which is itself an open
convex set by Theorem 3.8 and Theorem 3.9. By Lemma 3.4 and Lemma 3.5, we have x∗, y∗ ∈ C . Since
F̃ (x) ≥ α∗ for every x ∈ C and F̃ (x∗) = α∗ by Lemma 3.2 and Lemma 3.7, the value α∗ is the global minimum

of F̃ . As a result, we find that x∗ = y∗ by Proposition 3.10. 2

The uniqueness of x∗ established by Proposition 3.11 simplifies the task of determining the relations
among the coordinates of x∗ considerably. In fact, we have the following statement:

Lemma 3.12 If x∗ = (x∗1, x
∗
2, . . . , x

∗
28) ∈ ∆27 so that F (x∗) = α∗ , then x∗i = x∗j for all indices i, j ∈

{1, 5, 9, 13, 15, 19, 23, 27} . Also, for every i, j ∈ {2, 6, 8, 12, 16, 20, 22, 26} , i, j ∈ {3, 4, 10, 11, 17, 18, 24, 25} , and
i, j ∈ {7, 14, 21, 28} , the equality x∗i = x∗j holds.
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Proof Consider the permutations τ1 , τ2 , and τ3 in the symmetric group S28 defined below:

τ1 = (1 5)(2 6)(3 4)(8 16)(9 15)(10 17)(11 18)(12 20)(13 19)(14 21)(22 26)(23 27)(24 25),

τ2 = (1 23)(2 22)(3 24)(4 25)(5 27)(6 26)(7 28)(8 12)(9 13)(10 11)(15 19)(16 20)(17 18),

τ3 = (1 13)(2 12)(3 11)(4 10)(5 9)(6 8)(7 14)(15 27)(16 26)(17 25)(18 24)(19 23)(20 22)(21 28).

Let Tl : ∆
27 → ∆27 be the transformation defined by xi 7→ xτl(i) for l = 1, 2, 3 . Note that Tl(∆

27) = ∆27

for every l . Let Hl : ∆
27 → R be the map so that Hl(x) = max{(fi ◦ Tl)(x) : i = 1, 2, . . . , 28} . Then we

have fi(Tl(x)) = fτl(i)(x) for every x ∈ ∆27 for every i = 1, 2, . . . , 28 for every l = 1, 2, 3 . This implies that

F (x) = Hl(x) for every x and for every l . Since x∗ is unique by Proposition 3.11, we obtain T−1
l (x∗) = x∗

for l = 1, 2, 3 . Then the lemma follows. 2

Lemma 3.12 implies that fi(x∗) = fj(x∗) for every i, j ∈ {1, 5, 9, 13, 15, 19, 23, 27} . Also, for every i, j ∈
{2, 6, 8, 12, 16, 20, 22, 26} , i, j ∈ {3, 4, 10, 11, 17, 18, 24, 25} , and i, j ∈ {7, 14, 21, 28} we have fi(x∗) = fj(x∗) .
Therefore, there are four values to consider at x∗ to compute α∗ : f1(x∗) , f2(x∗) , f3(x∗) , and f7(x∗) , which
are given as

1− 2(x∗1 + x∗2 + x∗3)− x∗7
2(x∗1 + x∗2 + x∗3) + x∗7

· 1− x∗1
x∗1

= α∗, (3.15)

1− 7(x∗1 + x∗2 + x∗3)− 4x∗7
7(x∗1 + x∗2 + x∗3) + 4x∗7

· 1− x∗2
x∗2

≤ α∗, (3.16)

1− 7(x∗1 + x∗2 + x∗3)− 4x∗7
7(x∗1 + x∗2 + x∗3) + 4x∗7

· 1− x∗3
x∗3

≤ α∗, (3.17)

1− 6(x∗1 + x∗2 + x∗3)− 3x∗7
6(x∗1 + x∗2 + x∗3) + 3x∗7

· 1− x∗7
x∗7

≤ α∗. (3.18)

We shall show next that f2(x∗) = f3(x∗) = f7(x∗) = α∗ . For this, we will need the statement below:

Lemma 3.13 For 1 ≤ k ≤ n − 1 , let f1 ,…, fk be smooth functions on an open neighborhood U of the
(n− 1)−simplex ∆n−1 in Rn . If at some x ∈ ∆n−1 the collection {∇f1(x),∇f2(x), . . . ,∇fk(x), ⟨1, . . . , 1⟩} of
vectors in Rn is linearly independent, then there exists a vector u⃗ ∈ Tx∆

n−1 such that each fi for i = 1, . . . , k

decreases in the direction of u⃗ at x .

Interested readers may refer to [18, Lemma 4.10] for its proof. We have the following statement:

Proposition 3.14 Let F = {fi} for i ∈ I = {1, 2, . . . , 28} be the set of displacement functions listed in
Proposition 2.3 and F be as in (3.1). If x∗ is the point such that F (x∗) = α∗ , then x∗ is in the set
∆27 = {x ∈ ∆27 : fi(x) = fj(x) for every i, j ∈ I} .

Proof By Lemma 3.12, it is enough to show that f2(x∗) = f3(x∗) = f7(x∗) = α∗ . Remember that Cji denotes
the partial derivative of fi with respect to xj at x∗ . We calculate the constants below:

C1
1 = − σ(x∗1)

(Σ1
J(x∗))

2 −
σ
(
Σ1
J(x∗)

)
(x∗1)

2
, C2

1 = − σ(x∗1)

(Σ1
J(x∗))

2 , C1
5 = − σ(x∗5)

(Σ1
J(x∗))

2 , C16
15 = − σ(x∗15)

(Σ3
J(x∗))

2 ,

C5
5 = − σ(x∗5)

(Σ1
J(x∗))

2 −
σ
(
Σ1
J(x∗)

)
(x∗5)

2
, C8

9 = − σ(x∗9)

(Σ2
J(x∗))

2 , C8
13 = − σ(x∗13)

(Σ2
J(x∗))

2 , C15
19 = − σ(x∗19)

(Σ3
J(x∗))

2 ,
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C9
9 = − σ(x∗9)

(Σ2
J(x∗))

2 −
σ
(
Σ2
J(x∗)

)
(x∗9)

2
, C13

13 = − σ(x∗13)

(Σ2
J(x∗))

2 −
σ
(
Σ2
J(x∗)

)
(x∗13)

2
, C15

15 = − σ(x∗15)

(Σ3
J(x∗))

2 −
σ
(
Σ3
J(x∗)

)
(x∗15)

2
,

C19
19 = − σ(x∗19)

(Σ3
J(x∗))

2 −
σ
(
Σ3
J(x∗)

)
(x∗19)

2
, C23

23 = − σ(x∗23)

(Σ4
J(x∗))

2 −
σ
(
Σ4
J(x∗)

)
(x∗23)

2
, C27

27 = − σ(x∗27)

(Σ4
J(x∗))

2 −
σ
(
Σ4
J(x∗)

)
(x∗27)

2
,

C22
23 = − σ(x∗23)

(Σ4
J(x∗))

2 , C22
27 = − σ(x∗27)

(Σ4
J(x∗))

2 .

Since we have Σ1
J(x∗) = Σ2

J(x∗) = Σ3
J(x∗) = Σ4

J(x∗) , we derive that C1
1 = C5

5 = C9
9 = C13

13 = C15
15 =

C19
19 = C23

23 = C27
27 and C2

1 = C1
5 = C8

9 = C8
13 = C16

15 = C15
19 = C22

23 = C22
27 by Lemma 3.12. Again by the

same lemma, we have Σ4
I(x∗) = Σ6

I(x∗) = Σ7
I(x∗) = Σ1

I(x∗) = Σ8
I(x∗) = Σ2

I(x∗) = Σ3
I(x∗) = Σ5

I(x∗) . For
the constants given in Lemma 3.2, this implies that C2

2 = C6
6 = C8

8 = C12
12 = C16

16 = C20
20 = C22

22 = C26
26 ,

C1
2 = C1

6 = C1
8 = C4

12 = C1
16 = C1

20 = C1
21 = C1

26, C
3
3 = C4

4 = C10
10 = C11

11 = C17
17 = C18

18 = C24
24 = C25

25 , and
C4

3 = C1
4 = C1

10 = C1
11 = C1

17 = C1
18 = C1

24 = C1
25. Note that we get ΣJ1 (x∗) = ΣJ2 (x∗) = ΣJ3 (x∗) = ΣJ4 (x∗) by

Lemma 3.12. As a result, we also see that C7
7 = C14

14 = C21
21 = C28

28 and C8
7 = C1

14 = C1
21 = C1

28.

Consider the 28× 28 matrix below whose rows are ∇f1(x∗) , ∇f2(x∗) , …, ∇f28(x∗) :



C1
1 C2

1 C2
1 C2

1 C2
1 C2

1 C2
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C1
2 C2

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 0 0 0 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2

0 0 C3
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3

C4
3 C4

3 C4
3 C3

3 0 0 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3

C2
1 C2

1 C2
1 C2

1 C1
1 C2

1 C2
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C1
2 C1

2 C1
2 C1

2 C1
2 C2

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 0 0 0 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2

0 0 0 0 0 0 C7
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7

C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C2

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 0 0 0 C1

2 C1
2 C1

2 C1
2

0 0 0 0 0 0 0 C2
1 C1

1 C2
1 C2

1 C2
1 C2

1 C2
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 0 0 C3

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3

C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C3
3 0 0 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3

0 0 0 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C2
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2

0 0 0 0 0 0 0 C2
1 C2

1 C2
1 C2

1 C2
1 C1

1 C2
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 0 0 0 0 0 0 C7

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 C1
1 C2

1 C2
1 C2

1 C2
1 C2

1 C2
1 0 0 0 0 0 0 0

C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C2

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 0 0 0 C1
2

C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 0 0 C3
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3

C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C3

3 0 0 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 C2
1 C2

1 C2
1 C2

1 C1
1 C2

1 C2
1 0 0 0 0 0 0 0

C1
2 C1

2 C1
2 0 0 0 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C2
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2

C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 0 0 0 0 0 0 C7
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7

C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 0 0 0 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C2
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C2
1 C1

1 C2
1 C2

1 C2
1 C2

1 C2
1

C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 0 0 C3

3 C4
3 C4

3 C4
3 C4

3

C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C4
3 C4

3 C3
3 0 0 C4

3

C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 0 0 0 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C2
2 C1

2 C1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C2
1 C2

1 C2
1 C2

1 C2
1 C1

1 C2
1

C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 C8

7 C8
7 0 0 0 0 0 0 C7

7



.

Assume that f2(x∗) < α∗ . Consider the vector v⃗1 ∈ Tx∗∆27 with the following coordinates:

(v⃗1)i =

 1 if i = 1, 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 23, 24, 25, 27, 28,
−2 if i = 6, 12, 20, 26,
−3 if i = 2, 8, 16, 22.

For any given indices l ∈ J = {1, 5, 9, 13, 15, 19, 23, 27} , i ∈ K = {3, 10, 17, 24} , j ∈ L = {4, 11, 18, 25} , and
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k ∈ N = {7, 14, 21, 28} , we calculate that

∇fl(x∗) · v⃗1 = C1
1 − C2

1 = −
σ
(
Σ1
J(x∗)

)
(x∗1)

2
< 0, ∇fi(x∗) · v⃗1 = C3

3 + C4
3 = −

σ
(
Σ1
I(x∗)

)
(x∗3)

2
− (x∗3)

2

σ (Σ1
I(x∗))

< 0,

∇fj(x∗) · v⃗1 = C3
3 = −

σ
(
Σ1
I(x∗)

)
(x∗3)

2
< 0, ∇fk(x∗) · v⃗1 = C7

7 = −
σ
(
Σ1
J(x∗)

)
(x∗7)

2
< 0.

This implies that values of fl for l ∈ J ∪K ∪L∪N decrease along a line segment in the direction of v⃗1 . For a
short distance along v⃗1 , values of fl for l ∈ {2, 6, 8, 12, 16, 20, 22, 26} are smaller than α∗ . There exists a point
z ∈ ∆27 such that fl(z) < α∗ for every l ∈ I = {1, 2, . . . , 28} . This is a contradiction. Hence, we find that
f2(x∗) = α∗ . Assume that f3(x∗) < α∗ . We introduce the vector v⃗2 ∈ Tx∗∆27 with the coordinates

(v⃗2)i =

 1 if i = 1, 2, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 26, 27, 28,
−2 if i = 4, 11, 18, 25,
−3 if i = 3, 10, 17, 24.

For l ∈ J , i ∈ K ′ = {2, 6, 16, 20} , j ∈ L′ = {8, 12, 22, 26} , and k ∈ N , we calculate

∇fl(x∗) · v⃗2 = C1
1 − C2

1 = −
σ
(
Σ1
J(x∗)

)
(x∗1)

2
< 0, ∇fk(x∗) · v⃗1 = C7

7 = −
σ
(
Σ1
J(x∗)

)
(x∗7)

2
< 0,

∇fi(x∗) · v⃗2 = C2
2 − C1

2 = −
σ
(
Σ4
I(x∗)

)
(x∗2)

2
< 0,

which show that values of fl for l ∈ J ∪ K ′ ∪ L′ ∪ N decrease along a line segment in the direction of v⃗2 .
Values of fl for l ∈ {2, 6, 8, 12, 16, 20, 22, 26} are smaller than α∗ for a short distance along v⃗2 . As a result,
there exists a point w ∈ ∆27 such that fl(w) < α∗ for every l ∈ I = {1, 2, . . . , 28} , a contradiction. We derive
that f3(x∗) = α∗ . Since we have f2(x∗) = f3(x∗) = α∗ , we obtain x∗2 = x∗3 . Then we see that C1

2 = C4
3 . Also,

we find that C3
3 = C2

2 − C1
2 . Now assume that f7(x∗) < α∗ . Then we construct the 25× 28 matrix A below:



C1
1 C2

1 C2
1 C2

1 C2
1 C2

1 C2
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C1
2 C2

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 0 0 0 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2

0 0 C2
2 − C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2

C1
2 C1

2 C1
2 C2

2 − C1
2 0 0 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2

C2
1 C2

1 C2
1 C2

1 C1
1 C2

1 C2
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C1
2 C1

2 C1
2 C1

2 C1
2 C2

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 0 0 0 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2

C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C2

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 0 0 0 C1

2 C1
2 C1

2 C1
2

0 0 0 0 0 0 0 C2
1 C1

1 C2
1 C2

1 C2
1 C2

1 C2
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 0 0 C2

2 − C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2

C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C2
2 − C1

2 0 0 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2

0 0 0 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C2
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2

0 0 0 0 0 0 0 C2
1 C2

1 C2
1 C2

1 C2
1 C1

1 C2
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 C1
1 C2

1 C2
1 C2

1 C2
1 C2

1 C2
1 0 0 0 0 0 0 0

C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C2

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 0 0 0 C1
2

C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 0 0 C2
2 − C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2

C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C2

2 − C1
2 0 0 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 C2
1 C2

1 C2
1 C2

1 C1
1 C2

1 C2
1 0 0 0 0 0 0 0

C1
2 C1

2 C1
2 0 0 0 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C2
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2

C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 0 0 0 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C2
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C2
1 C1

1 C2
1 C2

1 C2
1 C2

1 C2
1

C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 0 0 C2

2 − C1
2 C1

2 C1
2 C1

2 C1
2

C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C2
2 − C1

2 0 0 C1
2

C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 0 0 0 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C1
2 C1

2 C2
2 C1

2 C1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C2
1 C2

1 C2
1 C2

1 C2
1 C1

1 C2
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



.

Let Rl denote the l th row of A for l ∈ {1, 2, . . . , 25} . Applying from left to right and row by row, we
perform on A the row reduction operations listed in Table 11 simultaneously.
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Table 11. Row reduction operations on A .

−C1
2R25 +R23 → R23 −C1

2R25 +R22 → R22 −C1
2R25 +R21 → R21 −C1

2R25 +R19 → R19 −C1
2R25 +R18 → R18

−C1
2R25 +R16 → R16 −C1

2R25 +R15 → R15 −C1
2R25 +R14 → R14 −C1

2R25 +R10 → R10 −C1
2R25 +R9 → R9

−C1
2R25 +R7 → R7 −C1

2R25 +R6 → R6 −C1
2R25 +R4 → R4 −C1

2R25 +R2 → R2 −C1
1R25 +R1 → R1

−C2
1R25 +R5 → R5 R18 +R11 → R11 R19 +R11 → R11 R18 +R3 → R3 R19 +R3 → R3

−R11 +R3 → R3 −2R18 +R4 → R4 −R19 +R7 → R7 R18 +R4 → R4
1

C2
2 − C1

2

R3 → R3

1

C2
2 − C1

2

R4 → R4 −R19 +R9 → R9 R19 +R7 → R7 −R21 +R7 → R7
1

C2
2 − C1

2

R7 → R7

R12 +R1 → R1 R13 +R1 → R1 R20 +R1 → R1
1

C2
1 − C1

1

R1 → R1 R8 +R5 → R5

R13 +R5 → R5 R20 +R5 → R5
1

C1
1 − C2

1

R5 → R5 −R10 +R2 → R2
1

C2
2 − C1

2

R2 → R2

−R16 +R6 → R6
1

C2
2 − C1

2

R6 → R6 −R12 +R8 → R8
1

C1
1 − C2

1

R8 → R8
1

C2
2 − C1

2

R9 → R9

−R17 +R13 → R13
1

C1
1 − C2

1

R13 → R13 −R24 +R20 → R20
1

C1
1 − C2

1

R20 → R20 C1
2R4 +R18 → R18

C1
2R5 +R18 → R18 C1

2R6 +R18 → R18 C1
2R7 +R19 → R19 C1

2R8 +R19 → R19 C1
2R9 +R19 → R19

−C1
2R8 +R18 → R18 −C2

1R7 +R12 → R12 −C2
1R8 +R12 → R12 −C2

1R9 +R12 → R12 −R2 +R1 → R1

−R3 +R1 → R1 −R4 +R1 → R1 −R5 +R1 → R1 −R6 +R1 → R1 −R7 +R1 → R1

−R8 +R1 → R1 −R9 +R1 → R1 −C1
2R1 +R11 → R11 −C1

2R8 +R11 → R11 −R11 +R10 → R10

2R18 +R10 → R10 −R19 +R10 → R10 R19 +R11 → R11 R19 +R18 → R18 C1
2R13 +R15 → R15

−2C1
2R13 +R11 → R11 −C2

1R13 +R17 → R17 −C1
2R13 +R18 → R18 C1

2R13 +R23 → R23 −R23 +R15 → R15

−R22 +R14 → R14 −R18 +R11 → R11
1

C2
2 − C1

2

R14 → R14
1

C2
2 − C1

2

R15 → R15 −C2
1R14 +R17 → R17

−C2
1R15 +R17 → R17 C1

2R14 +R23 → R23 C1
2R15 +R23 → R23 −C1

2R20 +R18 → R18 C1
2R20 +R21 → R21

−C2
1R20 +R24 → R24 R18 ↔ R19 R17 ↔ R18 R16 ↔ R17 R15 ↔ R16

R14 ↔ R15 R13 ↔ R14 R20 ↔ R21 R22 ↔ R23 R21 ↔ R22

R23 ↔ R24 R22 ↔ R23 R20 ↔ R21

Then we see that A is row equivalent to the matrix Ã below:



0 0 0 0 0 0 1 0 −1 0 2 2 1 1 −1 1 1 2 1 2 1 2 −1 2 1 1 1 1
0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 C2

2 − C1
2 C1

2 − C2
2 C1

2 0 0 0 0 −C1
2 0 C2

2 − 2C1
2 0 4C1

2 − 2C2
2 0 2C1

2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −C1

2 C2
2 − 2C1

2 0 0 0 0 0 0 C1
2 0 0 C2

2 − 2C1
2 C1

2 −C1
2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 C2
1 C2

1 C1
1 + C2

1 C2
1 0 0 0 0 0 0 0 C2

1 0 C2
1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −C1
2 0 0 0 0 0 0 0 0 C2

2 − 2C1
2 0 −C1

2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C2

2 − 2C1
2 −C1

2 −C1
2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C2
1 C1

1 + C2
1 C2

1 C2
1 0 0 0 C2

1 C2
1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −C1
2 C1

2 C2
2 − 2C1

2 0 C2
2 − 2C1

2 0 −C1
2 0 0 C1

2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −C1

2 0 0 0 0 0 −C1
2 C2

2 − 2C1
2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −C1
2 0 C2

2 − 2C1
2 0 0 −C1

2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C2

1 0 C2
1 C2

1 C2
1 C1

1 + C2
1 C2

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C2

2 − 2C1
2 −C1

2 −C1
2 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



.

Note that in the presentation Ã is partitioned. Let Ã2,2 and Ã4,4 denote the (2, 2) and (4, 4) partitions,

respectively, of Ã counting from left to right and top to bottom. The matrix Ã has full rank if and only if
det(Ã2,2) ̸= 0 and det(Ã4,4) ̸= 0 . We have

det(Ã2,2) = C2
1C

1
2

(
C1

2 − C2
2

) (
3C1

2 − C2
2

)
, det(Ã4,4) =

(
C2

1

)2
C1

2

(
C1

2 − C2
2

)2 (
2C1

2 − C2
2

) (
3C1

2 − C2
2

)
.
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We know that C2
1 ̸= 0 , C1

2 ̸= 0 and C1
2 − C2

2 ̸= 0 , so Ã has full rank if and only if 3C1
2 − C2

2 ̸= 0 and
2C1

2 − C2
2 ̸= 0 , where Σ4

I(x∗) = x∗11 + x∗12 + x∗13 = x∗1 + 2x∗2 ,

3C1
2 − C2

2 =
σ(Σ4

I(x∗))

(x∗2)
2

− 2σ(x∗2)

(Σ4
I(x∗))2

=
Σ4
I(x∗)(1− Σ4

I(x∗))− 2x∗2(1− x∗2)

(x∗2)
2(Σ4

I(x∗))2
,

2C1
2 − C2

2 =
σ(Σ4

I(x∗))

(x∗2)
2

− σ(x∗2)

(Σ4
I(x∗))2

=
Σ4
I(x∗)(1− Σ4

I(x∗))− x∗2(1− x∗2)

(x∗2)
2(Σ4

I(x∗))2
.

Assume on the contrary that 3C1
2 − C2

2 = 0 . We simplify the previous equality and get

(x∗1 + 2x∗2)(1− x∗1 − 2x∗2)− 2x∗2(1− x∗2) = 0 or x∗2 = −x∗1 +
√
x∗1 + (x∗1)

2

2
(3.19)

as x∗2 > 0 . Since x∗ ∈ ∆27 , we have 8(x∗1 +2x∗2)+ 4x∗7 = 1 . This implies 0 < x∗1 < Σ4
I(x∗) = x∗1 +2x∗2 <

1
8 . By

(3.19), we have x∗2 < x∗1 if and only if x∗1 > 1
7 . Using the equality f2(x∗) = f3(x∗) and the formulas of f1(x∗) ,

f2(x∗) , and f3(x∗) in (3.15), (3.16), and (3.17), we find that σ(x∗2) = 3σ(Σ4
I(x∗))σ(x∗1) , where σ(Σ4

I(x∗)) > 1 .
Thus, we deduce that x∗2 < x∗1 . This is a contradiction.

Next, assume that 2C1
2 − C2

2 = 0 . Then we get (x∗1 + 2x∗2)(1− x∗1 − 2x∗2)− x∗2(1− x∗2) = 0 . This gives

x∗2 =
1− x∗1

3
or x∗2 = −x∗1.

Since x∗2 > 0 , we obtain x∗1 + 3x∗2 = 1 or 7x∗1 + 13x∗2 + 4x∗7 = 0 , a contradiction. This shows that A has full
rank.

By Lemma 3.13, there exists a direction v⃗3 ∈ Tx∗∆27 such that values of fl for l ∈ I − {7, 14, 21, 28}
decrease along a line segment in the direction of v⃗3 . Values of fl for l ∈ {7, 14, 21, 28} are smaller than α∗

for a short distance along v⃗3 . As a result, there exists a point w ∈ ∆27 such that fl(w) < α∗ for every
l ∈ I = {1, 2, . . . , 28} , a contradiction. Therefore, we obtain that f7(x∗) = α∗ . This concludes the proof. 2

Propositions 3.11 and 3.14 establish the properties of F given in Property B in the introduction. Once
these properties are verified, the computation of α∗ , and consequently the infimums of the maximum of the
displacement functions in F and G on ∆27 , is straightforward. In other words, we have the statements below:

Theorem 3.15 Let F : ∆27 → R be defined by x → max{f(x) : f ∈ F} , where F is the set of functions listed in
2.3. Then infx∈∆27 F (x) = α∗ = 24.8692... , the unique real root of the polynomial 21x4−496x3−654x2+24x+81

greater than 9 .

Proof Since x∗ ∈ ∆27 , we have 8x∗1 +8x∗2 +8x∗3 +4x∗7 = 1 by Lemma 3.12. We plug x∗1 +x∗2 +x∗3 = 1
8 −x∗7/2

into f7(x∗) = α∗ in (3.18). Then we find x∗7 = 1/(1 + 3α∗) . Using x∗7 , we obtain from f1(x∗) = α∗ in (3.15)
that x∗1 = 3/(3 + α∗) . Because we have f2(x∗) = f3(x∗) by Proposition 3.14, using the formulas in (3.16) and
(3.17), we find

x∗2 = x∗3 =
3(α∗ − 1)

21α2
∗ + 14α∗ − 3

.
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When we plug all these values into the equation 2x∗1+2x∗2+2x∗3+x
∗
7 = 1

4 , we see that α∗ satisfies the equation
21x4 − 496x3 − 654x2 + 24x+ 81 = 0 , which has the roots

α1 = −1.1835..., α2 = −0.3968..., α3 = 0.3302..., α4 = 24.8692....

The conclusion of the theorem follows from Lemma 3.1. 2

Theorem 3.16 Let G : ∆27 → R be defined by x → max{f(x) : f ∈ G} , where G is the set of functions listed
in 2.3. Then infx∈∆27 G(x) = 24.8692... .

Proof Since F ⊂ G , we have G(x) ≥ F (x) for every x ∈ ∆27 . Note that we obtain the coordinates of x∗ as

x∗1 = 0.1076..., x∗2 = x∗3 = 0.0053..., x∗7 = 0.0132...

by Theorem 3.15. Then, for the indices l ∈ {3, 4, 10, 11, 17, 18, 24, 25} , we find that gl(x∗) = 2.4822... . For
the indices l ∈ {1, 5, 9, 13, 15, 17, 19, 23, 27} we have gl(x∗) = 1.1131... . Similarly, we compute that hl(x∗) =

ul(x∗) = 0.4028... for l ∈ {7, 14, 21, 28} and hl(x∗) = 0.1111... for l ∈ {1, 5, 9, 13, 15, 19, 23, 27} . Because
G(x∗) = F (x∗) , we are done. 2

4. Proof of the main theorem
To prove the main theorem of this paper, we shall require two preliminary statements. The first one is the
following:

Lemma 4.1 Let ξ and η be two noncommuting loxodromic isometries of H3 . If z2 is the midpoint of the
shortest geodesic segment connecting the axes of ξ and η−1ξη , then dξz2 < dηξη−1z2 .

Proof Let us denote the λ -displacement cylinder for a loxodromic isometry γ by Zλ(γ) . Let λ = dξz2 . The
point z2 ∈ Zλ(ξ) is the only point in the set Zλ(ξ) ∩ Zλ(η−1ξη) . Because η · z2 ̸= z2 and η · z2 is the only
element in Zλ(ηξη

−1) ∩ Zλ(ξ) , the point z2 cannot be in Zλ(ηξη
−1) . Hence, the conclusion follows. 2

The second statement below is proved using arguments analogous to the ones introduced in [4, Theorem
9.1], [18, Theorem 5.1], and [19, Theorem 4.1]. Therefore, we shall not provide a detailed proof.

Theorem 4.2 Let ξ and η be two noncommuting isometries of H3 . If Γ = ⟨ξ, η⟩ is a purely loxodromic
free Kleinian group so that Γ∗ = {1}∪Γ1 ∪{ξηξ−1, ξ−1ηξ, ηξη−1, η−1ξη, ξη−1ξ−1, ξ−1η−1ξ, ηξ−1η−1, η−1ξ−1η},
where Γ1 = {ξ, η, η−1, ξ−1} , then we have maxγ∈Γ∗ {dγz} ≥ 1.6068... for any z ∈ H3 .

Proof Assume that Γ = ⟨ξ, η⟩ is geometrically infinite. The conclusion of the theorem follows from Proposition
2.3, Theorem 3.16, and the following inequality:

max
γ∈Γ∗

{dγz} ≥ 1
2 logG(m) ≥ 1

2 log
(

inf
x∈∆27

G(x)
)

= 1
2 log 24.8692... = 1.6068...,

where m = (νξη−1ξ−1(S∞), . . . , νξ−2(S∞)) ∈ ∆27 .
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Assume that Γ = ⟨ξ, η⟩ is geometrically finite. Because Γ = ⟨ξ, η⟩ is torsion-free, each isometry γ ∈ Γ∗

has infinite order. This implies that γ · z ̸= z for every z ∈ H3 . Since dist(z, γ1γ2 · z) = dist(γ−1
1 · z, γ2 · z) and

dist(z, γ1 · z) = dist(z, γ−1
1 · z) for all γ1, γ2 ∈ Γ = ⟨ξ, η⟩ , we have

dist(z, ξηξ−1 · z) = dist(ξ−1 · z, ηξ−1 · z) = dist(ξ−1 · z, η−1ξ−1 · z) = dist(z, ξη−1ξ−1 · z),
dist(z, ξ−1ηξ · z) = dist(ξ · z, ηξ · z) = dist(ξ · z, η−1ξ · z) = dist(z, ξ−1η−1ξ · z),

dist(z, ηξη−1 · z) = dist(η−1 · z, ξη−1 · z) = dist(η−1 · z, ξ−1η−1 · z) = dist(z, ηξ−1η−1 · z),
dist(z, η−1ξη · z) = dist(η · z, ξη · z) = dist(η · z, ξ−1η · z) = dist(z, η−1ξ−1η · z).

Therefore, all of the hyperbolic displacements under the isometries in Γ∗ are realized by the geodesic line
segments joining the points {z} ∪ {γ · z : γ ∈ Φ} , where Φ = {ξ, η−1, η, ξ−1} ∪ {ξη−1, ξη, ηξ, ηξ−1}. We
enumerate the elements of Φ for some index set I ′ ⊂ N such that P0 = z and Pi = γi · z for i ∈ I ′ and γi ∈ Φ .
Let ∆ij = △PiP0Pj represent the geodesic triangle with vertices Pi , P0 , and Pj for i, j ∈ I ′ and i ̸= j .

Let X denote the character variety PSL(2,C)×PSL(2,C) ≃ Isom+(H3)×Isom+(H3) and GF be the set
{(γ, β) ∈ X : ⟨γ, β⟩ is free, geometrically finite, and without any parabolic}. For a fixed z ∈ H3 , let us define
the real-valued function fz : X → R with the formula

fz(ξ, η) = max
ψ∈Γ∗

{dist(z, ψ · z)}.

The function fz is continuous and proper. Therefore, it takes a minimum value at some point (ξ0, η0) in GF .
The value fz(ξ0, η0) is the unique longest side length of one geodesic triangle ∆ij for some i, j ∈ I ′ . Let us

denote this geodesic triangle with ∆ and their vertices by P̃i , P0 , and P̃j . There are two cases to consider:
(1) ∆ is acute or (2) ∆ is not acute.

Assume that (2) is the case. Then there is a one-step process analogous to the ones described in the
proofs of [18, Theorem 5.1] and [19, Theorem 4.1]. This one-step process is illustrated in Figure 1, proving

∆
γP0=z

Pj Pj=
Pi

~
~

(l)

∆
P0=z

Pj Pi

~
~

iP
(l)

γ
l

l

Figure 1. Case (2): ∆ is not acute.

that (ξ0, η0) ∈ GF−GF . If (1) is the case, then there is a two-step process analogous to the ones described in
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P0=z

∆
γ

i

(l)

~
P i

P
~

j
= P

j
P
~
j

P0=z

γ
i (l)

∆ i
P i
~

P i
(l)

(l)

Figure 2. Case (1): ∆ is acute.

the proofs of [18, Theorem 5.1] and [19, Theorem 4.1]. This two-step process is illustrated in Figures 2 and 3,
proving again that (ξ0, η0) ∈ GF−GF .

~

j

P0=z

(l)

∆ i

P i
~

P i
(l)

γ
j

P
~
j

P j
(l)

P0=z

(l)
∆

P i
~γ

j

(l) P
(l)

j

i

P

Figure 3. Case (1): ∆ is acute.

Since the geometrically finite case reduces to the geometrically infinite case by the facts that the set of
(ξ, η) such that ⟨ξ, η⟩ is free, geometrically infinite, and without any parabolic is dense in GF−GF and every
(ξ, η) ∈ X with ⟨ξ, η⟩ that is free and without any parabolic is in GF , the conclusion of the theorem follows
when Γ = ⟨ξ, η⟩ is geometrically finite as well. For the details of this crucial final step in the proof, readers may
refer to [4, Propositions 8.2 and 9.3], [3, Main Theorem], and [2]. 2
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Using Lemma 4.1 and Theorem 4.2, we can prove the following statement, the main result of this paper.

Theorem 4.3 Let ξ and η be two noncommuting isometries of H3 . Suppose that Γ = ⟨ξ, η⟩ is a purely
loxodromic free Kleinian group. If dγz2 < 1.6068... for every γ ∈ Φ2 = {η, ξ−1ηξ, ξηξ−1} and dηξη−1z2 ≤
dηξη−1z1 for the midpoints z1 and z2 of the shortest geodesic segments joining the axis of ξ to the axes of
ηξη−1 and η−1ξη , respectively, then we have |trace2(ξ)− 4|+ |trace(ξηξ−1η−1)− 2| ≥ 1.5937....

Proof We shall mostly follow the computations given in the proof of Theorem 5.4.5 in [1, Section 5.4]. Readers
who are interested in further details should refer to this source.

Considering conjugate elements, for u = |u|eiθ and ad− bc = 1 , we can assume that

ξ =

(
u 0
0 1/u

)
and η =

(
a b
c d

)
.

Let A and Tξ denote the axis and translation length of ξ , respectively. Above θ denotes the angle of rotation
of ξ about its axis. Then we have

|trace2(ξ)− 4|+ |trace(ξηξ−1η−1)− 2| = |u− 1/u|2(1 + |bc|),

where sinh2( 12Tξ) + sin2 θ = 1
4 |u − 1/u|2 ; see [1, Equations (5.4.8) and (5.4.10)]. First, we shall determine a

lower bound for the term 1 + |bc| .
By construction A is the geodesic with end-points 0 and ∞ and B = ηA is the geodesic with end-points

η0 and η∞ . Since Γ = ⟨ξ, η⟩ is nonelementary, A and B do not have a common end-point. This implies that
bc ̸= 0 . Thus, the equation

bc =
(1− w)2

4w
(4.1)

obtained by the cross-ratios [1,−1, w,−w] = [0,∞, b/d, a/c] has two solutions. Let w = exp 2(x0 + iy0) be one
of the solutions. We may assume that |w| ≥ 1 .

Plugging w = exp 2(x0 + iy0) in (4.1) we obtain bc = sinh2(x0 + iy0) . Then we derive

4|bc|2 = | cosh 2(x0 + iy0)− 1|2

= (cosh 2x0 − cos 2y0)2

≥ (cosh 2x0 − 1)2 = (cosh2 x0 + sinh2 x0 − 1)2 ≥ (cosh2 x0 − 1)2,

which gives that 2|bc| ≥ cosh2 x0 − 1 = sinh2 x0 . This implies the following inequality:

1 + |bc| ≥ 1
2 sinh2 x0 + 1 = 1

2 cosh2 x0 +
1
2 ≥ 1

2 cosh2 x0. (4.2)

Let dzA denote the shortest distance between z and A . Since ξ and ηξη−1 have the same trace squared, the
same translation length, and consequently the same value of sin2 θ , for every z ∈ H3 , we obtain

sinh2 1
2dξz = sinh2( 12Tξ) cosh2 dzA+ sin2 θ sinh2 dzA ≤

(
sinh2( 12Tξ) + sin2 θ

)
cosh2 dzA, (4.3)

sinh2 1
2dηξη−1z = sinh2( 12Tξ) cosh2 dzB + sin2 θ sinh2 dzB ≤

(
sinh2( 12Tξ) + sin2 θ

)
cosh2 dzB. (4.4)
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Then, by using the inequalities in (4.3) and (4.4) and the fact that sinh2 x and cosh2 x are increasing for x > 0 ,
for every z ∈ H3 , we derive that

sinh2 1
2 max{dξz, dηξη−1z} ≤ 1

4

∣∣u− 1/u
∣∣2 cosh2 max{dzA, dzB}. (4.5)

At this point, we consider the Möbius transformation ψ taking 0 , ∞ , β0 , β∞ to 1 , −1 , w , −w . Then we
have

dAB = dψAψB = log |w| = 2x0,

where dAB denotes the shortest distance between A and B . Since we have dz1A = dz1B = x0 and dξz1 =

dηξη−1z1 , by the inequalities in (4.2) and (4.5), we derive that

sinh2 1
2dξz1 ≤ 1

4

∣∣u− 1/u
∣∣2 cosh2 dz0A ≤ 1

2

∣∣u− 1/u
∣∣2(1 + |bc|). (4.6)

Now, assume on the contrary that |trace2(ξ) − 4| + |trace(ξηξ−1η−1) − 2| < 1.5937... . Because we have
dηξη−1z2 ≤ dηξη−1z1 = dξz1 and dγz2 < 1.6068... for every γ ∈ {η, ξηξ−1, ξ−1ηξ} by the hypothesis, we
get dγz2 < 1.6068... for every γ ∈ Γ by the inequality in (4.6) and Lemma 4.1. This contradicts with Theorem
4.2. 2

Notice that all of the computations given in this paper to prove Theorems 4.2 and 4.3 can be repeated
also for a finitely generated purely loxodromic free Kleinian group Γ = ⟨ξ1, ξ2, . . . , ξn⟩ satisfying a hypothesis
similar to the one in Theorem 4.3. An analog of the decomposition ΓD defined in (1.3) is required. For a fixed
n > 2 , let

Ψn = {ξ2i , ξ−2
i : i = 1, . . . , n} ∪ {ξiξjξ−1

k : i ̸= j, j ̸= k, i, j, k = 1, . . . , n}

and Γn1 = Ψnr = Ξ ∪ Ξ−1 , where Ξ = {ξi : i = 1, . . . , n} and Ξ−1 = {ξ−1
i : i = 1, . . . , n} . When the group

Γ = ⟨ξ1, ξ2, . . . , ξn⟩ is geometrically infinite, the following is the relevant decomposition:

Γ = {1} ∪Ψnr ∪
∪

ψ∈Ψn

Jψ. (4.7)

Let us name this decomposition ΓDn
. The rest follows again from the Culler–Shalen machinery introduced in

[4] and the solution method for the optimization problems described in this text and [18, 19]. Consider the
subset of isometries

Γn∗ = Γn1 ∪ {ξiξjξ−1
i : i ̸= j, i, j = 1, 2, . . . , n} (4.8)

of Ψnr ∪Ψn . We first prove an analog of Theorem 2.2 for ΓDn
. We list all of the group-theoretical relations as

in Lemma 2.1 for the isometries in Γn∗ . By Lemma 1.6 and the group-theoretical relations, we state analog of
Proposition 2.3 to list all of the displacement functions Gn = {fl} for the indices l = 1, 2, . . . , 2n(8n2−10n+3)

for the isometries in Γn∗ .
These displacement functions satisfy generalized versions of Properties A and B for the decomposition

ΓD∗
n

. In other words, we can prove statements similar to Propositions 3.11 and 3.14. With a suitable enumeration
of the isometries in Γn∗ as in (1.2), an analog of Proposition 3.11 for ΓD∗

n
implies that it is enough to compare
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the values

1− 2(n− 1)(x∗1 + (n− 1)x∗2 + (n− 1)x∗3)− x∗2(n−1)(2n−1)+1

2(n− 1)(x∗1 + (n− 1)x∗2 + (n− 1)x∗3) + x∗2(n−1)(2n−1)+1

· 1− x∗1
x∗1

= α∗,

1− (4n2 − 4n− 1)(x∗1 + (n− 1)x∗2 + (n− 1)x∗3)− 2nx∗2(n−1)(2n−1)+1

(4n2 − 4n− 1)(x∗1 + (n− 1)x∗2 + (n− 1)x∗3) + 2nx∗2(n−1)(2n−1)+1

· 1− x∗2
x∗2

≤ α∗,

1− (4n2 − 4n− 1)(x∗1 + (n− 1)x∗2 + (n− 1)x∗3)− 2nx∗2(n−1)(2n−1)+1

(4n2 − 4n− 1)(x∗1 + (n− 1)x∗2 + (n− 1)x∗3) + 2nx∗2(n−1)(2n−1)+1

· 1− x∗3
x∗3

≤ α∗,

1− (2n− 1)(2(n− 1)(x∗1 + (n− 1)x∗2 + (n− 1)x∗3) + x∗2(n−1)(2n−1)+1)

(2n− 1)(2(n− 1)(x∗1 + (n− 1)x∗2 + (n− 1)x∗3) + x∗2(n−1)(2n−1)+1)
·
1− x∗2(n−1)(2n−1)+1

x∗2(n−1)(2n−1)+1

≤ α∗,

of four functions, where α∗ is the infimum of the maximum of the displacement functions in Gn on the simplex
∆(2n−1)3 . Using an analog of Proposition 3.14 for ΓDn

and the computations given in Theorems 3.15 and 3.16,
we can prove the following generalization of Theorem 4.2:

Conjecture 4.4 Let Ξ = {ξ1, ξ2, . . . , ξn} be a set of noncommuting isometries of H3 for n > 2 and Ξ−1 =

{ξ−1
1 , ξ−1

2 , . . . , ξ−1
n } . Suppose that Γ = ⟨ξ1, ξ2, . . . , ξn⟩ is a purely loxodromic free Kleinian group. Let Γn1 =

Ξ ∪ Ξ−1 and Γn∗ be as in (4.8). Then we have

max
γ∈Γn

∗

dγz ≥ 1
2 logαn

for every z ∈ H3 . Above αn is the only real root of the polynomial pn(x) greater than (2n− 1)2 , where

pn(x) = (8n3 − 12n2 + 2n+ 1) x4 + (−64n6 + 192n5 − 192n4 + 64n3 + 4n2 + 2n− 4)x3 +

(−96n5 + 224n4 − 168n3 + 52n2 − 18n+ 6) x2 +

(32n5 − 112n4 + 128n3 − 68n2 + 22n− 4) x+ 16n4 − 32n3 + 24n2 − 8n+ 1.

The proof of Conjecture 4.4 goes along the same lines as the proof of Theorem 4.2 when Γ = ⟨ξ1, ξ2 . . . , ξn⟩ is
geometrically finite. This conjecture and arguments analogous to the ones presented in the proof of Theorem
4.2 imply the following generalization of Theorem 4.3:

Conjecture 4.5 Let Γ = ⟨ξ1, ξ2, . . . , ξn⟩ and αn be as described in Conjecture 4.4. Assume that there
exists an isometry ξi for i ̸= 1 so that dξiξ1ξ−1

i
z2 ≤ dξiξ1ξ−1

i
z1 and dγz2 < 1

2 logαn for every isometry

γ ∈ Φn = Γn − {ξ1, ξ−1
1 , ξ−1

i ξ1ξi, ξ
−1
i ξ−1

1 ξi, ξiξ1ξ
−1
i , ξiξ

−1
1 ξ−1

i } , where z1 and z2 are the midpoints of the
shortest geodesic segments connecting the axis of ξ1 to the axes of ξiξ1ξ−1

i and ξ−1
i ξ1ξi , respectively. Then we

have
|trace2(ξ1)− 4|+ |trace(ξ1ξiξ−1

1 ξ−1
i )− 2| ≥ 2 sinh2

(
1
4 logαn

)
.

The details of the outlines of the proofs of Conjectures 4.4 and 4.5 given above will be left to future studies.
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