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Abstract: Let ¢ and 7 be two noncommuting isometries of the hyperbolic 3-space H? so that T' = (£,n) is a purely
loxodromic free Kleinian group. For v € T and z € H?, let d,z denote the hyperbolic distance between z and ~(z).

1 and

Let z1 and z2 be the midpoints of the shortest geodesic segments connecting the axis of £ to the axes of n&n~
n~1€n, respectively. In this manuscript, it is proved that if dyza < 1.6068... for every v € {n,{flng,fnffl} and
dpen-122 < dye,—121, then [trace®(€) — 4| + |trace(éné™'n~") — 2| > 2sinh® (3 loga) = 1.5937.... Above o = 24.8692...
is the unique real root of the polynomial 21z — 4962® — 65422 + 24z + 81 that is greater than 9. Generalizations of

this inequality for finitely generated purely loxodromic free Kleinian groups are also proposed.

Key words: Free Kleinian groups, Jorgensen’s inequality, the log3 theorem, loxodromic isometries, hyperbolic dis-

placements

1. Introduction

A Kleinian group I' is a nonelementary discrete subgroup of the group PSL(2,C) of orientation-preserving
isometries of the hyperbolic 3-space H?. Any orientable hyperbolic 3-manifold M can be viewed as a quotient
H3/T for a Kleinian group I'. By Mostow’s rigidity [16], this reduces the study of hyperbolic 3-manifolds to
the study of Kleinian groups. This, in turn, makes the investigation of criteria for discreteness of the subgroups
of PSL(2,C) one of the main topics of interest in the theory of 3-dimensional hyperbolic manifolds.

It was proved by Jgrgensen [12] that I' < PSL(2,C) is discrete if and only if every nonelementary two-
generator subgroup of I' is discrete. Accordingly, significant progress in the literature has occurred since then
towards a resolution of the discreteness problem for subgroups of PSL(2,C) through the examination of two-
generator subgroups (see [7], [11], [10], [14], [17] and the references therein). A particularly remarkable result
was presented by Gilman in [8] with an algorithm for deciding the discreteness of the subgroups of PSL(2,R).
In this paper, we will concentrate on two-generator purely loxodromic free subgroups of PSL (2, C) and provide
some necessary discreteness criteria for these groups satisfying certain conditions. Furthermore, we will suggest
discreteness criteria for finitely generated such groups.

There is a large class of subgroups of PSL(2,C) in the aforementioned category. In fact, all finitely
generated Schottky groups are purely loxodromic and free [13, H.2.Proposition]. However, the main motivation

behind this text for focusing on these particular subgroups of PSL(2,C) is that every two-generator subgroup
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of the fundamental group 71(M) of an orientable closed hyperbolic 3-manifold M is purely loxodromic and
free provided that the first Betti number of M is at least 3 (see [4, Propositions 9.2 and 10.2]). Culler and
Shalen used this fact to show that the volume of M is at least 0.92 (see [4, Theorem 10.3]), connecting the
geometry of such hyperbolic 3-manifolds to their topology. This volume bound, later superseded by Gabai et
al. [6] and Milley [15] by the introduction of Mom technology, is calculated by computing the lower bound log 3
for the maximum of the hyperbolic displacements given by the generators of two-generator subgroups of (M)
[4]. The statement in [4, Theorem 9.1] in which the lower bound log3 is computed is known in the literature
as the log3 theorem.

Due to an extension introduced in [18, 19] by the author, the techniques developed by Culler and Shalen
in the proof of the log3 theorem can be used to calculate a lower bound for the maximum of the hyperbolic
displacements under any finite set of isometries in a purely loxodromic finitely generated free Kleinian group
I'. In particular, in the case of two-generator, e.g., if I' = (£, 1), it is possible to compute a lower bound for the

maximum of the hyperbolic displacements given by the set T', of isometries

{BPuTyu{&ng ¢ e nén "y en, & e e i e e T e ), (1.1)

where 'y = {&,n, 771,71}, Explicitly, in Section 4, we shall prove the statement below:

Theorem 1.1 Suppose that T' = (&, 1) is a purely lozodromic free Kleinian group. Then, for Ty in (1.1), we
have max.er. {d,z} > 1.6068... for any z € H3.

This theorem leads to a reversal of the roles of trace and hyperbolic displacements in the statement of the

following theorem of Beardon [1, Theorem 5.4.5]:

Theorem 1.2 If (£,n) is a Kleinian group so that & is elliptic or strictly lozodromic and |trace®(§) — 4| < 1,

then for any z in H® we have max{sinh(3d¢z), sinh(3d,e,-12)} > 1.

In other words, we will show in Section 4 that Theorem 1.1 implies the main result of this paper, which can be

stated as follows:

Theorem 1.3 If dyz; < 1.6068... for v € ®1 = {n, & 'n&, &né™ 1} and dyey-122 < dpey-121, then we have
[trace?(€) — 4] + [trace(éné~1n~1) — 2| > 1.5937....

Above z; and zy denote the midpoints of the shortest geodesic segments connecting the axis of £ to the axes of
nén~t and n~'€n, respectively. Theorems 1.1 and 1.3 are restated as Theorems 4.2 and 4.3, respectively, in Sec-
tion 4. The expressions trace?(¢) and trace(éngé~1n~1) are used in place of trace?(A) and trace(ABA='B1),
where A represents the loxodromic isometry £ and B represents the loxodromic isometry 7 in PSL(2,C).
Theorem 1.3 can be considered as a refinement of the best general discreteness criterion for the subgroups
of PSL(2,C) for the groups under consideration in this paper. This criterion is due to Jgrgensen [12], called

the Jgrgensen’s inequality, given below.

Theorem 1.4 If (£,1) is a Kleinian group, then |trace?(€) — 4] + [trace(éné~1n~1) — 2| > 1, where the lower

bound is the best possible.
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Theorem 1.2 is an implication of Theorem 1.4 (see [1, Theorem 5.4.5]).

In the rest of this section, we will summarize the proofs of Theorems 1.1 and 1.3. In particular, we
will introduce some notation and review the Culler—-Shalen machinery introduced in [4], which will be used to
calculate a lower bound for the maximum of the hyperbolic displacements needed here. The proof of Theorem
1.3 will involve the computations given in the proof of Theorem 5.4.5 in [1], which uses the geometry of the
action of loxodromic isometries together with some elementary inequalities involving hyperbolic trigonometric
functions. However, most of the technical work in this paper will be required to prove Theorem 1.1.

Let us define ¥ as the set of isometries in I' = (£, 7) whose elements are listed and enumerated below:

et =1, eyt =8, &ttt =15, ClpTiett e 22,
7t =2, ety =9, n&lp =16, Elple =23,
i S (L e Y A
£n? 4, e 11, ne? 18, £ 12 s 25, (1.2)
&ngt =5, et =12, gt =19, gt = 26,
&ng — 6, n7¢n — 13, nén 20, &ng = 27,
£2 =7, n72 14, n? 21, €72 — 28.

We shall denote this enumeration by p: ¥ — {1,...,28}. Let ¥, =Ty = {£,n7 %, n, &1}, Since it is assumed

that T' = (&, n) is free, it can be decomposed as follows:

r={1uv,ulJJ, (1.3)

Ppew
where Jy denotes the set of all words starting with the word ¢ € ¥. We will name this decomposition I'p- .
Let us define Jo = UypeaJy for & C ¥. A group-theoretical relation for a given decomposition of I' = (£, 7) is

a relation among the sets Jy. As an example,

1
Ené ™ en-1e-1 =T — ({E3 U J(e2 n-1¢-1.6n-16.6n-2 002 ne 1 ene}) (1.4)

is a group-theoretical relation of the decomposition in (1.3), which indicates that when multiplied on the left
by &né~1 the set of words in ' = (£,7) starting with £n~1¢~1 translates into the set of words starting with
the words whose initial letters are different than £. Isometries in W, that appear in the relations have no
effect in the upcoming computations. Therefore, we shall denote a generic group-theoretical relation of I'p« by
(v,5(7),S(7)), where v € 'y, s(y) € ¥, and S(y) C ¥. In (1.4) we have

y=E&E s() =&t S(y) ={E e e e e Ene T Eng

There are 128 group-theoretical relations for I'p« in total, but we will be interested in 60 of them listed in
Lemma 2.1 (see Tables 1, 2, 3, and 4) for which v € ', C ¥, U ¥ defined in (1.1). Then we consider the

following cases:
(I) when T' = (£,n) is geometrically infinite; that is, Ar., = S for every z € H?;
(IT) when T = (&, n) is geometrically finite.

Above the expression S denotes the boundary of the canonical compactification H3 of H?. Note that
S = S%. The notation Ar.., means the limit set of the I'-orbit of 2 € H? on S,,. In case (I), we first

prove the statement below:
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Theorem 1.5 Let T' = (£,n) be a purely lozodromic, free, and geometrically infinite Kleinian group. Let T'p-
be the decomposition of T' in (1.3). If z denotes a point in H3, then there is a family of Borel measures {vy }ypew
defined on Soo such that we have (i) A, =3, cqvy; (i1) A.(S)=1; and for v €T,

(i) /S M) dvgy =1— Y /S dvy,

YeS(v)
for all group-theoretical relations (v, s(7y),S(y)) of I'p«, where A, is the area measure on So based at z.

This theorem basically states that the normalized area measure A, on the sphere at infinity can be
decomposed as a sum of Borel measures v, indexed by 1 € ¥ so that each group-theoretical relation of I'p-
translates into a measure-theoretical relation among the Borel measures {vy}yew as described in part (4ii) of
the theorem. In particular, each measure vy is transformed to the complement of certain measures in the set
{vy : v € U — {¢}}. For example, Theorem 1.5 (4i¢) and the group-theoretical relation given in (1.4) imply
that

Aoyt gy =1— Vi (Soc)- 1.5
/sm fnete TR Zwe{£2,£n—1£—l,sn-ls,sn-2,sn‘z,sns-l,sns} »(Soc) (15)

By a formula proved in [4] and improved in [5] by Culler and Shalen, each hyperbolic displacement d.z for

~v € Iy has a lower bound involving the Borel measures in {vy }ycw. This formula is given as follows:

Lemma 1.6 [4, Lemma 5.5] [5, Lemma 2.1] Let a and b be numbers in [0,1] that are not both equal to 0 and
are not both equal to 1. Let v be a lozodromic isometry of H> and let z be a point in H?. Suppose that v is
a measure on Ss, such that v < A,, v(Sx) < a, and fs (Ay,2)?dv>b. Then a >0, b<1, and

o(a)
o(b)’

dyz > 3 log

where o(z) =1/z —1 for x € (0,1).

Provided that 0 < v4()(Se) < 1 for every group-theoretical relation (v,s(v),S(v)) of I'p~, when we let
V= Vg(y)s @ = Vs(y)(Sxc), and b= [ (Ay,20)?dvg(+) , Theorem 1.5 and Lemma 1.6 produce a set G = {f1}92,

of real-valued functions on A27 such that

et > fim) =0 | Y /sm dvy | o (/sm dus(,y)) (1.6)

PeS(y)
for every v € I'y for some [ = 1,...,60. This is established in Proposition 2.3, in which formulas of the
functions in G are explicitly stated. In the equation in (1.6) above, m = (vg,-1£-1(5x),...,Ve2(Sx)) is a

point of the set

28
AT = {X: (3?1,1:2,...7:1728) ERiS : in = 1},

=1
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whose entries are ordered by p in (1.2). As a particular example, by the group-theoretical relation in (1.4), the
equality in (1.5), Lemma 1.6, and Proposition 2.3, for z € H?, we have dg,¢-12 > %log f1(m), where

l—21—a9—23—24—2x5 —2T6—2x7 1—21

fi(x) =

1+ T2 +x3+ x4 +T5 + 26 + X7 X

As a consequence of Theorem 1.5, Lemma 1.6, and Proposition 2.3, in case (I), Theorem 1.1 follows from the

statement below and the inequality following;

Theorem 1.7 If G : A?" — R is the function defined by x +— max{f(z): f € G}, then we have infycp2r G(x) =
94.8692...,

1 1 .
’ryréz?f {dyz} > 5 log G(m) > 3 log (zel&f” G(m)) . (1.7)
To prove Theorem 1.7, we shall show that there exists a subset F = {f1,..., fag} of G such that the equality
infyea2r G(x) = infyea2r F(x) holds for F(x) = max{f(x): f € F}. We will compute infycazr F(x) by using
the following properties of F':

(A) inf F(x) = min F(x) = a, at some x* € A?",
X€A27 X€A27

(B) x* is unique and x* € Ayr = {x € A?": f;(x) = f;(x) for every f;, f; € F}.

Property A is proved in Lemma 3.1, which exploits the fact that on any sequence {x,} C A?" that limits on
the boundary of the simplex A%7 some of the displacement functions f; € F approach infinity.

Each statement in Property B is proved in Proposition 3.11 and Proposition 3.14, respectively. We shall
first prove Proposition 3.11. We will see that the functions in F' = {f1, fs, fo, f13, f15, f19, f23, for} in F play
a more important role in computing .. At least one of the functions in F’ takes the value .. This is showed
in Lemma 3.2. Each function f; in F’ is a strictly convex function on an open convex subset C},, defined in
(3.3), of A%7 for | € J = {1,5,9,13,15,19,23,27}. Moreover, by Lemma 3.4 and Lemma 3.5 we shall show
that x* € C' =, ; Cf,, which is itself convex. The minimum of the maximum of the functions in 7’ on C' is
calculated as a, in Lemma 3.7. Then, by standard facts from convex analysis, Proposition 3.11 will follow.

Proposition 3.11 reduces the computation of «, to the comparison of only four values, fi(x*) = a,
fo(x*) < an, f3(x*) < ., and f7(x*) < a., which is proved in Lemma 3.12. Considering A" as a submanifold
of R?8 if f;(x*) < a, for some | € {2,3,7}, the fact that there are directions in the tangent space Ty-A%7 of
A7 at x* so that all of the displacement functions in F take values strictly less than o, on the line segments
extending in these directions will prove Proposition 3.14. Existence of these directions will be showed either by
a direct calculation or by Lemma 3.13.

Since the coordinate sum of x* is 1, Proposition 3.11 and Proposition 3.14 together give a method to
calculate the coordinates of x* explicitly. By evaluating any of the displacement functions in F at x*, we find
the value of .. Details of this method will be given in Theorem 3.15. Finally, we will show that f(x*) < o
for every f € G — F, which implies that c, = infyca27 G(x), completing the proof of Theorem 3.16.

Let X denote the character variety PSL(2,C) x PSL(2,C) and &F be the set of pairs of isometries
(&,m) € X such that (£,n) is free, geometrically finite, and without any parabolic. In case (II), when I" = (£, )
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is geometrically finite, for a fixed z € H?, we define the function f, : X — R for T',, described in (1.1), with

the formula

fz(ga 77) = ggi:)i{dis‘c(zv (R Z)}

This function is continuous and proper. Moreover, by similar arguments given in [4, Theorem 9.1], [18, Theorem
5.1], and [19, Theorem 4.1], it can be shown that it takes its minimum value in the boundary &F — &F of the
open set &F. It is known by [4, Propositions 9.3 and 8.2], [3, Main Theorem], and [2] that the set of (£,7n) such
that (£,n) is free, geometrically infinite, and without any parabolic is dense in &F — &F and every (£,7) € X
with (£,n) that is free and without any parabolic is in &F. This reduces the geometrically finite case to the
geometrically infinite case, completing the proof of Theorem 1.1.

We shall use the geometry of the action of the loxodromic elements of Isom™ (H?) to prove Theorem 1.3.
Let £ and 1 be two noncommuting loxodromic isometries of H* and z € H?. Then the displacement d¢z given

by & can be expressed as
sinh? %dgz = sinh? (%Tg) cosh? d, A + sin? @ sinh? d, A,

where T¢, 6, and A are the translation length, rotational angle, and axis of &, respectively. Above, d,.A

denotes the distance between z and A. Let B be the axis of nén~!. Similarly, dpen-12 can be expressed as
L1201
sinh® 5d

nen-1% = sinh? (%TE) cosh? d,B + sin® 0 sinh? d,B.

Because dez = d 121, by reversing the inequalities used to prove [1, Theorem 5.4.5], it is possible to show

that

nén—

trace?(£) — 4| + [trace(&ne~tn™t) — 2| > 2sinh? Fdez

for the midpoint z; of the shortest geodesic segment joining A and B. Then the main result of this paper,
Theorem 1.3, follows from the inequality above, Lemma 4.1, and Theorem 1.1.

All of the computations summarized above to prove Theorem 1.1 and Theorem 1.3 for purely loxodromic
2-generator free Kleinian groups can be generalized to prove analogous results for purely loxodromic finitely
generated free Kleinian groups. We will finish this paper by phrasing these generalizations in Conjectures 4.4

and 4.5 and presenting their proof sketches.

2. Displacement functions for the isometries in I',

In this section, we shall determine the displacement functions for the hyperbolic displacements given by the
isometries in T',. We introduce the following subsets of ¥ defined in (1.2): Let I'y = {&,n71,n,671} and

U= {, 7202 U, i, where
Uy = {&n 1t ene en ), Wy = {&n?, Eng 1, Ened, Uy = {n &gt n e g, n e,
Uy ={n~1& 7"}, Us = {n& =g tn,nE 2}, Ve = {n€ nén~", nén},
Uy ={¢p e ettpTle g}, W ={ A ¢ tne e ng)

First, we prove the statement below, which gives the relevant group-theoretical relations of the decom-

position I'p+ for the isometries in T, :
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Lemma 2.1 Let T' = (£,n) be a 2-generator free group and I'p« be the decomposition of T' in (1.3). Then
there are 60 group-theoretical relations (v, s(v),S(7v)) for v € T'x.

Proof We list all of the group-theoretical relations of I'p+ for v € I',, defined in (1.1), in the following tables.

Table 1. Group-theoretical relations of I'px with 3-cancellation.

L | ol \ S(lv)l\ , S(v) | 1] ol \ 8(17)1\ , S(v)
1| &ne En ¢t {€TUTUT, [ 5] nén nE=n" {77 JU s U W
2 677’15’1 575’1 {1UT,UT, |6 né’in’l n§n’1 {n?} U Ts U Tg
S| &y &) {n~ 2}U‘I’3U‘I’4 T e | ¢ {¢” 2}U\If7u\Ifs
4 ptetn | e | {nTPUsUWy | 8 inpTie | g | {ETPU T U g
Table 2. Group-theoretical relations of I'px with 2-cancellation.
Ll v | sty | Sty | 1] v | s(y) | St
9 $n§*1 &2 W -0 |13 7 7]572 U — Uy
10| & tet | & | U -0, | 14 nf - q U — Ug
11 n_lgq n_lf_z v —Ws |15 n§ v — U,
12 [ np7letn | p7te |-, | 16 | €1y~ U — Uy
Table 3. Group-theoretical relations of I'px with 1-cancellation.
l ol 8(17) ; S(v) l ol S(y) 1 S(y)
17 5_1 En— ¢ U — Uy 31 7]_1 nE~ 7_ v — U,
18 | &7 ¢ U — Uy 32| n~ nén v-—w
19| ¢t &n2 ¥ — {17’2} 33 |yt ng2 v — {2
20 | &1 &n? ¥ —{n*} 34 |yt ne? U —{€%}
21 | ¢! Eng? U — Uy 35 | n! nén~! v -,
22 5_1 f?é{ U — Py 36 77_1 nén U — P,
23 | &1 {2 UT, Uy | 37 | pt n? T — {n? }U\I/5 U U
24 | p nflglqﬂ U — U, 38| ¢ 5*17*1 -1 11/ — \113
251 n_E - Ty 391 ¢ SIS/
26 | 7 nE {7 40 | € & 2}
27| 7 3 v —{} 41 | & £ \I’ {77
28 | n n- %‘n‘l v — U,y 42 | ¢ 5_17 -1 v — \115
29 | m n-&n v — U, 43| £ & ¥ — W
30| 7 n- U—{n2UTsUTy | 44| ¢ & U — {n~2} U, U g

Table 4. Group-theoretical relations of I'px with 2-cancellation.

Ll oy sty | Sty L]y ] st | Sk
45 [ &n 1T &né U — {2} [49 | neTn7t nén ¥ —{n°}
46 575‘1 RS v — {522} 50 77577 ! né~'n U — {n?
A7 |7ty | iyt | U= {n73} | B 7‘15 et | v {2
48 | p7ten |ttt [ W —{n72Y [ 52| &tpe | tpiet | U — {72}

Table 5. Group-theoretical relations of I'px with 1-cancellation.

Ll v sy ] S(v) Ll v sty ] S(v)

53 [ &n T &2 ¥ —{&nie} 57 | éne 1| & U — {&né}
54 | p ety | g2 | W —{nte g7t | 58 | plen | 2 | U —{n Tt}
55 | n& iyt n? U —{netn} 59 [ nén~t | 7P V= {nén}
56 | T | €72 | U —{&T 177715 160 | £7ing | 72 | U —{eTineT

839



YUCE/Turk J Math

In Tables 1-5 all of the group-theoretical relations (v, s(7y), S(v)) of I'p« for v € T’y are counted. This
completes the proof. O
Given the group-theoretical relations in Lemma 2.1, we decompose the area measure on S,, accordingly.
This is stated in the following theorem. To save space, we will not give a proof of this theorem, which uses

analogous arguments presented in the proofs of [4, Lemma 5.3], [18, Lemma 3.3, Theorem 3.4], and [19, Theorem
2.1].

Theorem 2.2 Let T' = (&,n) be a free, purely loxodromic, and geometrically infinite Kleinian group. Let T'p-
be the decomposition of T given in (1.3). If z denotes a point in H?, then there is a family of Borel measures
{vytyew defined on Soo such that (i) A, =3, cqvy; (i1) A.(Sx)=1; and

(iii) / M) dvgy =1- Y / dvy
Seo YeS(y)
for each group-theoretical relation (v,s(v),S(y)) of I'p+, where A, is the area measure on So, based at z.
Let I=J;UJoUJ3UJy={1,2,...,28} and I; for [ € {1,...,8} be the following index sets:
L ={1,2,3}, I = {15,16,17}, J1=1{1,2,3,4,5,6,7},
I, = {4,5,6}, Is = {18,19,20}, Jo = {8,9,10,11,12,13, 14},

I;={8,9,10}, I ={22,23,24}, Js ={15,16,17,18,19,20,21},
I, ={11,12,13}, Is={25,26,27}, Jy = {22,23,24,25 26,27,28}.

(2.1)

We shall use the functions o : (0,1) — (0,00), X% : A2 — (0,1), X7 : A? — (0,1), EJI‘ : AT — (0,1), and
" A%T — (0,1) with formulas o(z) = 1/2 — 1,

Sooa, LX) =D m, V)= Y owm, Y=Y (2.2)

lel—J; led; lel—1I; lelI—{n}

for i € {1,2,3,4}, j € {1,2,3,4,5,6,7,8}, and n € {1,2,...,28}, respectively, to express the displacement
functions compactly. In particular, we prove the following:

Proposition 2.3 Let I' = (¢,n) be a purely loxodromic, free, and geometrically infinite Kleinian group. Let
I'p- be the decomposition of T' defined in (1.3). For any z € H® and for each v € T, the value €2%* is
bounded below by fi(x), gi(x), hj(x), or u,(x) for x € A%" for at least one of the displacement functions fi,

gi, hj, or up, whose formulas are listed in the tables below

Table 6. Displacement functions obtained from the group-theoretical relations in Table 1.

L] | 1|

1] Aix) =0 E}](x) o(x1) | b f15(x):0(23(x) o(x15)
2| f5(x) =0 E}](x) o(xzs) | 6| fio(x) =0 Ei(x) o(x19)
3| fo(x) =0 (Z%2(x))a(zg) | 7| fas(x) =0 (Z4(x)) o(23)
4| fis(x) = U(E (x)) o(z13) | 8 | far(x) =0 (X4 (x)) o(z27)
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Table 7. Displacement functions obtained from the group-theoretical relations in Table 2.

l | | 1 |

9 | fs(x) =0 (Xp(x))a(zs) | 13 | far(x) = o (X7(x)) o(217)
10 | fa(x) =0 (Z%(x)) o(za) | 14 | fis(x) =0 (Z4(x)) o(z13)
11 flO(X) =0 EZ?(X); 0'(1'10) 15 f24(X) =0 E}(X)g 0(3324)
12 fll(x) =0 ZZIL(X) J(xu) 16 f25(X) =0 E?(X) 0(%25)

Table 8. Displacement functions obtained from the group-theoretical relations in Table 3.

l l

17 | gi(x) =0 (27(x)) o(z1) | 31| g15(x) = 0 (X](x)) o(215)

18 | fo(x) =0 (X1(x)) o(a2) 32 | fi6(x) =0 (5%(x)) o(z16)

19 | g3(x) =0 (SM(x)) o(x3) | 33 | gi7(x) =0 (E8(x)) o(17)
20 | ga(x) =0 (5% (x))o(zs) | 34 | g1s(x) =0 (X7(x)) o(z1s)

21 | g5(x) =0 (23(x)) o(s) 35 | gio(x) = 0 (X}(x)) o(z19)

22 | fo(x) =0 (2%(x)) o(we) 36 | fao(x) =0 (X3(x)) o(z20)

23 | fr(x) =0 (Z{(x))o(zr) |37 | fa(x) =0 (X (x)) o(z21)

24 | fs(x) =0 (](x))o(xs) 38 | fao(x) =0 (23(x)) o(w22)

25 | go(x) =0 (Z? (X)) o(xg) 39 | go3(x) =0 (E‘}(x)) o(xa3)

26 | gio(x) =0 (228(x)) o(z10) | 40 | gou(x) = 0 (21 (x)) o (224)
27 | g11(x) =0 (X7(x)) o(z11) | 41 | gas5(x) = 0 (L2} (x)) o(225)
28 | fi2(x) =0 (B}(x)) o(w12) | 42 | fos(x) = 0 (2}(x)) o(226)

29 | g13(x) =0 (E%(x)) o(z13) | 43 | gr(x) =0 (Z?(x)) o(z27)

30 | fia(x) =0 (24 (x)) o(z14) | 44 | fos(x) = 0 (2] (x)) o(w2s)

Table 9. Displacement functions obtained from the group-theoretical relations in Table 4.

| | 1|

45 hl(X) =0 228(X) 0(1’1) 49 h15(X) =0 214(X); 0(1'15)
46 h5(X) =0 ZQS(X) U(J’J{)) 50 hlg(x) =0 214 X) O’(.’L‘lg)
47 | ho(x) =0 (B%1(x)) o(zg) | 51 | has(x) =0 27(x); o(x23)
48 | hiz(x) = 0 (821(x)) o(w13) | 52 | hor(x) = 0 (X7(x)) o(w27)

l | | 1|

53 | r(x) =0 (2(x)) o(a7) 57 | wr(x) =0 (X°(x)) o(a7)

54 | hia(x) = 0 (58(x)) o(z1a) | 58 | wia(x) = 0 (£*2(x)) o(w14)
55 | ho1(x) =0 ZlG(X)) o(xa1) | 59 | ua1(x) =0 ZQO(X)) o(xa1)
56 hgg (X) =0 222 (X)) 0'(1'28) 60 uU28 (X) =0 226 (X)) 0(%28).

Proof Let {vy}yecw be the family of Borel measures on S, given by Theorem 2.2. Since every isometry
W € U other than &n~2, &n?, 1672, n71€2, ne=2, n€2, ¢ 1972, and € '»? has an inverse in ¥, an analogous
argument used in [19, Proposition 2.1] shows that 0 < v (Ss) < 1 for these isometries.

It is clear that vg,-2(Ss) # 1 because otherwise we get vy (Ss) = 0 for every ¢ € ¥ — {{n~2} by
Theorem 2.2 (i), a contradiction. Assume that vg,-2(S«) = 0. By the group-theoretical relation in Table 2,
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(2), and Theorem 2.2 (iii), we derive that 14(Sa) = 0 for every ¢ € Uy = {&n~ 171, &n~1¢, En~2}. This is a
contradiction. By using the group-theoretical relations in Table 2 together with similar arguments given above
for £€n=2, we conclude that 0 < 144(Ss) < 1 for every 1 € V.

Let mpy) = fSoc dvy for the bijection p in (1.2). Also let m = (mq,ma,...,mog) € A?". Since
0 < vy(Se) < 1 for every ¥ € ¥, we see by Theorem 2.2 (iii) and (ii) that vy(,)(Ss) and fSoc A2 o dpv,
satisfy the hypothesis of Lemma 1.6 for each group-theoretical relation (v, s(y), S(v)) of I'p~ for v € I',. By

setting v = vg(4), @ = Vy(y)(Sao), and b= [ )‘?y,zod,“\/sm in Lemma 1.6, we obtain the lower bound

0z o | Y myw) | o (M) (23)
$pes(y)

for each group-theoretical relation (v,s(vy),S(v)) of I'p- so that v € I',. We replace each constant m,(y,
appearing in (2.3) with the variable 2, which gives the functions listed in Tables 6, 7, 8, 9, and 10, proving
the proposition. O
Let G ={f1,..-,f28,91,93,- -5 927, h1, N5, ..., hoy, Uz, U4, ..., usg} be the set of all displacement func-
tions given in the tables in the proposition above. Let F = {fi,..., fas}. Let G be the continuous function
defined as
G : A 5 R

X — max{f(x): feg} (2.4)

In the next section, we calculate infycazr G(x) by using the subset F of functions in G.

We finish Section 2 by listing explicit formulas of some of the displacement functions from each group
{fi}, {9:}, {h;}, and {ux} in G as examples to clarify the use of compact forms in these functions. For the
index sets J; ={1,2,3,4,5,6,7}, Jo = {8,9,10,11,12,13,14}, and I3 = {8,9,10} we have

l—2g—29g—T10—T11 —T12 —T13— T4 1—x9

fo(x) = 0(25(x))o(29) =

)

g + X9 + T10 + T11 + Ti2 + T13 + T14 Zg
l—ag—x9g— - —wagr—x2g 1—uy
x) = o(ZY (x))o(z7) = ’
1) (X1 (x))or(z7) Ty + To + -+ 4 Ta7 + Tag xr
l—ay—29— - —ax7—211— - —2g 1—11
x) = o(X3(x))o(z1) = )
91() ( I( )) (1) T+ T2+ -+ T+ + X0y 1 ’
l—2y—29—+ —x6—2Tg —--—Tag 1— 213
x) = o(X7(x))o(z18) = ’ )
918() ( ()) (18) T1+To+ -+ Tg+ g+ -+ Xog 18
l—x1—2o—23—---—x97 1—1
hi(x) = o (3% (x))o(z1) = ' ’
1+ T2+ 23+ -+ x27 1
1_m1_..._1‘5—1‘7—~-~—$28 1—337
ur(x) = o(2%(x))o(z7) = ' '
r1+ -+ x5+ 7+ + Tog 7

Note that in the formula of fg only variables enumerated by the elements of Jo appear in the first multiple.
In the formula of f;, variables enumerated by the elements of J; are missing in the first factor. Similarly, in
the formula of g; variables enumerated by the elements of I3 are missing. In the formulas of gi5, h1, and ur,

variables z7, xog, and g are missing, respectively, in the first quotients.
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3. Infima of the maximum of the functions in G on A27

In this section, we will mostly be dealing with the functions in F = {f;}1er, where I = {1,2,...,28}. We will
show that inf,ca2r G(x) = infycazr F(x) (see Theorems 3.15 and 3.16), such that F' is the continuous function
that has the formula

F : AT 5 R
x o max (10, f2(x).- . fas(3)) 3.1)

Therefore, it is enough to calculate infyea2r F(x). We start with the following lemma:

Lemma 3.1 If F is the function defined in (3.1), then infy,cp2r F(x) is attained in A®" and contained in the
interval [1,a], where o = 24.8692..., the only real root of the polynomial 21x* — 496x® — 65422 + 242 + 81 that

is greater than 9.

Proof To save space, we refer readers to [18, Lemma 4.2] and [19, Lemma 3.1] for details of the proof of
the statement infycazr F(x) = mingea2r F(x). Briefly, the equality follows from the observation that on any
sequence in A%7 that limits on the boundary of A2” some of the functions in F approach infinity.

For some | € I ={1,2,...,28}, we have f;(x) > 1 for every x € A%7  which shows min,ca2r F(x) > 1.
Consider the point y* = (y1,%2,...,y2s) in A?7 such that 3 = 1/(1 + 3a) = 0.0132... for [ € {7,14,21,28},
y =3/(3+a) = 0.1076... for [ € {1,5,9,13,15,19,23,27}, and 1y = 3(o — 1)/(21a2 + 1da — 3) = 0.0053... for
indices [ € {2,6,8,12,16,20,22,26} and [ € {3,4,10,11,17,18,24,25}. Then we see that f;(y*) = a for every
l € I. This completes the proof. O

In the rest of this text, we will consider A%7 as a submanifold of R?®. The tangent space TxA?" at any
x € A?7 consists of vectors whose coordinates sum to 0. Note that each displacement function f; for i € I
is smooth in an open neighborhood of A27. Therefore, the directional derivative of f; in the direction of any
7 € TxA?" is given by Vf;(x) ¥ for any i € I = {1,2,...,28}. The notation x* = (z%,23,...,23s) will be
used to denote a point at which the infimum of F is attained on A%7. We shall use o, to denote the infimum

of the maximum of the functions in F on A?7 i.e.

o, = min F(x).
x€A27

The displacement functions {f;}es for J = {1,5,9,13,15,19,23,27} in F play a special role in com-
puting a, . In particular, we have the following statement:
Lemma 3.2 Let * € A% so that F(x*) = a.. We have fi(z*) = o, for some | € J.

Proof Assume on the contrary that fj(x*) < a. for every [ € J. Let C’f denote the partial derivative of f;

with respect to z; at x* = (z7,25,...,255). We form the 20 x 28 matrix below, whose rows are V fij(x*) for
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cy ©c3 cy ¢y ¢y cy oy c3 oy C3 0
0o o0 ¢3 ci ci cy cy ci ci oCci O3
ct ¢t ¢t ¢t o o ct ct ci ct o
Gy Cy Cy Cy ¢y g Gy Gy Gy Cpo Gy
0 0 0 0 0 0o ¢ c¥ 8 ¥ CB
Cg Gy Gy Cg Gy ¢y Cg G5 Gy Gy Gy
Ciy Ciy Ciy Ciy Ciy Ciy Cly 0 0 Cif Ciy
Ch Ch ¢ ¢ ¢ ¢ ¢ CL CL G Cff
0 0 0 Cf Cfh O Ch Cf Cfh Cfh O
Cy Cy Cy Cy Cy Cy Cy 0 0 0 0
Cly Ciy Ciy Cig Cig Clg Clg Clg Clg Clg Clg
Ci; Cip Cip Cip Cp Chp Ch Ch ChL G Ci
Ciy Ciy Ciy Ciy Ciy Cly Cly Ciy Ciy Clg Cig
Cy C3 C3y 00 0 C C Cj Ci Cj
Cy Cy Cy C3 Cy Cy Gy Gy C3y Gy Oy
Cyy C3y C3y C3y C3y Cyy Ch 0 0 0 Cyy
Cy Gy Cy Gy Gy Cyy Gy Cyy Gy Cyy Cy
Cy Cy5 Cy5 Cy5 Cy Cys Chy Chy Ch Coy Cig
Cys C3s Cy5 Cyg Cig Clg Clg Clg Clg Clg Cig
[ Cos Cas Cas Cog Cg Oy Oy Oy Oy Cig Oy

cl=— o(x3) , 2=
(24 (x7))”

Cf=— o(x3) :
(SHx*))

= 2 =
(E?éﬂ))
ozt
cp= -2 -
(21(X ))
1= (7o)

cH = P Cl3 =
11
114 _ U(xﬁ)
_ N
(2 (x*))
(90;7)
0117 = - ? s Cllg =
(23(x*))*
C118 — _ J(xTS)
(26(x*))”
1 J(le) 020 —
21 — 9 20 —
(27(x*))”
1 U(xéz) 22
= C =
22 ) 22
(23(x*))*
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0 0o ¢cy oy cy ci ol
¢y Cy Ci G5 G5 Cf Cf
¢y ¢f ¢ ¢y ¢ ¢
ct ¢t ot ot ¢t ot oo
AN R B A A A
Ci Ci Cy Cg G5 G G
Clh Cly Cly Cly Cly Ciy Cly
00 ¢, ¢ ¢, ¢l Cf
C O Cfh Cfy Cfy Cly O
0 0 Cif ¢y ¢y CL O
Cls Cls Cfg Clg Clg Clg Clg
Ch Ci C; 0 0 Cff Cf
Cls Cly Cly Cly Cly Cly CR
021[) 021[) C%U CZIO CZI(J CZI(J CEI(J
cy Ci Cci 0 0 0 0
Cyp Cip Cip O O3 Oy Ch
Cyy Gy Gy Cyy Gy Gy Oy
Cy; Cis G5 Ci5 O35 Cyy Cig
Cls C3 C3g 0 0 0 Cg
Cis Ciy O Oy Oy Cig O
£
o(x3) o (31(xY))

oz o (Bh(x)
(2G(x*)® ()

o(@g) o (Z[(x)
(C(x*)® (g)?

¢ G
Ccy Gy
ci G

0 C
¢t
Cs Gy
Ciy Clo
cl Ch
Cfy Ch
Ciy Clh
Cls Clg
Ci; Cl

0 Clg
C3

0 C%
C3y Chy
Gy Cyy
Cy5 Cig
C3s Cl
Cys Cig

ct ¢l ool
¢ ol oo
ct ci o}
a ca a
b e e
0 0 0
Ciy Cip Ciy
ch Ch Ch
Cl, Cly Cf
Cly Ciy Ciy
Cls Cls Clg
Ci; Ci; Ciz
Cis Cis Ciy
Ci C3p Cho
Cy Gy Cy
(35 C3 C
0 0 O3
Cys C35 Cis
Cis C3 Clg
0 0 0
o (31(x))
(23)”
o (BF(x))
(@)
U(Z{(x*))
2 )
(x7)
o(xg)
2
(X7(x"))
o(z11)
2
(37 (x*))
_ o(21,)
29
(3} (x*))
_ o(z1e)
2
(ZF(x*))

17 — 2

(z77)
1 o(x3g)
20 —
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24 o (Z7(x")) 1 o(x35) 2 o (Z7(x"))
Cop = _@;T, Cos = _(E§(x2*5 )2’ C3 =- 95{55 2
1 = _M7 2 = — o(x3) O (2%(x") i, o(x3g) 7
W) (See) @) (51 6x))°
oz = T
T )

Consider the vector @ € Ty~A%7 with the following coordinates:

1 ifi=2,3,4,6,7,8,10,11,12, 16,17, 18,20, 21, 22, 24, 25, 26,
@, =1 3 if i = 5,9,13,19, 23, 27,
i 2 ifi= 14,28,
-2 ifi=1,15.

For | € {2,3,6,7,8,16,17,20,21,22}, ¢ € {14,28}, j € {4,10,11,18,24,25}, and k € {12,26}, we compute
that

Vix")-d=C] <0, Vfi(x")-a=2C{ <0, Vfj(x*) @=Cj+C] <0,

Vie(x*) i =Ct+CF <.

This implies that the values of f; for | € I — J decrease along a line segment in the direction of #. For a
sufficiently short distance along # the values of f; for [ € J are smaller than «,. Thus, there exists a point
z € A?7 such that fi(z) < an for every [ € I = {1,2,...,28}. This is a contradiction. Hence, f;(x*) = a, for
some [ € J = {1,5,9,13,15,19,23,27}. O

Let A={(z,y) €eR?>:x+y <1, 0<2,0<y}. Introduce the function g: A — (0,1) defined by

l—z—y 1—y
T+y y

g(z,y) = (3.2)

Given a displacement function f; in F for [ € J = {1,5,9,13,15,19,23,27}, it can be expressed as

filx) = g (25(x) — a1, 1)

for some i € {1,2,3,4}. The function g was also used in [19]. In fact, the following statement [19, Lemma 3.2]

was proved for g:

Lemma 3.3 Let Cy = {(z,y) € A1z +2y —xy —y* < 2}. Then C, is an open convex set and g(z,y) is a

strictly convex function on Cy.

Therefore, by this lemma, each displacement function f; for [ € J is a strictly convex function over the open
convex subset
Cp, = {x=(z1,...,228) € A* : B(x) + 22y — B(x)z; — (m)* < 2} (3.3)
of A?", where we set X(x) = X% (x) — z; for a chosen i € {1,2,3,4} depending on [.
If Cy, for | € J are as described above, then the subset C' = M;c;Cf, of A?" is nonempty. This is

because, if we consider the point y* given in the proof of Lemma 3.1, then

S (y*) — = 0.1423...
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for every i € {1,2,3,4}. We find that X(y*) + 2y — Z(y* )y — (11)? = 0.3307... < % for every [ € J. Thus, y*
., Z5g) € C implied by the following two lemmas:

is in C'. Additionally, we have x* = (z7, 23,
Then =* € Cy, , defined in (3.3), where

Lemma 3.4 Let ¥ € A" so that o, = F(z*)
l-—m—x—r3—my—a5 -6 —7 1—1

1+ T2 +x3+ x4+ T5 + 6 + X7 X

fi(@) = o(B))o(a1) =

Proof Assume on the contrary that x* ¢ Cy, . Then, by the definition of Cy, , we have

7 7
3
* 9 _ * * *\2 > 2 4
le "‘( Z%)% (21)” = 4 (3.4)
1=2 1=2
Let us say N = 1(3 — V3) ~ 0.3170. Also, let ¥ = Y/ a7 = Sh(x*), 5 = Yo = D3(xY),
o= car =03 (x*), and B = 370 af = B4 (x*). Consider the following cases:
(A) E(x*)> N, 7 > N, (B) X(x*) >N >z, (C) zf > N> X(x*), (3.5)

where ¥(x*) = BL(x*) — 27 = 217:2 xf. Assume that (A) is the case. Note that X} > 2N. Then we have
S5+ X540 < M =1- 2N ~ 0.3660. (3.6)
If ¥5 < M/3 =~ 0.1220, using Lemma 3.1 and o(M/3)o(z}) < o(X5)o(x]) < a, we find for every [ € {9,13}

35— M ~ 0.2317.

that
> o(M/3) _
"= (a-1)+o(M/3) (a—2)M+3

Then we see that a§ > 33, a contradiction. This implies that X5 > M /3. We can repeat this argument with

Y% and 33 to show that ¥3 > M /3 and ¥ > M/3. This is a contradiction, so (A) is not the case.
Assume that (B) holds. Since we have ¥ (x*) > N, we obtain the following inequality:
(3.7)

2S4S+ N <M =1— N ~0.6830.

If ¥5 < M/4~0.1707, then by the inequality o(M /4)o(z]) < o(23)o(z;) < a, we find for every [ € {9,13}
4—-M
~ 0.1691. (3.8)

that
s oMY
S a4 o(M/4) (a—2)M +4

Note that x§ + zi3 > X5, a contradiction. Thus, we get X5 > M /4. Similar arguments for 33 and X} show

that X% > M /4 and X% > M /4. Then we compute from (3.7) that «} < M /4. By (3.4), we calculate that
(3.9)

3-2M
S(x*) > L= ~ 0.4926.
(x*) > T~ 04926

This implies X(x*) + X5+ X5 + 35 > L+ 3M /4 ~ 1.0049 > 1, a contradiction. Hence, (B) is also not the case.
(3.10)

Assume that (C) in (3.5) holds. Since zf > N, we have
N(x*)+ 55+ 55+ 55 <M =1- N = 0.6830.
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If ¥5 < M/4, then by (3.8), we derive that z§ + x7; > X3 as in case (B), a contradiction. Therefore, we must
have X5 > M /4. Similar computations for ¥j and X} imply as in case (B) that 35 > M /4 and X > M /4.
Then we find that X(x*) < M /4. Since (2 — £(x*))z} < 2z}, using the inequality in (3.4), we calculate that

1
¥ L= (4—\/5+\/§> ~ 0.3513. (3.11)

Since X5 + Xj + X3 > 3M/4, we find that ¥f < 1 — 3M/4. By Lemma 3.1 and using the inequality
o(1 —=3M/4)o(z}) < o(E7)o(zt) = f5(x*) < a, we compute that
o(1—-3M/4) 3M

LS - ~ 0.0405.
U T o(1—3M/4)  (4—3M)a+3M

We have z7 + X5 + 35 + X5 < 1. By (3.11), we get X5 + X% + X} < 1 — L ~ 0.6487. By the inequality
o(l1—L)o(z%) < o(X5 + X5 + X))o (z%) = f7(x*) < a, we derive that
o(l—1L)

L
* = ~ .2]..
T e(l—1)  (I—Lyatrp 0023

We claim that 35 < i because otherwise we calculate that

vy trs+ar X+ X3+ > L+

+

3M L M
St ALT>1 (312)

1
@—3M)at+3M ' I-LjatL 2 "1
a contradiction. Similarly, we find a contradiction in each case if we assume >3 > i or ¥} > i. Therefore, we
have ¥} < % for every r € {2,3,4}. Then, for every [ € {9,13,15,19,23,27}, we obtain

" a(1/4)

> T 01076
T et o(1/4)

by the inequalities o(M/4)o(x}) < o(Zf)o(z]) < a. Finally, we get the contradiction
] + i+ ak + oy + x]s + 2] + g + 255 + 257 ~ 1.0591 > 1.

This shows that (C) is not the case either, which completes the proof. O

Lemma 3.5 Let z* € A" so that a, = F(x*). Then x* € Cy, , defined in (3.3), for | € {5,9,13,15,19,23,27}.

Proof The proof of Lemma 3.4 is symmetric in the sense that it can be repeated for every index [ €
{5,9,13,15,19,23,27}. In particular, if [ = 5, we interchange z} with 2} and let ¥(x) = £} (x) — z5. Then
we reiterate the computations carried out in the proof above by keeping the same organizations in (3.6), (3.7),
(3.10), and (3.12).

For some [ € {9,13,15,19,23,27}, we replace =} with z}, let X(x) = X} (x) —x; for some i € {1,2,3,4},
and reorganize the inequalities in (3.6), (3.7), (3.10), and (3.12) by choosing relevant sums from 7, 3%, 3%,

and X3 . Then we carry out analogous calculations given in the proof of Lemma 3.4 for the chosen index [. O

We shall also need the observation below about g, defined in (3.2), in the computation of . Its proof

is elementary. Therefore, we shall omit it. We have:
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Lemma 3.6 For (z,y) € C,, the inequality g(z,y) < a = 24.8692... holds if and only if 0.1670... <y < % and
0<z<(=3+8y—4y?)/(—4+4y) or

14+ 3a—+v1—10a + 902 1 o}
0.0134... = = 0.1670...
8a <y<1—a+ (a —1)2
1-2 1—a)y? — — 42
and y+( Oé)y <33<M
1+ (a—1)y —4 +4y

As mentioned earlier, the displacement functions {f;} for [ € J ={1,5,9,13,15,19, 23,27} play a more
important role in the computation of a.. These functions take larger values on C' = [, ; Cy, than the values

of the rest of the displacement functions in F at the points that are significant to calculate the infimum of the

maximum of F'. In other words, we have the following:
Lemma 3.7 Let F(x) = maxpec{fi(x) : 1 € J} for C = ﬂlEJ Cy,. Then, F(x) > a..

Proof Assume on the contrary that F(z) < a, for some z € C'. Then, by Lemma 3.1 for every [ € J, we
have f(z) < a, < a=24.8692.... Let z = (21, 22,...,298)-

Assume that z; > 3/(3+a) for every [ € {1,5}. Also assume that z; < 3/(34«) for every [ € {9, 15,23}.
By the inequalities fi(z) = 0(X%(z))o(2) < a for every | € {9,15,23}, for every i € {2,3,4}, we get

3
g (sTa) 1

z) > ——— L = . (3.13)
ato(z) 4
Since ¥ (z) + X%(z) + £3(z) + £4(2z) = 1, we have £} (z) < 1. This implies that
yi(z) -z <1—i—01423 (3.14)
J 1 4 3 + o — U. e .

Because z € C' C Cy, , by Lemma 3.6 for g = f1, * = £% — 21, and y = 21, we find z; > 0.4237... > ¥1(z), a
contradiction. Thus, 2z > 3/(3 + «) for some [ € {9,15,23}.

Assume without loss of generality that zg > 3/(3 + a) and z < 3/(3 + «) for every [ € {15,23}. Then
we have Y (z) > § for every i € {3,4} by the inequalities fi(z) = 0(X%(2))o(2) < a for | € {15,23}. This
implies that ¥}(z) + X%(z) < 1/2. If £} (z) < 1, then by the argument in the previous paragraph, we obtain
a contradiction. If ¥2%(z) < 1, we have %%(z) — z9 < 0.1423.... Using Lemma 3.6 for g = fo, z = %%(z) — 29,
and y = z9, we find the contradiction z9 > ¥%(z). This implies that z, > 3/(3 + «) for at least two distinct
le{9,15,23}.

Assume again without loss of generality that z; > 3/(3 + «) for every [ € {9,15} and 223 < 3/(3+ a).
Then ¥%(z) > 1 by the inequality f23(z) = 0(3%(z))o(223) < a. This implies that X1 (z)+%2%(z)+ %3 (z) < 2,
which in turn gives that X% (z) < % for some i € {1,2,3}. Since 2z > 3/(3+ a) for every I € {1,5,9,15},
depending on i, using z; and g = f1, or zg and g = fg, or z15 and g = fi5 in (3.14) and Lemma 3.6, we
obtain a contradiction in each case by repeating the arguments given above. We must have z; > 3/(3 4+ «) for
every [ € {9,15,23}.

848



YUCE/Turk J Math

We already know that XY (z) + %2 (z) + X3(z) + £4(z) = 1 as z € C C A?". Then we get ¥%(z) < 1
for some i € {1,2,3,4}. Given i, by choosing appropriate z; from the list {z1, z9, 215, 223}, Wwe repeat the
relevant argument carried out above and derive a contradiction using Lemma 3.6. As a result, we conclude that
21 < 3/(3+ «) for some [ € {1,5}.

Notice that the computations used to show that z; < 3/(3+ «) for some [ € {1,5} are symmetric in the
sense that they can be deployed to prove z; < 3/(3 4+ «) for some [ in any given pair {9,13}, {15,19}, and
{23,27}. This implies that there exist entries z,,, zn, 2, and zs for m € {1,5} n € {9,13}, r € {15,19}, and
s € {23,27} such that z; < 3/(3+ ) for every | € {m,n,r,s}. By the inequalities f,(z) = 0(X%(z))o(2) < «
for 1 € {m,n,r,s}, we find that ¥%(z) > % for every i € {1,2,3,4}, a contradiction. Hence, the conclusion of
the lemma follows. O

Before we proceed to prove Proposition 3.11, we review three facts from convex analysis. These facts
were also used in [19, Theorem 3.2, Theorem 3.3, and Proposition 3.3]. For their proofs interested readers may

refer to this source and the references therein.

Theorem 3.8 If {C;} for i € I is a collection of finitely many nonempty convex sets in R? with C = N;e1C; #

@, then C is also conver.

Theorem 3.9 If {f;} for i € I is a finite set of strictly convex functions defined on a convexr set C C R?,

then maxgzec{fi(x): i € I} is also a strictly convez function on C.

Proposition 3.10 Let F be a convex function on an open convex set C C R, If x* is a local minimum of
F, then it is a global minimum of F, and the set {y* € C : F(y*) = F(x*)} is a convex set. Furthermore, if

F s strictly convex and =* is a global minimum, then the set {y* € C : F(y*) = F(x*)} consists of * alone.

With these facts, we can prove the following statement, which gives the first part of Property B:

Proposition 3.11 Let F = {f;} for i€ 1={1,2,...,28} be the set of displacement functions listed in
Proposition 2.5 and F be as in (3.1). If * and y* are two points in A?" so that o, = F(z*) = F(y*),

then x* = y*.

Proof We know by Lemma 3.3 that each f; for | € J is a strictly convex function over the open convex set

Cy, . Therefore, ﬁ(x) defined in Lemma 3.6 is also strictly convex on C = MiesCy,, which is itself an open

convex set by Theorem 3.8 and Theorem 3.9. By Lemma 3.4 and Lemma 3.5, we have x*, y* € C. Since
ﬁ(x) > o, for every x € C' and ﬁ(x*) = a, by Lemma 3.2 and Lemma 3.7, the value «, is the global minimum
of F. As a result, we find that x* = y* by Proposition 3.10. O

The uniqueness of x* established by Proposition 3.11 simplifies the task of determining the relations

among the coordinates of x* considerably. In fact, we have the following statement:
Lemma 3.12 If &* = (z},25,...,255) € A% so that F(x*) = ., then x} = x} for all indices i,j €
{1,5,9,13,15,19,23,27}. Also, for every i,j € {2,6,8,12,16,20,22,26}, i,j € {3,4,10,11,17,18,24, 25}, and

i,j € {7,14,21,28}, the equality x} = x} holds.
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Proof Consider the permutations 71, 72, and 73 in the symmetric group Ssg defined below:
1=(1 5)(2 6)(3 4)(8 16)(9 15)(10 17)(11 18)(12 20)(13 19)(14 21)(22 26)(23 27)(24 25),

T2 = (1 23)(2 22)(3 24)(4 25)(5 27)(6 26)(7 28)(8 12)(9 13)(10 11)(15 19)(16 20)(17 18),
3= (1 13)(2 12)(3 11)(4 10)(5 9)(6 8)(7 14)(15 27)(16 26)(17 25)(18 24)(19 23)(20 22)(21 28).

Let T; : A?" — A?7 be the transformation defined by x; — T, for [ =1,2,3. Note that Ti(A%7) = A?T
for every [. Let H; : A*” — R be the map so that H;(x) = max{(f; o T})(x) : i = 1,2,...,28}. Then we
have f;(Ti(x)) = fr@i)(x) for every x € A?7 for every i = 1,2,...,28 for every { = 1,2,3. This implies that
F(x) = Hy(x) for every x and for every [. Since x* is unique by Proposition 3.11, we obtain 7} ' (x*) = x*
for [ =1,2,3. Then the lemma follows. o

Lemma 3.12 implies that f;(x*) = f;(x*) for every 4,5 € {1,5,9,13,15,19,23,27}. Also, for every ¢,j €
{2,6,8,12,16,20,22,26}, i,j € {3,4,10,11,17,18,24,25}, and i,/ € {7,14,21,28} we have f;(x*) = f;(x*).
Therefore, there are four values to consider at x* to compute ay: f1(x*), fa(x*), f3(x*), and f7(x*), which

are given as

1—2(xf +a5+af) —ar 1—af

=y, 3.15
ot +ay+ap) +a; @ (319
1—-7(2] + a5 +a3) — 47 1—a3 < a (3.16)
Twi + o5 +a3) + 4oy @
1— * * Y Ak 1 — *
7(I1 +"'E2 +I3) ‘,'E7 . 'I3 S o, (317)
i+ o5 +a3) +doy @)
1—6(z* * ) — 3k 1— *
(] + @5 +a3) — 3a7 3 < a. (3.18)

6aj + a3 +a3) + 305 a3
We shall show next that fa(x*) = f3(x*) = f7(x*) = .. For this, we will need the statement below:
Lemma 3.13 For 1 < k < n—1, let fi,., fr be smooth functions on an open neighborhood U of the
(n —1)—simplex A™~! in R™. If at some & € A" the collection {V fi(z),V fa(),...,Vfr(z),{1,...,1)} of

vectors in R™ is linearly independent, then there exists a vector i € ToA" ™1 such that each f; for i=1,... k

decreases in the direction of U at x.

Interested readers may refer to [18, Lemma 4.10] for its proof. We have the following statement:

Proposition 3.14 Let F = {f;} for i€ I =1{1,2,...,28} be the set of displacement functions listed in
Proposition 2.3 and F be as in (3.1). If «* is the point such that F(x*) = ., then = is in the set
Aoy ={z € A?": fi(x) = f;(x) for every i,j € I}.

Proof By Lemma 3.12, it is enough to show that fao(x*) = f3(x*) = f7(x*) = ... Remember that Cij denotes

the partial derivative of f; with respect to x; at x*. We calculate the constants below:

v o(z)) _J(ElJ(X*)) s o(z}) 1 o(x) 16 0(ais)

“ (25(x*))? GRS (25 (x*)* “- (B} (x)% Ci§ = (23 (x*))*’
cp—_ o@) o(Z0) e olw) s o) s olwh)
T () (3)? (3% (x))* (3% (x))? (3% (x))?
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9 — _ ofxzg) o (23 (=) c13 — _ o(zjs) o (Z5(x) o5 — _ o(@is) o (23 (x))
() @) TP (23(x))? (@132 7 TP (38 (x7))? (x35)2
o — (o) 9 (23()(*)) 23 _ _ o(x33) ¢ (Eﬁ(X*)) 027 — _ o(ryy) < (E%](X*))
Yo mee)’ @R T T et @) T (St (@5)”
22 _ o(x33) 02 — _ o(x3;) .
2ot T ()

Since we have ¥(x*) = ¥2(x*) = ¥3(x*) = X% (x*), we derive that C{ = C2 = Cj = C}§ = C{? =
Ciy =C23 = C27 and C? = C} = C§ = Cf; = CIf = CI§ = C22 = C22 by Lemma 3.12. Again by the
same lemma, we have Y1(x*) = 29(x*) = ©7(x*) = H(x*) = Z¥(x*) = Z3(x*) = T3 (x*) = ¥3(x*). For
the constants given in Lemma 3.2, this implies that C3 = C§ = C§ = 012 = Ci§ = CR = C23 = C3,
Ch=Cl= Gl = Cly= Cly = Cly = Chy = Cly, Cf = Ch = Cl§ = Ol = Ol = CIf = 3 = €, and
C4 =01 =0]y=0CH =Ct, = Cl = O} = C5. Note that we get X{ (x*) = 2 (x*) = 2 (x*) = X7 (x*) by
Lemma 3.12. As a result, we also see that C7 = Ci} = C3 = C2 and C8 = O}, = C}; = Clk.

Consider the 28 x 28 matrix below whose rows are V f1(x*), V fa(x*), .., V fag(x*) :

_Cll 012 012 012 012 012 012 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cl ¢z ool ool ool ookl oclocl ol oo 0 0 CPcloolochclocyclocloclochcyochocloclocl
0 0 C¥ ¢} ¢t octoctoclocroctoct oot ool ocroctoctochoclocrcroctoctocloclocroorocl
Ci C3 C3 C§ 0 0 C3 Cf C3 C3 Cf Cf Cf C3 C3 C3 Cf Cf Cf C3 C3 O3 Cf Cf Cf C3 C5 Cf
Cf C12 Cf 012 011 012 012 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cl ¢l ¢l ool ol o2 ochocloch ool ool ool ookl oo 0 0 Cocloclocolochoclochocl
0 0 0 0 0 0 CI ¢ ¢% 8 ¢ 8 8 8% o8 o8 ¢ 8 ¢ o8 o o 8 o8 ¥ of B
¢y oy el ool ool ool ocl 2ol ool ool oclochococlocloclocl oyl oo 0 0 Cbocloclocl
0O0000001201101201201201201200000000000000
lo-Be’ Se’ e’ Mite; Mite: Mo SN RNV RN’ SN’ Nio: Mitor SNo7 S’ Sie: M e; Ml e: Mo’ Sie” Sie’ i e- Mo, Mie: Mie’ Mo’ S’ M’
Ciociochochochochochoot oot octocE o0 0 CFochochochochochoclocloclociocloclocloclocl
0 0 0 c cloclocloclocalocalcl ool oclocloclocloclocloolocloclocloclocloclocalocl
00 0 0 0 0 0 C2c2c2c:2c2cilc2 o 0 0 0 0 0 0 0 0 0 0 0 0 0
C8OCE Y CE CE CEOCE 0 0 0 0 0 0 CI CYOCE OO OCEoCEoCEOCEOCEOCEoCEoCEoCSoCH
0 0 0 0O 0O 0O 0O 0O O O 0O 0O 0 0 CLc2ctc:c:czc 0 0 0 0 0 0 0
cyocy ool ool ool ochocy o ocloclochoch oyl o 0 0 C
cf ool ool ool oo oor cb oot ocloct ool oot octoct oo 0 CF ocrochochocloctocroctoct oot ocl
Ci C3 C3 C3 G5 Cf Cf Cf C3 O3 Cf Cf Cf C3 C3 C3 Cf Cf 0 0 C3 O3 Cf Cf Cf C3 C5 Cf
0O0O000000OOOOCfCIZCfCIQCfC%CfOOOOOOO
ol ch el o 0 0 ¢ ocloch ool ool oclocl ool ochoc:oclocloclocloclocloclocl
cE o8 o ooy o8 o0 CB B oCd o o B cd 0 0 0 0 0 0 Cf ¢ ¥ b o B ¢y B
cl ¢y ¢l ool ool ool ol 0 0 0 Cb clochoclocloolochochocyocloclococloclocloclocl ool
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Clz Cll 012 012 012 012 6'12
lo:Be Se’ e’ Me; Mo Wite: Sie’ S’ e’ Mo, Mie: Wite: Sie’ S’ Sie: Mite; Ml e: Wie: SNe” S-S | NN\ N o: BN o7 SNo7 SN/ SG?
ci ci ci ci o cy cy Cct oCcy o0y O CroCroCyoCtctociociocidocdocyocyocyoctoctooy o0 0 Cf
cl ¢l ¢l ¢l ol ¢l ocl ol ol ¢l oclocloclcl oo o0 o0 ¢l clclocloclocalocl ol ool ool
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C% C12 012 012 Cl2 C’l1 C]2
C3 Y OCE OO OO OCEOCE Y CS OB OO OCEOCE Y OCEOCE OCEOCEoCECECE 0 0 0 0 0 0 CF

Assume that fo(x*) < .. Consider the vector ¥ € Tyx-A%*" with the following coordinates:

1 ifi=1,34,579,10,11,13,14,15,17,18,19,21,23,24, 25, 27, 28,
(7)) =<{ -2 ifi=6,12,20,26,
—3 ifi=2,8,16,22.

For any given indices | € J = {1,5,9,13,15,19,23,27}, i € K = {3,10,17,24}, j € L = {4,11,18,25}, and
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ke N ={7,14,21,28}, we calculate that

x*) - =Cf — 2—_M (x*) T =C3 4_ _ ( }(X*))_ (23)°
Vi) -0=0; -Cf = 1 *(f'f)Q <0, Vfi(x*)- 01 =C5+C5 = 1 £x§)2 O’(E}(X*))<0’
Vﬁ@ﬂ-%=C€=—ac%k))<Q Vﬂ@ﬂ.a=6$=—aﬁb“))<o

This implies that values of f; for [ € JUK ULUN decrease along a line segment in the direction of #;. For a
short distance along ¥, values of f; for [ € {2,6,8,12,16,20, 22,26} are smaller than «,. There exists a point
z € A% such that fi(z) < a. for every [ € I = {1,2,...,28}. This is a contradiction. Hence, we find that

f2(x*) = .. Assume that f3(x*) < au. We introduce the vector v € Ty~ A?" with the coordinates

1 ifi=1,2,5,6,7,8,9,12,13, 14, 15, 16, 19, 20, 21, 22, 23, 26, 27, 28,
(To); =<{ -2 ifi=4,11,18,25,
—3 ifi=3,10,17,24.

Forle J,ie K'={2,6,16,20}, j € L' = {8,12,22,26}, and k € N, we calculate

1 x* 1 x*
1 7

o (E%(x*))
(23)?

Vfi(X*) - Uy = 022 — 021 — <0,
which show that values of f; for | € JU K’ UL’ UN decrease along a line segment in the direction of 75.
Values of f; for [ € {2,6,8,12,16,20,22,26} are smaller than «, for a short distance along 7. As a result,

there exists a point w € A7 such that f;(w) < a, for every I € I = {1,2,...,28}, a contradiction. We derive

that f3(x*) = a.. Since we

have fa(x*) = f3(x*) = ., we obtain z3 = x%. Then we see that C3 = C4. Also,

we find that C3 = C% — C3. Now assume that f7(x*) < ... Then we construct the 25 x 28 matrix A below:
rer ¢ 2 ¢ 20 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 0 0 0
a i oo o 0 0 0 c oo o oo 1o/ NG S e
0 0 Ci-ci < ¢ c c c ¢ cl ¢ cccaoac ol ¢l cc c caca c ca  ca ¢ c
o ¢l cb @-ch 0 o0 c ol i oc oo oa a cal ca c aaca a o a
cz ¢z 2 2 ¢l ez oo o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
adc d d dagdac o a daacca ol o 0 o0 ¢l ol
aad d d dddaa ¢ cd dddadad d o aado o o acloclocl
0 0 0 0 0o 0 o0 ¢ ¢ ¢ e oo o 0 0 0 0 0 0 0 0 0 0 0 0
iy ¢ ¢ o 0 cGocy o daddaa o o aaaada c a o oac
caca a cl clclclcc ¢ c-cl o o Clcoc  cl ¢l clc oc cac c  c ¢ c
0o 0 0 cl ¢l ca ol a ol ol a c c oc o o oa ca a a c
0 0 0 0 0 0 0 ¢ ¢ 2l ¢t oo oo 0 0 0 0 0 0 0 0 0 0 0 0
o 0 o0 O 0 0 0 0 0 0 o o0 0 0 c ¢ 2 c2c:c:o o0 0 I
o o o aagaaa o o agaaadad o d o dddaa o o 0 o0 C
aad ¢ d dddda d d dddo oo g a d dddaa ¢ o aoa
aad cd d dddda d d dddaa ‘g g a0 dadad ¢ a cococ
0 0 0 0 0 0 0 0 0 0 0 0o 0 0 2 ¢ el oo o 0 0 0 0 0
aa o o 0 o clcic o ccicicc o ccdccca o clcloc
ad d o aado o o a ddcddcccd d d ddacdcad a a dd
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o0 ¢ cl ¢ Ao
c c c ccocaoaoc cl cccoaoc ¢l cichcl oo 0 cz-cl c ccocl
ol i caocd oo a a i cocaoaa a i oo o G-c 0 0
ad cd d dddda d d dddid o o a cdcadcddcdd a Talaacd
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 ¢ ¢ ¢l ¢
L1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Let R; denote the lth row of A for I € {1,2,...,25}. Applying from left to right and row by row, we
perform on A the row reduction operations listed in Table 11 simultaneously.
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Table 11. Row reduction operations on A.

—CJRas + Ros = Ros

—C3Ros + Ro1 — Ro

1

—CJRas + Rig = Ry

—C3Ros + Ris — Ris

—CIRos + Rig — Ris

—CIRos + Ris — Ris

—CJRys + Ry — Ry

4

—CIRos + Rio — Rio

—C%R25 + Rg — Ry

*CQIR25 + R7 — R7

*CQIR25 + R6 — Rﬁ

*C%R25 + R4 — R4

*C%R25 + R2 — R2

*Clleg, + Ry — Ry

7012R25 + Rs — Rs Rig + R11 — Rt Ri9 + R11 — R11 Rigs + R3 — R3 Ri9 + R3 — R3
T
—Ri1 +Rs = Rs —2Rig+ Ry — Ry —Ryg+ Ry — Ry Rig+ Ry — Ry -t Rs — R3
2 Y2
Ry — R -R Ry — R R R; —- R -R R7; — R —— R > R
02 Cl 4 4 19 + Ry 9 19 + 7 7 21 + L7 7 CZ 02 7 7
T
Ris+ R — Ry Ris+ R — Ry Rog+ Ry — Ry 02 ClRl — Ry Rg + Rs — Rs
1 1
Ri3+ Rs — Rs Ryo + Rs — Rs Cl c? Rs — Rs —Rig+ Ry — Ry MRQ — Ry
T T
-R R = R ——R¢ = R -R Rs =+ R ——Rs = R, ——— Ry = R,
16 + fig 6 cI_Cl 6 6 12 + fig 8 cr_c? 8 8 CQ cl 9 9
T
—Ri7+ Riz — Ras s — B3 —Ra4 + Roo — Rao —1 520 = Rao C3Ry + Rig — Rig
Ci = C7 Cl Cy

C2IR5 + ng — ng

CQ R6 -+ ng — ng

C’QlR7 -+ ng — R19

CQRg -+ ng — R19

Cleg -+ R19 — R19

*C%Rg + Rig — Rig *C%R7 + Ri2 — Rio *C%Rg + Ri2 — Rio 7012R() + Ri2 — Rio —Ro+ R1 — Ry
—R3+R1—>R1 —R4+R1%R1 —R5+R1—>R1 —R6+R1—)R1 —R7+R1—)R1
—Rs+ R = Iy —Ry+Ri = Iy —C3R1 + Ry — R | —C3Rs+ R — Ru —Ri1 + Rio = Rio

2Ry + Rio = Rio

—Ri9 + Rig — Rio

Rig + Ri1 — Riy

Rig + Rig — Rig

CQIRL; -+ R15 — R15

—20%1‘213 + Ri1 — Rn1

—C%ng + Ri7 = Ry7

—CIRi3+ Ris — Ry

8

CiRy3 + Roz — Ras

—Ro3 + Ri5 — Ry

1 T
—Ras + Ria — Rua —Ris+ R11 — R Tl —5—~7 P14 = Ria a1 Ri5 = Ri5 | —C{R1s+ Ri7r — Ri7
2
*C%Rls + R17 — R17 C%RM + R23 — R23 CQ Rlo + R23 — R23 702R20 + ng — ng CQIRQ() + R21 — R21
—CPRyo + Roy — Ry Ris < Rig Ri7 ¢ Ris Rig < Ri7 Ri5 < Ris
Ri4 < Ris Ri3 < Ry Rap < Ray Ras <+ Ro3 Ra1 < Roo
Ro3 <> Roy Ras <+ Ro3 Rog <+ Roy
Then we see that A is row equivalent to the matrix A below:
(00000010 —10 2 2 1 1]-111 2 1 2 1 2 -1 2 1 1 1 1
01000000 0 0 -1 0 0 00 00 0 0 0 0 0 0 0 0 0 0 0
00100000 0 0 0 -1 0 0|0 00 0 0 0 0 0 0 0 0 0 0 0
00010000 0 0 0 0 0 00 00 0 0 -1 0 0 0 0 0 0 0 0
00001000 1 0 0 0 0 0|1 00 0 0 0 0 0 1 0 0 0 0 0
00000100 0 0 0 0 0 00 oo -1 0 0 0 0 0 0 0 0 0 0
00000001 0 0 0 0 0 0|0 00 0 0 0 0 0 0 -1 0 0 0 0
00000000 1 0 0 0 -1 0|0 00 0 0 0 0 0 0 0 0 0 0 0
0O0000O0O0OO0OO0O 0 1 ) 0 0 0 0 00 0 0 0 0 -1 0 0 0 0 0 0
0000O0O0O0O 0 O0|C3-C] Ci-C3 @] 00 00 —C} 0 3 —-2C) 0 4C}-2C3 0 203 0 0 0 0
00000000 0 0| —C szzc” 0 0|0 00 0 cl 0 0 ci-2f c@ -} 0 0 0 0
00000000 0 0| C% c: T oct4ct clo 00 0 0 0 0 2 0 c? 0 0 0 0
00000000 0 0 0 0 —ci 0]0 00 0 0 0 0 ci-20f 0 —C} 0 0 0 0
00000000 0 0 0 0 0 01 00 0 -1 0 0 0 0 0 0 0 0 0
00000000 0 0 0 0 0 0lo 10 0 0 0 0 0 0 0 -1 0 0 0
00000000 0 0 0 0 0 0o o1 0 0 0 0 0 0 0 0 -1 0 0
00000000 0 0 0 0 0 00 0o0[C3-20] —C} e 0 0 0 0 0 0 0 0
00000O0O0O 0 0 0 0 0 00 00 3 Cl+C% ct Cc? 0 0 0 Cct Cc? 0 0
00000000 0 0 0 0 0 00 00| —C! cyocz-20) 0 ci-20f 0 @ —C} 0 0 cl 0
00000000 0 0 0 0 0 00 00 0 —C! 0 0 0 0 0 —ct |3 -2k 0 0
00000000 0 0 0 0 0 00 00 0 0 0 0 —ct 0 C2-20} 0 0 -ct 0
00000000 0 0 0 0 0 00 00 0 0 0 0 c? 0 c? c? 2 cl4+c ¢
00000000 0 0 0 0 0 0|0 0o 0 0 0 0 0 1 0 0 0 -1 0
00000000 0 0 0 0 0 00 00 0 0 0 0 0 0 0 ci-20y| -l —cl 0
[T 1111111 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1

Note that in the presentation A s partitioned. Let 12[2,2 and g4’4 denote the (2,2)

and (4,4) partitions,

respectively, of A counting from left to right and top to bottom. The matrix A has full rank if and only if
det(;{gg) # 0 and det(g4,4) # 0. We have

det(ggg)

—cic} (c3 -

C3) (3C; —

C3),

det(A4 4)

(ch) s (03 -

c2)* (204 —

C3) (3C3 —C3).
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We know that C2 # 0, C} # 0 and C — C2 # 0, so A has full rank if and only if 3C2 — C2 # 0 and
203 — C2 # 0, where X}(x*) = 2%, + 2%y + 255 = 27 + 273,
o(S7(x%)) __20(x3) _ Ej(x)(1 = Bj(xY)) — 225(1 — %)

3G -G =T T e AR

L o(THx)  oled) | SH)(1 - BHx) — (1 - a)
-G =T T e CARCHCRE ‘

Assume on the contrary that 3C3 — C2 = 0. We simplify the previous equality and get

(2] +225)(1 — 2] — 225) —225(1 —23) =0 or x5 =—x]+ (3.19)
as 23 > 0. Since x* € A%, we have 8(z} 4 223) + 4a% = 1. This implies 0 < 2} < X}(x*) = 2} + 225 < L. By
(3.19), we have x3 < z} if and only if #7 > 1. Using the equality fo(x*) = f3(x*) and the formulas of f;(x*),
f2(x*), and f3(x*) in (3.15), (3.16), and (3.17), we find that o(z}) = 30(X}(x*))o(z}), where o(X}(x*)) > 1.
Thus, we deduce that x5 < x7. This is a contradiction.

Next, assume that 2C3 — C3 = 0. Then we get (2} + 2x3)(1 — 2} — 223) — x5(1 — 23) = 0. This gives

rh=——— or x3=-—r].
2 3 2 1
Since x5 > 0, we obtain z] + 325 = 1 or 7z} + 1325 + 42% = 0, a contradiction. This shows that A has full
rank.

By Lemma 3.13, there exists a direction @3 € Ty~A2" such that values of f; for | € I — {7,14,21,28}
decrease along a line segment in the direction of 3. Values of f; for | € {7,14,21,28} are smaller than a
for a short distance along @3. As a result, there exists a point w € A2?7 such that f;(w) < a, for every
lel=1{1,2,...,28}, a contradiction. Therefore, we obtain that f7(x*) = a.. This concludes the proof. O

Propositions 3.11 and 3.14 establish the properties of F' given in Property B in the introduction. Once
these properties are verified, the computation of ., and consequently the infimums of the maximum of the

displacement functions in F and G on A?7, is straightforward. In other words, we have the statements below:

Theorem 3.15 Let F : A?" — R be defined by x — max{f(x) : f € F}, where F is the set of functions listed in
2.3. Then infycpor F(x) = o, = 24.8692..., the unique real root of the polynomial 21x* — 49623 — 65422 +24x+81

greater than 9.

Proof Since x* € A?", we have 8z} +8x3 +8x% +4x% = 1 by Lemma 3.12. We plug z} + x5 + 23 = % —a%/2
into f7(x*) = au in (3.18). Then we find 2% = 1/(1 4+ 3c.). Using a%, we obtain from f;(x*) = a. in (3.15)
that 7 = 3/(3 + a.). Because we have fa(x*) = f5(x*) by Proposition 3.14, using the formulas in (3.16) and
(3.17), we find

(s — 1)

* *: .
277 9102 1 140, — 3
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When we plug all these values into the equation 2z7 + 2z5 + 225 + 25 = % , we see that «, satisfies the equation

212% — 49623 — 65422 + 24x + 81 = 0, which has the roots
ap = —1.1835...; as = —0.3968..., a3 =0.3302..., a4 = 24.8692....

The conclusion of the theorem follows from Lemma 3.1. O

Theorem 3.16 Let G : A?" — R be defined by = — max{f(x): f € G}, where G is the set of functions listed
in 2.3. Then infyepar G(x) = 24.8692....

Proof Since F C G, we have G(x) > F(x) for every x € A?". Note that we obtain the coordinates of x* as
x] = 0.1076..., x5 =z =0.0053..., x7=0.0132...

by Theorem 3.15. Then, for the indices | € {3,4,10,11,17,18,24,25}, we find that ¢;(x*) = 2.4822.... For
the indices 1 € {1,5,9,13,15,17,19,23,27} we have g;(x*) = 1.1131.... Similarly, we compute that h;(x*) =
u(x*) = 0.4028... for [ € {7,14,21,28} and h;(x*) = 0.1111... for | € {1,5,9,13,15,19,23,27}. Because
G(x*) = F(x*), we are done. O

4. Proof of the main theorem

To prove the main theorem of this paper, we shall require two preliminary statements. The first one is the

following:

Lemma 4.1 Let ¢ and 1 be two noncommuting loxodromic isometries of H®. If zy is the midpoint of the

shortest geodesic segment connecting the azes of & and n~'&n, then deze < dpen—122.

Proof Let us denote the A-displacement cylinder for a loxodromic isometry v by Zx(7y). Let A = deza. The
point 2o € Z)(€) is the only point in the set Z)(&) N Zx(n~1€n). Because 1 - 29 # 22 and 7 - 29 is the only
element in Zy(nén=1) N Zy(€), the point 2y cannot be in Zy(nén~!). Hence, the conclusion follows. O

The second statement below is proved using arguments analogous to the ones introduced in [4, Theorem
9.1], [18, Theorem 5.1], and [19, Theorem 4.1]. Therefore, we shall not provide a detailed proof.

Theorem 4.2 Let & and 7 be two noncommuting isometries of H3. If T = (£,m) is a purely lovodromic

free Kleinian group so that I'x = {1} UT1U{&n€ ™1, € g, nén~ Y n~ n, En~ 11 &t~ g, n ™t n™1¢ I},
where Ty = {&,n,n~ 1, &1}, then we have maxyer, {d,z} > 1.6068... for any z € H?.

Proof Assume that T' = (£, n) is geometrically infinite. The conclusion of the theorem follows from Proposition
2.3, Theorem 3.16, and the following inequality:

mz}x{d,yz} > Llog G(m) > ;1og< inf G(x)) = 110g24.8692... = 1.6068...,
~yel's

xEA27 T2
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Assume that ' = (£,n) is geometrically finite. Because I" = (£, n) is torsion-free, each isometry v € T,
has infinite order. This implies that -z # z for every z € H3. Since dist(z,v172 - 2) = dist(y; - 2,72 - 2) and
dist(z,y1 - 2) = dist(z,7; " - 2) for all 41,72 € T = (£,n), we have

dist(z,&né~t - 2) =dist(¢71 - 2,nE7 L - 2) (671 2, te 1t 2) = dist(z, &n~ e - 2),
dist(z,£71ng - 2) = dist(€ - 2, € - 2) (€-z,n - 2) =dist(z, & In71E - 2),
dist(z,nén1 - 2) =dist(n™! - z,&n~1 - 2) =dist(n™! - 2,6 Ip7L - 2) = dist(z,n¢ " In7L - 2),
dist(z,n~Yn - 2) = dist(n - 2,&n - 2) = dist(n - 2,1y - 2) = dist(z,n "1y - 2).

Therefore, all of the hyperbolic displacements under the isometries in I', are realized by the geodesic line
segments joining the points {z} U{y -z : v € ®}, where ® = {&, 7~ 0, & YU {&n~L &n,né,nE~1. We
enumerate the elements of ® for some index set I’ C N such that Py =z and P; =~;-z for i € I’ and ~; € ®.
Let A;; = AP;PyP; represent the geodesic triangle with vertices P;, Py, and P; for i,j € I’ and i # j.

Let X denote the character variety PSL(2,C) x PSL(2,C) ~ Isom™ (H?) x Isom™ (H?) and &F be the set

{(v,B) € X : {v,B) is free, geometrically finite, and without any parabolic}. For a fixed z € H?, let us define
the real-valued function f, : X — R with the formula

fz(fan) = géal?i{diSt(zv l/} ’ Z)}

The function f, is continuous and proper. Therefore, it takes a minimum value at some point (£y,70) in &5 .
The value f,(&o,7n0) is the unique longest side length of one geodesic triangle A;; for some ¢,5 € I’. Let us
denote this geodesic triangle with A and their vertices by ISZ», Py, and ﬁj There are two cases to consider:
(1) A is acute or (2) A is not acute.

Assume that (2) is the case. Then there is a one-step process analogous to the ones described in the

proofs of [18, Theorem 5.1] and [19, Theorem 4.1]. This one-step process is illustrated in Figure 1, proving

Figure 1. Case (2): A is not acute.
that (£,m0) € 6F — &F. If (1) is the case, then there is a two-step process analogous to the ones described in
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Figure 2. Case (1): A is acute.

the proofs of [18, Theorem 5.1] and [19, Theorem 4.1]. This two-step process is illustrated in Figures 2 and 3,
proving again that (£y,70) € 6F — 6.

Figure 3. Case (1): A is acute.

Since the geometrically finite case reduces to the geometrically infinite case by the facts that the set of
(¢,m) such that (&,n) is free, geometrically infinite, and without any parabolic is dense in &F — &F and every
(¢,m) € X with (£,n) that is free and without any parabolic is in &F, the conclusion of the theorem follows
when T' = (£, 7)) is geometrically finite as well. For the details of this crucial final step in the proof, readers may
refer to [4, Propositions 8.2 and 9.3], [3, Main Theorem], and [2]. O

857



YUCE/Turk J Math

Using Lemma 4.1 and Theorem 4.2, we can prove the following statement, the main result of this paper.

Theorem 4.3 Let £ and 7 be two noncommuting isometries of H>. Suppose that T' = (&,n) is a purely
lozodromic free Kleinian group. If d,ze < 1.6068... for every v € ®5 = {n, & €, Ene~1} and dpen—122 <
dpen-121 for the midpoints z; and zy of the shortest geodesic segments joining the axis of & to the azes of

nén~t and n~1&n, respectively, then we have |trace?(€) — 4] + |trace(Ené~1n~1) — 2| > 1.5937....

Proof We shall mostly follow the computations given in the proof of Theorem 5.4.5 in [1, Section 5.4]. Readers
who are interested in further details should refer to this source.

Considering conjugate elements, for u = |u|e?® and ad — bc = 1, we can assume that

f(g 1(/)u> and n(i Z)

Let A and T¢ denote the axis and translation length of &, respectively. Above 6 denotes the angle of rotation

of £ about its axis. Then we have
|trace®(€) — 4| + [trace(éné ™ n ") — 2| = Ju — 1/ul(1 + [be]),

where sinhQ(%Tg) +sin®@ = 1|u — 1/ul?; see [1, Equations (5.4.8) and (5.4.10)]. First, we shall determine a
lower bound for the term 1+ |bc|.

By construction A is the geodesic with end-points 0 and co and B = nA is the geodesic with end-points
10 and noo. Since I' = (£, n) is nonelementary, A and B do not have a common end-point. This implies that
be # 0. Thus, the equation

(1—w)?
be = ——— 4.1
¢ 1o (4.1)
obtained by the cross-ratios [1,—1,w, —w] = [0, 00, b/d, a/c] has two solutions. Let w = exp 2(x + iyo) be one
of the solutions. We may assume that |w| > 1.
Plugging w = exp 2(zo + iyo) in (4.1) we obtain be = sinh?(z¢ + iyo). Then we derive
4lbe|* = |cosh2(xg +iyo) — 1)
= (cosh 2z — cos 2yp)?
> (cosh2z¢ — 1)2 = (cosh® zg + sinh? 2y — 1)? > (cosh® 2y — 1)?,
which gives that 2|bc| > cosh? zy — 1 = sinh® . This implies the following inequality:
1+ |be| > %sinh2 To+1= %cosh2 To + % > %cosh2 Q- (4.2)

Let d..A denote the shortest distance between z and A. Since & and nén~! have the same trace squared, the

same translation length, and consequently the same value of sin® 6, for every z € H®, we obtain

sinh® 1d¢z = sinh®(37%) cosh® d..A + sin?  sinh® d, A < (sinh®(3T%) + sin® 0) cosh® d, A, (4.3)

sinh? tdpen-12 = Sinh2(%T§) cosh? d.B + sin? f sinh® d.B < (sinhQ(%Tg) + sin” §) cosh? d_BB. (4.4)
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Then, by using the inequalities in (4.3) and (4.4) and the fact that sinh? z and cosh? z are increasing for 2 > 0,
for every z € H3, we derive that

sinh? 1 max{d¢z, d,e,-12} < 1w — 1/u’2 cosh? max{d. A, d.B}. (4.5)

At this point, we consider the Mébius transformation @ taking 0, oo, £0, foo to 1, —1, w, —w. Then we
have

dB = dya1hB = log|w| = 2,

where d4B denotes the shortest distance between A and B. Since we have d., A = d. B = zo and d¢z1 =

dyen-121, by the inequalities in (4.2) and (4.5), we derive that

sinh® 3dez; < 3w — 1/u|2 cosh? d,, A < 3w — 1/u’2(1 + |be|). (4.6)

Now, assume on the contrary that [trace?(£) — 4| + |trace(éné~tn~!) — 2| < 1.5937.... Because we have
dpen-122 < dypep-121 = dez and dyzy < 1.6068... for every v € {n,&n&~*,& ¢} by the hypothesis, we

get dyzo < 1.6068... for every v € I' by the inequality in (4.6) and Lemma 4.1. This contradicts with Theorem
4.2. O

Notice that all of the computations given in this paper to prove Theorems 4.2 and 4.3 can be repeated
also for a finitely generated purely loxodromic free Kleinian group T' = (£;,&s,...,&,) satisfying a hypothesis
similar to the one in Theorem 4.3. An analog of the decomposition I'p defined in (1.3) is required. For a fixed
n > 2, let

U ={e, & i=1,.,n}U{&EE i £ G# K G k=1,...,n}

and '} = ¥ = ZUE"!, where Z = {§ :i=1,...,n} and =71 = {5;1 :i=1,...,n}. When the group

['=(&,&,...,&,) is geometrically infinite, the following is the relevant decomposition:

r={1yuvru (J Ju (4.7)
Ppewn

Let us name this decomposition I'p . The rest follows again from the Culler—Shalen machinery introduced in

[4] and the solution method for the optimization problems described in this text and [18, 19]. Consider the

subset of isometries
7 =Tru{&&e " iidg, i,5=1,2,...,n} (4.8)

of U U U™, We first prove an analog of Theorem 2.2 for I'p . We list all of the group-theoretical relations as
in Lemma 2.1 for the isometries in I'?. By Lemma 1.6 and the group-theoretical relations, we state analog of
Proposition 2.3 to list all of the displacement functions G" = {f;} for the indices | = 1,2,...,2n(8n% —10n+3)
for the isometries in I'?.

These displacement functions satisfy generalized versions of Properties A and B for the decomposition
I'p: . In other words, we can prove statements similar to Propositions 3.11 and 3.14. With a suitable enumeration

of the isometries in I'} as in (1.2), an analog of Proposition 3.11 for I'p: implies that it is enough to compare
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the values
120 = (o} + (1 = o3 + (0= D23) a3 yyguner 1=af _
2(n—1)(27 + (n — s + (n— 1)z3) + T(n—1)(2n—1)+1 31 h

—(4n? —4n - D) (2} + (n — Das + (n — 1)a3) — 205, 1) 2n-1)+1 1w -
(An? —4dn — D)(zt + (n — Db + (n — D)af) + 20T, 1y(2n—1)+1 zy =

1—(4n? —4n — 1) (a7 + (n— 1)as + (n — 1)z}) — 2035, 1y on-1)+1 1 — “a
(4n? —4dn — 1)(21 + (n — D)a5 + (n — 1)z3) + 20T (1) (2n-1)41 3 v

1= (2n=1)2n -1 + (n— 125 + (n — 1)a3) + 25, _1)2n-1)+1) . L= a5, 1) @n—1)+1 -
(2n = 1)2(n - 1)(2] + (n = Dz + (n — 1)25) + 25, _1)20-1)11) Tymn-1)(2n-1)41 h

of four functions, where «, is the infimum of the maximum of the displacement functions in G"™ on the simplex
A1’ Using an analog of Proposition 3.14 for I'p, and the computations given in Theorems 3.15 and 3.16,

we can prove the following generalization of Theorem 4.2:

Conjecture 4.4 Let = = {&,&,...,&,} be a set of noncommuting isometries of H3 for n > 2 and =Z7! =
{7065t 61, Suppose that T = (&1,&2,...,&,) s a purely lozodromic free Kleinian group. Let T =
EUZ"! and T7? be as in (4.8). Then we have

max dz > > 1 5 logay,
YET

for every z € H3. Above av, is the only real Toot of the polynomial p,(x) greater than (2n — 1)%, where

po(z) = (8n® —12n% +2n + 1) 2* + (—64n° + 19205 — 192n* + 64n> + 4n? + 2n — 4)2> +
(—96n° + 224n* — 168n> + 52n% — 18n + 6) x2 +
(32n° — 112n* 4 1280 — 68n2 + 22n — 4) o + 16n* — 32n> 4 24n? — 8n + 1.
The proof of Conjecture 4.4 goes along the same lines as the proof of Theorem 4.2 when T' = (£1,&3...,&,) is

geometrically finite. This conjecture and arguments analogous to the ones presented in the proof of Theorem

4.2 imply the following generalization of Theorem 4.3:

Conjecture 4.5 Let T' = (£,&,...,&,) and «, be as described in Conjecture j.4. Assume that there
exists an isometry & for i # 1 so that d£i§1§¢122 < d&_&g‘_lzl and dyzy < %logan for every isometry
v € @ = I = {66610 66 GG GETTET), where 1 and zp are the midpoints of the
shortest geodesic segments connecting the axis of & to the azes of fiflffl and 5;151@, respectively. Then we

have
|trace?(&1) — 4| + |trace(&16:67 1Y) — 2| > 2sinh? (flogay) .

The details of the outlines of the proofs of Conjectures 4.4 and 4.5 given above will be left to future studies.
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