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Abstract: We consider the positivity of the sum
∑n

i=1 ρi𝟋(ξi) , where 𝟋 is a convex function of higher order, as

well as analogous results involving the integral
∫ b0
a0

ρ(ξ)𝟋(g(ξ))dξ . We use a representation of the function 𝟋 via the

Fink identity and the Green function that leads us to identities from which we obtain conditions for positivity of the
above-mentioned sum and integral. We also obtain bounds for the integral remainders which occur in these identities,
as well as corresponding mean value results.
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1. Introduction
We start this section with some basic definitions and properties regarding n -convex functions, the main object
of our study.

Definition 1.1 The nth order divided difference of a function 𝟋 : I → R at distinct points ξi, ξi+1, . . . , ξi+n ∈
I = [a0, b0] ⊂ R for some i ∈ N is defined recursively by:

[ξj ,𝟋] = 𝟋 (ξj) , j ∈ {i, . . . , i+ n},

[ξi, . . . , ξi+n,𝟋] = [ξi+1,...,ξi+n,𝟋]−[ξi,...,ξi+n−1,𝟋]
ξi+n−ξi

.

The value [ξi, . . . , ξi+n,𝟋] is independent of the order of the points ξi, ξi+1, . . . , ξi+n . We can extend this
definition by including the cases in which two or more points coincide by taking respective limits.

Definition 1.2 A function 𝟋 : I → R is called convex of order n or n−convex if for all choices of (n + 1)

distinct points ξi, . . . , ξi+n we have [ξi, . . . , ξi+n,𝟋] ≥ 0 .

If the nth order derivative 𝟋(n) exists, then 𝟋 is n -convex if and only if 𝟋(n) ≥ 0 . For 1 ≤ k ≤ n − 2 , a
function 𝟋 is n -convex if and only if 𝟋(k) exists and is (n− k) -convex.
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We will also need the Fink identity given in [1].

Proposition 1.3 Let a0, b0 ∈ R , 𝟋 : [a0, b0] → R , n ≥ 1 and 𝟋(n−1) be absolutely continuous on [a0, b0] .
Then

𝟋 (ξ) =
n

b0 − a0

∫ b0

a0

𝟋 (t) dt

−
n−1∑
k=1

n− k

k!

(
𝟋(k−1) (a0) (ξ − a0)

k −𝟋(k−1) (b0) (ξ − b0)
k

b0 − a0

)

+
1

(n− 1)! (b0 − a0)

∫ b0

a0

(ξ − t)
n−1

k[a0,b0] (t, ξ)𝟋(n) (t) dt, (1.1)

where

k[a0,b0] (t, ξ) =

{
t− a0, a0 ≤ t ≤ ξ ≤ b0,
t− b0, a0 ≤ ξ < t ≤ b0.

(1.2)

Pečarić in [5] proved the following result (see also [6, p. 262]):

Proposition 1.4 The inequality
m∑
i=1

ρi𝟋(ξi) ≥ 0 (1.3)

holds for all convex functions 𝟋 if and only if the m− tuples ξ = (ξ1, . . . , ξm), p = (ρ1, . . . , ρm) ∈ Rm satisfy

m∑
i=1

ρi = 0 and
m∑
i=1

ρi|ξi − ξk| ≥ 0 for k ∈ {1, . . . ,m}. (1.4)

Since
m∑
i=1

ρi|ξi − ξk| = 2

m∑
i=1

ρi(ξi − ξk)+ −
m∑
i=1

ρi(ξi − ξk),

where y+ = max(y, 0) , it is easy to see that condition (1.4) is equivalent to

m∑
i=1

ρi = 0,

m∑
i=1

ρiξi = 0 and
m∑
i=1

ρi(ξi − ξk)+ ≥ 0 for k ∈ {1, . . . ,m− 1}. (1.5)

The following result is due to Popoviciu [7, 8] (also see [6, 9]).

Proposition 1.5 Let n ≥ 2 . Inequality (1.3) holds for all n-convex functions 𝟋 : [a0, b0] → R if and only if
the m− tuples ξ ∈ [a0, b0]

m , p ∈ Rm satisfy
m∑
i=1

ρiξ
k
i = 0, for all k ∈ {0, 1, . . . , n− 1}, (1.6)

m∑
i=1

ρi(ξi − t)n−1
+ ≥ 0, for every t ∈ [a0, b0]. (1.7)
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In fact, Popoviciu proved a stronger result; it is enough to assume that (1.7) holds for every t ∈
[ξ(1), ξ(m−n+1)] and then, due to (1.6), it is automatically satisfied for every t ∈ [a0, b0] . The integral analogue
is given in the next proposition.

Proposition 1.6 Let n ≥ 2 , ρ : [α0, β0] → R and g : [α0, β0] → [a0, b0] . Then, the inequality

∫ β0

α0

ρ(ξ)𝟋(g(ξ)) dξ ≥ 0 (1.8)

holds for all n-convex functions 𝟋 : [a0, b0] → R if and only if

∫ β0

α0

ρ(ξ)g(ξ)k dξ = 0, for all k ∈ {0, 1, . . . , n− 1},

∫ β0

α0

ρ(ξ) (g(ξ)− t)
n−1
+ dξ ≥ 0, for every t ∈ [a0, b0].

(1.9)

The paper is organized as follows: in Sections 2 and 3, we derive identities for
∑n

i=1 ρi𝟋(ξi) and∫ b0
a0

ρ(ξ)𝟋(g(ξ))dξ using the Fink identity and the Green function. We also give inequalities for n -convex
functions which are based on these identities. Section 4 is devoted to estimations of the integral remainders of
the identities by using Čebyšev type inequality and the Hölder inequality. In the last section, we give mean
value results for functionals associated to the identities. Here, it is worth mentioning that the contents of this
work are part of a monograph [3].

2. Popoviciu-type identities and inequalities via Fink identity

Here, we state our first main result:

Theorem 2.1 Let n ∈ N and 𝟋 : [a0, b0] → R be such that 𝟋(n−1) is absolutely continuous. Let ξi ∈ [a0, b0] ,
ρi ∈ R (i ∈ {1, . . . ,m}) be reals such that

∑m
i=0 ρi = 0 and let k[a0,b0] be the function defined in (1.2) . Then

we have

m∑
i=1

ρi𝟋 (ξi) = (2.1)

n−1∑
k=1

n− k

k! (b0 − a0)

(
𝟋(k−1) (b0)

m∑
i=1

ρi (ξi − b0)
k −𝟋(k−1) (a0)

m∑
i=1

ρi (ξi − a0)
k

)

+
1

(n− 1)! (b0 − a0)

∫ b0

a0

𝟋(n) (t)

(
m∑
i=1

ρi (ξi − t)
n−1

k[a0,b0] (t, ξi)

)
dt.
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Proof By using the Fink identity (1.1) for ξ = ξi , multiplying it with ρi and taking the sum over i from 1

to m , we have

m∑
i=1

ρi𝟋 (ξi) =
n

b0 − a0

∫ b0

a0

𝟋 (t) dt

m∑
i=0

ρi

+

m∑
i=1

ρi

n−1∑
k=1

n− k

k!

𝟋(k−1) (b0) (ξi − b0)
k −𝟋(k−1) (a0) (ξi − a0)

k

b0 − a0

+

m∑
i=1

ρi

∫ b0
a0

𝟋(n) (t) (ξi − t)
n−1

k[a0,b0] (t, ξi) dt

(n− 1)! (b0 − a0)
.

After some rearrangement, we get our required result. 2

The following theorem is the integral version of Theorem 2.1.

Theorem 2.2 Let n ∈ N and 𝟋 : [a0, b0] → R be such that 𝟋(n−1) is absolutely continuous on [a0, b0] and
let k[a0,b0] (t, ξ) be the same as defined in (1.2) . Let g : [α0, β0] → [a0, b0] and ρ : [α0, β0] → R be integrable

functions such that
∫ β0

α0
ρ(ξ)dξ = 0 . Then we have

∫ β0

α0

ρ (ξ)𝟋 (g (ξ)) dξ =

n−1∑
k=1

n− k

k! (b0 − a0)

×

(
𝟋(k−1) (b0)

∫ β0

α0

ρ (ξ) (g (ξ)− b0)
k
dξ −𝟋(k−1) (a0)

∫ β0

α0

ρ (ξ) (g (ξ)− a0)
k
dξ

)

+
1

(n− 1)! (b0 − a0)

∫ b0

a0

𝟋(n) (t)
( ∫ β0

α0
ρ (ξ) (g (ξ)− t)

n−1
k[a0,b0] (t, g (ξ)) dξ

)
dt.

Proof Putting ξ → g(ξ) in (1.1) , multiplying it by ρ(ξ) and integrating with respect to ξ , we get an identity
from which, after using the Fubini theorem, we obtain the desired identity. 2

Let us now introduce some notations which will be used in the rest of the paper:

Ω
[a0,b0]
1 (m, ξ,p, t) =

m∑
i=1

ρi (ξi − t)
n−1

k[a0,b0] (t, ξi) , (2.2)

Ω
[a0,b0]
2 ([α0, β0], g, ρ, t) =

∫ β0

α0

ρ (ξ) (g (ξ)− t)
n−1

k[a0,b0] (t, g (ξ)) dξ. (2.3)

A
[a0,b0]
1 (m, ξ,p,𝟋) =

m∑
i=1

ρi𝟋 (ξi)

−
n−1∑
k=1

n− k

k! (b0 − a0)

(
𝟋(k−1) (b0)

m∑
i=1

ρi (ξi − b0)
k −𝟋(k−1) (a0)

m∑
i=1

ρi (ξi − a0)
k

)
(2.4)
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A
[a0,b0]
2 ([α0, β0], g, ρ,𝟋) =

∫ β0

α0

ρ (ξ)𝟋 (g (ξ)) dξ −
n−1∑
k=1

n− k

k! (b0 − a0)

×

(
𝟋(k−1) (b0)

∫ β0

α0

ρ (ξ) (g (ξ)− b0)
k
dξ −𝟋(k−1) (a0)

∫ β0

α0

ρ (ξ) (g (ξ)− a0)
k
dξ

)
(2.5)

The following theorem is our second main result.

Theorem 2.3 Let all the assumptions of Theorem 2.1 be satisfied and let

Ω
[a0,b0]
1 (m, ξ,p, t) ≥ 0, for all t ∈ [a0, b0]. (2.6)

If 𝟋 is n-convex, then we have

A
[a0,b0]
1 (m, ξ,p,𝟋) ≥ 0 (2.7)

If the opposite inequality holds in (2.6) , then (2.7) holds in the reverse direction.

Proof Since 𝟋(n−1) is absolutely continuous on [a0, b0] , 𝟋(n) exists almost everywhere. As 𝟋 is n -convex,
by definition of n -convex functions, we have 𝟋(n) (ξ) ≥ 0 for all ξ ∈ [a0, b0] . Now by using 𝟋(n) ≥ 0 and (2.6)

in (2.1) , we have (2.7) . 2

Now we state an important consequence.

Theorem 2.4 Suppose that all the assumptions from Theorem 2.1 hold. Additionally, let j ∈ N , 2 ≤ j ≤ n

and let ξ = (ξ1, . . . , ξm) ∈ [a0, b0]
m , p = (ρ1, . . . , ρm) ∈ Rm satisfy (1.6) and (1.7) with n replaced with j . If

𝟋 is n-convex and n− j is even, then

m∑
i=1

ρi𝟋 (ξi) ≥
n−1∑
k=j

n− k

k! (b0 − a0)

(
𝟋(k−1) (b0)

(
m∑
i=1

ρi (ξi − b0)
k

)
−𝟋(k−1) (a0)

(
m∑
i=1

ρi (ξi − a0)
k

))
. (2.8)

Proof Let t ∈ [a0, b0] be fixed. For j ≤ n− 2 , we get

dj

dξj
(ξ − t)n−1 = (n− 1)(n− 2) · · · (n− j)(ξ − t)n−j−1. (2.9)

Therefore, (2.9) for a0 ≤ t ≤ ξ ≤ b0 yields

(t− a0)
dj

dξj
(ξ − t)n−1 ≥ 0, (2.10)

while for a0 ≤ ξ < t ≤ b0 , we have

(−1)n−j(t− b0)
dj

dξj
(ξ − t)n−1 ≥ 0. (2.11)

It is clear that ξ 7→ dj

dξj (ξ− t)n−1k[a0,b0](t, ξ) is continuous for j ≤ n− 2 . Hence, if j ≤ n− 2 and n− j is even,

from (2.10) and (2.11), we can conclude that the function ξ 7→ (ξ − t)n−1k[a0,b0](t, ξ) is j -convex. Moreover,
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the conclusion extends to the case j = n , i. e. the mapping ξ 7→ (ξ − t)n−1k[a0,b0](t, ξ) is n -convex, since the

mapping ξ 7→ dn−2

dξn−2 (ξ − t)n−1k[a0,b0](t, ξ) is 2 -convex.

Using Proposition 1.5 for j -convex function ξ 7→ (ξ− t)n−1k[a0,b0](t, ξ) with assumptions (1.6) and (1.7)
where n is replaced with j , we get

∑m
i=1 ρi(ξi − t)n−1k[a0,b0](t, ξ) ≥ 0 . It means that (2.6) is satisfied and by

Theorem 2.3, inequality (2.7) holds. Moreover, due to assumption (1.6),
∑m

i=1 ρiP (ξi) = 0 for every polynomial
P of degree ≤ j − 1 , so the first j − 2 terms in the inner sum in (2.4) vanish, i.e. we get inequality (2.8). 2

When j = n in (2.8), the notation means that the inner sum is void, i.e.
∑n−1

k=n · · · = 0 . In particular,
inequality (2.8) with j = n is inequality (1.3).

Corollary 2.5 Let all the assumptions of Theorem 2.1 be satisfied and let the function 𝟋 : [a0, b0] → R be
n-convex for an even n . Let m− tuples ξ = (ξ1, . . . , ξm), p = (ρ1, . . . , ρm) ∈ Rm satisfy the conditions stated
in (1.4) . Then inequality (2.7) holds.

Furthermore, if 𝟋(k−1) (a0) ≤ 0 and (−1)k𝟋(k−1) (b0) ≥ 0 for k ∈ {2, 3, . . . , n− 1} , then

m∑
i=1

ρi𝟋 (ξi) ≥ 0. (2.12)

Proof Inequality (2.7) holds by Theorem 2.4 applied for j = 2 . Moreover, the functions ξ 7→ (ξ − a0)
k and

ξ 7→ (−1)k (ξ − b0)
k are convex, so Proposition 1.4 yields

m∑
i=1

ρi (ξ − a0)
k ≥ 0 (2.13)

and

(−1)k
m∑
i=1

ρi (ξ − b0)
k ≥ 0. (2.14)

Therefore, if 𝟋(k−1) (a0) ≤ 0 and (−1)k𝟋(k−1) (b0) ≥ 0 , then (2.13) and (2.14) together with (2.4) yield
inequality (2.12). 2

Corollary 2.6 Suppose all the assumptions from Theorem 2.1 hold and let the function 𝟋 : [a0, b0] → R be
n-convex. Additionally, let j ∈ N , 2 ≤ j ≤ n , let ξ = (ξ1, . . . , ξm) ∈ [a0, b0]

m , p = (ρ1, . . . , ρm) ∈ Rm satisfy
(1.6) and (1.7) with n replaced with j and denote

H(ξ) =

n−1∑
k=j

n− k

k!(b0 − a0)

(
𝟋(k−1) (b0) (ξ − b0)

k −𝟋(k−1) (a0) (ξ − a0)
k
)
. (2.15)

If H is j -convex on [a0, b0] and n− j is even, then

m∑
i=1

ρi𝟋(ξi) ≥ 0.
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Proof Applying Proposition 1.5, we conclude that
∑m

i=1 ρiH(ξi) ≥ 0 , so the right hand side of inequality
(2.8) is nonnegative and we get the desired result. 2

Remark 2.7 For example, since the functions ξ 7→ (ξ − a0)
k and ξ 7→ (−1)k−j(ξ − b0)

k are j -convex on
[a0, b0] , the function H given by (2.15) is j -convex if 𝟋(k−1)(a0) ≤ 0 and (−1)k−1−j𝟋(k−1)(b0) ≥ 0 for
k ∈ {j, . . . , n− 1} .

As we already mentioned, the inequality in Theorem 2.4 and Corollary 2.6 with j = n is the same as inequality
(1.3) from Popoviciu’s Proposition 1.5. Of course, in the proof of Theorem 2.4, we used Proposition 1.5 to
prove that assumption (2.6) holds, so, due to circularity, we did not obtain another proof of Popoviciu’s result.
However, it is possible, as we will show in the next lemma, to prove directly that conditions (1.6) and (1.7)
imply (2.6), i.e. it is possible to prove Theorem 2.4 with j = n independently of Proposition 1.5 and thus
provide a new proof of Popoviciu’s result.

Lemma 2.8 Let n ≥ 2 and let m− tuples ξ ∈ [a0, b0]
m and p ∈ Rm satisfy (1.6) and (1.7) . Then (2.6) holds.

Proof Let t ∈ [a0, b0] be fixed. Notice that

Ω
[a0,b0]
1 (m, ξ,p, t) =

m∑
i=1

ρiφt(ξi),

where φt is the function

φt(ξ) = (ξ − t)n−1k[a0,b0](t, ξ) = (t− b0)(ξ − t)n−1 + (b0 − a0)(ξ − t)n−1
+ .

As in the proof of Theorem 2.4 we conclude that (1.6) implies that
∑m

i=1 ρiP (ξi) = 0 for every polynomial P

of degree ≤ n− 1 . In particular, for P (ξ) = (ξ − t)n−1 , we have
∑m

i=1 ρi(ξi − t)n−1 = 0. Therefore,

m∑
i=1

ρiφt(ξi) = (b0 − a0)

m∑
i=1

ρi(ξi − t)n−1
+ ≥ 0,

where the last inequalities hold due to (1.7). Since the previous inequality holds for every t ∈ [a0, b0] , we
conclude that (2.6) holds. 2

Lemma 2.8 together with Theorem 2.3 gives the “if” part of Popoviciu’s Proposition 1.5. On the other hand,
the “only if” part is straightforward: since the functions ej(ξ) = ξj are both n -convex and n -concave for
j ∈ {0, 1, . . . , n− 1} , inequality (1.3) yields that

∑m
i=1 ρiek(ξi) is both ≥ 0 and ≤ 0 , so (1.6) holds. Similarly,

the function ξ 7→ (ξ − t)n−1
+ is n -convex and applying inequality (1.3) yields (1.7).

In the remainder of the section, we will state integral versions of the previous results, the proofs of which
are analogous to the discrete case.

Theorem 2.9 Let all the assumptions of Theorem 2.2 be satisfied and

Ω
[a0,b0]
2 ([α0, β0], g, ρ, t) ≥ 0, for all t ∈ [a0, b0]. (2.16)
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If 𝟋 is n-convex, then we have

A
[a0,b0]
2 ([α0, β0], g, ρ,𝟋) ≥ 0. (2.17)

If opposite inequality holds in (2.16) , then (2.17) holds in the reverse direction.

Proof The idea of the proof is the same as that of Theorem 2.3. 2

Remark 2.10 A result analogous to Corollary 2.5 can be stated for integrals.

Theorem 2.11 Suppose all the assumptions from Theorem 2.2 hold. Additionally, let j ∈ N , 2 ≤ j ≤ n and
let ρ : [α0, β0] → R and g : [α0, β0] → [a0, b0] satisfy (1.9) with n replaced with j . If 𝟋 is n-convex and n− j

is even, then

∫ β0

α0

ρ (ξ)𝟋(g(ξ)) dξ

≥ 1

b0 − a0

n−1∑
k=j

n− k

k!
𝟋(k−1) (b0)

∫ β0

α0

ρ (ξ) (g(ξ)− b0)
k+2

dξ

−
n−1∑
k=j

n− k

k!
𝟋(k−1) (a0)

∫ β0

α0

ρ (ξ) (g(ξ)− a0)
k
dξ

 .

Corollary 2.12 Let j, n, f, p , and g be as in Theorem 2.11 and let H be given by (2.15) . If H is j -convex,
n− j is even, and 𝟋 is n-convex, then ∫ β0

α0

ρ(ξ)𝟋(g(ξ)) dξ ≥ 0.

3. Popoviciu-type identities and inequalities via the Fink identity and the Green function
In this section, we will obtain another identity and the corresponding linear inequality by using the Green
function and applying again the Fink identity.

The function G : [a0, b0]× [a0, b0] → R defined by

G(s, t) =

{
(s−b0)(t−a0)

b0−a0
for a0 ≤ t ≤ s,

(t−b0)(s−a0)
b0−a0

for s ≤ t ≤ b0
(3.1)

is the Green function of the boundary value problem

z′′(ξ) = 0, z(a0) = z(b0) = 0.

The function G is continuous, symmetric, and convex with respect to both variables s and t .
For any function 𝟋 : [a0, b0] → R , 𝟋 ∈ C2[a0, b0] , the following integral identity holds

𝟋(ξ) =
b0 − ξ

b0 − a0
𝟋(a0) +

ξ − a0
b0 − a0

𝟋(b0) +

∫ b0

a0

G(ξ, s)𝟋′′(s)ds. (3.2)

We now state main results related to the Fink identity and the Green function.
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Theorem 3.1 Let n ∈ N , n ≥ 3 , and 𝟋 : [a0, b0] → R be such that 𝟋(n−1) is absolutely continuous. Let
ξi, yi ∈ [a0, b0] , ρi ∈ R for i ∈ {1, . . . ,m} be such that

∑m
i=1 ρi = 0 and

∑m
i=1 ρiξi = 0 and let k[a0,b0] and G

be as defined in (1.2) and (3.1) , respectively. Then

m∑
i=1

ρi𝟋 (ξi) =

n−3∑
k=0

(
n− k − 2

k! (b0 − a0)

)∫ b0

a0

(
m∑
i=1

ρiG (ξi, s)

)

×
(
𝟋(k+1) (b0) (s− b0)

k −𝟋(k+1) (a0) (s− a0)
k
)
ds+

1

(n− 3)! (b0 − a0)

×
∫ b0

a0

𝟋(n) (t)

(∫ b0

a0

m∑
i=1

ρiG (ξi, s) (s− t)
n−3

k[a0,b0] (t, s) ds

)
dt.

(3.3)

Proof Putting ξ = ξi in (3.2) , multiplying it with ρi , adding all the identities and using the properties∑m
i=1 ρi = 0 and

∑m
i=1 ρiξi = 0 , we get

m∑
i=1

ρi𝟋 (ξi) =

∫ b0

a0

(
m∑
i=1

ρiG (ξi, s)

)
𝟋′′ (s) ds. (3.4)

Applying the Fink identity with 𝟋 → 𝟋′′ and n → n− 2 , it is easy to see that

𝟋′′ (ξ) =

n−3∑
k=0

n− k − 2

k!

𝟋(k+1) (b0) (ξ − b0)
k −𝟋(k+1) (a0) (ξ − a0)

k

b0 − a0

+
1

(n− 3)! (b0 − a0)

∫ b0

a0

(ξ − t)
n−3

k[a0,b0] (t, ξ)𝟋(n) (t) dt, (3.5)

and by using (3.5) in (3.4) , we have

m∑
i=1

ρi𝟋 (ξi) =

∫ b0

a0

(
m∑
i=1

ρiG (ξi, s)

)

×
n−3∑
k=0

n− k − 2

k!

𝟋(k+1) (b0) (s− b0)
k −𝟋(k+1) (a0) (s− a0)

k

b0 − a0
ds

+
1

(n− 3)! (b0 − a0)

∫ b0

a0

m∑
i=1

ρiG (ξi, s)

(∫ b0

a0

(s− t)
n−3

k[a0,b0] (t, s)𝟋(n) (t) dt

)
ds.

Now, by interchanging the integral and summation in the second term and by applying Fubini’s theorem in the
last term, we have (3.3) . 2

The following theorem is the integral version of Theorem 3.1.

Theorem 3.2 Let n ∈ N , n ≥ 3 , let 𝟋 : [a0, b0] → R be such that 𝟋(n−1) is absolutely continuous on

[a0, b0] , let ρ : [α0, β0] → R and g : [α0, β0] → [a0, b0] be integrable functions such that
∫ β0

α0
ρ(ξ)dξ = 0 and
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∫ β0

α0
ρ(ξ)g(ξ)dξ = 0 and let k[a0,b0] and G be as defined in (1.2) and (3.1) , respectively. Then

∫ β0

α0

ρ (ξ)𝟋 (g (ξ)) dξ =

n−3∑
k=0

n− k − 2

k! (b0 − a0)

∫ b0

a0

(∫ β0

α0

ρ (ξ)G (g (ξ) , s) dξ

)
(
𝟋(k+1) (b0) (s− b0)

k −𝟋(k+1) (a0) (s− a0)
k
)
ds+

1

(n− 3)! (b0 − a0)

×
∫ b0

a0

𝟋(n) (t)

(∫ b0

a0

(∫ β0

α0

ρ (ξ)G (g (ξ) , s) dξ

)
(s− t)

n−3
k[a0,b0] (t, s) ds

)
dt.

(3.6)

Proof The proof is similar to the proof of the previous theorem, so we omit the details. 2

We again introduce some notations here which will be used in the rest of the paper:

Ω
[a0,b0]
3 (m, ξ,p, t) =

∫ b0

a0

m∑
i=1

ρiG (ξi, s) (s− t)
n−3

k[a0,b0] (t, s) ds, (3.7)

Ω
[a0,b0]
4 ([α0, β0], g, ρ, t) =

∫ b0

a0

(∫ β0

α0

ρ (ξ)G (g (ξ) , s) dξ

)
(s− t)

n−3
k[a0,b0] (t, s) ds.

A
[a0,b0]
3 (m, ξ,p,𝟋) =

m∑
i=1

ρi𝟋 (ξi)−
n−3∑
k=0

(
n− k − 2

k! (b0 − a0)

)∫ b0

a0

m∑
i=1

ρiG (ξi, s)

×
(
𝟋(k+1) (b0) (s− b0)

k −𝟋(k+1) (a0) (s− a0)
k
)
ds (3.8)

A
[a0,b0]
4 ([α0, β0], g, ρ,𝟋) =

∫ β0

α0

ρ (ξ)𝟋 (g (ξ)) dξ

−
n−3∑
k=0

(
n− k − 2

k! (b0 − a0)

)∫ b0

a0

(∫ β0

α0

ρ (ξ)G (g (ξ) , s) dξ

)

×
(
𝟋(k+1) (b0) (s− b0)

k −𝟋(k+1) (a0) (s− a0)
k
)
ds.

The following theorem is our second main result of this section:

Theorem 3.3 Let all the assumptions of Theorem 3.1 be satisfied and let

Ω
[a0,b0]
3 (m, ξ,p, t) ≥ 0, for all t ∈ [a0, b0]. (3.9)

If 𝟋 is n-convex, then we have

A
[a0,b0]
3 (m, ξ,p,𝟋) ≥ 0. (3.10)

If opposite inequality holds in (3.9) , then (3.10) holds in the reverse direction.
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Proof Since 𝟋(n−1) is absolutely continuous on [a0, b0] , 𝟋(n) exists almost everywhere. Since 𝟋 is n -convex,
we have 𝟋(n) (ξ) ≥ 0 for all ξ ∈ [a0, b0] . Now, by using 𝟋(n) ≥ 0 and (3.9) in (3.3) , we have (3.10) . 2

Corollary 3.4 Let all the assumptions of Theorem 3.1 be satisfied. In addition, let n be even and

m∑
i=1

ρi(ξi − ξk)+ ≥ 0 for k ∈ {1, . . . ,m}.

If the function 𝟋 : [a0, b0] → R is n-convex, then inequality (3.10) is satisfied, i.e.

m∑
i=1

ρi𝟋 (ξi) ≥
n−3∑
k=0

n− k − 2

k! (b0 − a0)

∫ b0

a0

m∑
i=1

ρiG (ξi, s)

×
(
𝟋(k+1) (b0) (s− b0)

k −𝟋(k+1) (a0) (s− a0)
k
)
ds. (3.11)

Furthermore, if 𝟋(k+1) (a0) ≤ 0 and (−1)k𝟋(k+1) (b0) ≥ 0 for k ∈ {0, 1, . . . , n− 3} , then
∑m

i=1 ρi𝟋(ξi) ≥ 0 .

Proof Since ξ and p are real m -tuples that satisfy assumption (1.5) and the function ξ 7→ G (ξ, s) is convex,
applying inequality (1.3) yields

m∑
i=1

ρiG (ξi, s) ≥ 0. (3.12)

It is easy to see that the assumptions of the corollary for even n imply

(s− t)n−3k[a0,b0](t, s) ≥ 0

for all s, t ∈ [a0, b0] . Therefore, ∫ t

a0

m∑
i=1

ρiG (ξi, s) (s− t)
n−3

k[a0,b0] (t, s) ds ≥ 0 (3.13)

and applying Theorem 3.3 when 𝟋 is n -convex gives inequality (3.11) .

Moreover, if 𝟋(k+1) (a0) ≤ 0 and (−1)k𝟋(k+1) (b0) ≥ 0 , then

𝟋(k+1) (b0) (s− b0)
k −𝟋(k+1) (a0) (s− a0)

k ≥ 0, (3.14)

so from inequalities (3.11), (3.12), and (3.14), we obtain
∑m

i=1 ρi𝟋(ξi) ≥ 0 . 2

An integral version of our second main result states that:

Theorem 3.5 Let all the assumptions of Theorem 3.2 be satisfied and let

Ω
[a0,b0]
4 ([α0, β0], g, ρ, t) ≥ 0, for all t ∈ [a0, b0]. (3.15)

If 𝟋 is n-convex, then we have

A
[a0,b0]
4 ([α0, β0], g, ρ,𝟋) ≥ 0. (3.16)

If opposite inequality holds in (3.15) , then (3.16) holds in the reverse direction.
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Proof The idea of the proof is the same as that of the proof of Theorem 2.3. By using 𝟋(n) ≥ 0 and (3.15)

in (3.6) , we have (3.16) . 2

Corollary 3.6 Let all the assumptions of Theorem 3.2 be satisfied. In addition, let n be even and∫ β0

α0

ρ(ξ) (g(ξ)− t)
n−1
+ dξ ≥ 0, for every t ∈ [a0, b0].

If the function 𝟋 : [a0, b0] → R is n-convex, then we have

∫ β0

α0

ρ (ξ)𝟋 (g (ξ)) dξ ≥
n−3∑
k=0

n− k − 2

k! (b0 − a0)

∫ b0

a0

(∫ β0

α0

ρ (ξ)G (g (ξ) , s) dξ

)

×
(
𝟋(k+1) (b0) (s− b0)

k −𝟋(k+1) (a0) (s− a0)
k
)
ds. (3.17)

Furthermore, if 𝟋(k+1) (a0) ≤ 0 and (−1)k𝟋(k+1) (b0) ≥ 0 for k ∈ {0, 1, . . . , n− 3} , then the right-hand side of
(3.17) is nonnegative.

Proof The proof is analogous to the proof of Corollary 3.4 but instead of Theorem 3.3 , we apply Theorem
3.5 . 2

4. Bounds for identities and integral remainders

In this section, we give several estimations related to the functionals A
[·,·]
k (·, ·, ·,𝟋) , for k ∈ {1, 2, 3, 4} .

For the sake of brevity, in the present and the next sections, we use notations Ak(𝟋) := A
[·,·]
k (·, ·, ·,𝟋) and

Ωk(t) := Ω
[·,·]
k (·, ·, ·, t) for k ∈ {1, 2, 3, 4} . We use the well-known Hölder’s inequality and bound for the Čebyšev

functional T (𝟋, h) . This bound is given in the following proposition in which the pre-Grüss inequality is given
[4].

Proposition 4.1 Let 𝟋, h : [a0, b0] → R be two integrable functions such that 𝟋h is also integrable. If

γ ≤ h(ξ) ≤ Γ for ξ ∈ [a0, b0],

then

|T (𝟋, h)| ≤ 1

2
(Γ− γ)

√
T (𝟋,𝟋), (4.1)

where

T (𝟋, h) =
1

b0 − a0

∫ b0

a0

𝟋(ξ)h(ξ)dξ −

(
1

b0 − a0

∫ b

a

𝟋(ξ)dξ

)(
1

b0 − a0

∫ b0

a0

h(ξ)dξ

)
. (4.2)

Now by using the aforementioned result, we are going to obtain a formula for Ak and estimate the remainder
which occurs in this formula.

Theorem 4.2 Let n ∈ N and let 𝟋 : [a0, b0] → R be such that 𝟋(n−1) is an absolutely continuous function and

γ ≤ 𝟋(n)(ξ) ≤ Γ for ξ ∈ [a0, b0].

590



KHAN et al./Turk J Math

(i) Let k ∈ {1, 2} and let
∑m

i=1 ρi = 0 (for k = 1) or
∫ β0

α0
ρ(ξ)dξ = 0 (for k = 2). Then

Ak(𝟋) =

[
𝟋(n−1)(b0)−𝟋(n−1)(a0)

]
(n− 1)!(b0 − a0)2

∫ b

a

Ωk(t)dt+Rk
n(𝟋; a0, b0), (4.3)

where the remainder Rk
n(𝟋; a0, b0) satisfies the estimation

|Rk
n(𝟋; a0, b0)| ≤

1

2(n− 1)!
(Γ− γ)

√
T (Ωk,Ωk). (4.4)

(ii) Let k ∈ {3, 4} and n ≥ 3 . Let the assumptions stated in Theorem 3.1 for p and ξ (for k = 3) and in
Theorem 3.2 for p and g (for k = 4) hold. Then (4.3) and (4.4) hold with (n− 3)! instead of (n− 1)! in the
denominator of Ak(𝟋) and in the bound of Rk

n .

Proof Fix k ∈ {1, 2} . Using the definition of Ak and results from the second section, we have

Ak(𝟋) =
1

(n− 1)!(b0 − a0)

∫ b0

a0

𝟋(n)(t)Ωk(t)dt

=
1

(n− 1)!(b0 − a0)2

∫ b0

a0

𝟋(n)(t)dt

∫ b0

a0

Ωk(t)dt+Rk
n(𝟋; a0, b0)

=

[
𝟋(n−1)(b0)−𝟋(n−1)(a0)

]
(n− 1)!(b0 − a0)2

∫ b0

a0

Ωk(t)dt+Rk
n(𝟋; a0, b0),

where

Rk
n(𝟋; a0, b0) =

1

(n− 1)!(b0 − a0)

(∫ b0

a0

𝟋(n)(t)Ωk(t)dt−
1

b0 − a0

∫ b0

a0

𝟋(n)(s)ds

∫ b0

a0

Ωk(t)dt

)
.

If we apply Proposition 4.1 for 𝟋 → Ωk and h → 𝟋(n) , then we obtain

|Rk
n(𝟋; a0, b0)| = | 1

(n− 1)!
T (Ωk,𝟋(n))| ≤ 1

2(n− 1)!
(Γ− γ)

√
T (Ωk,Ωk).

The proof for k ∈ {3, 4} is done in a similar manner. 2

Using the same method as we used in the previous theorem and other type of bounds for the Čebyšev
functional, we are able to give another estimation for a remainder. The following theorem gives us some
Ostrowski-type inequalities. As usual, the symbol Lp [a0, b0] (1 ≤ p < ∞) denotes the space of p -power
integrable functions on the interval [a0, b0] equipped with the norm

∥𝟋∥p =

(∫ b0

a0

|𝟋 (t)|p dt

) 1
p

< ∞

and L∞ [a0, b0] denotes the space of essentially bounded functions on [a0, b0] with the norm

∥𝟋∥∞ = ess sup
t∈[a0,b0]

|𝟋 (t)| .
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Theorem 4.3 Let 𝟋(n) ∈ Lq [a0, b0] for some n ∈ N and let (q, r) be a pair of conjugate exponents, that is,
1 ≤ q, r ≤ ∞ , 1

q + 1
r = 1 .

(i) Let k ∈ {1, 2} and let
∑m

i=1 ρi = 0 (for k = 1) or
∫ β0

α0
ρ(ξ)dξ = 0 (for k = 2). Then

|Ak(𝟋)| ≤ 1

(n− 1)!
∥𝟋(n)∥q∥Ωk∥r. (4.5)

The constant on the right hand side of (4.5) is sharp for 1 < q ≤ ∞ and the best possible for q = 1 .
(ii) Let k ∈ {3, 4} and n ≥ 3 . For k = 3 , we assume that ξ and p satisfy the assumptions of Theorem 3.1
and for k = 4 we assume that p and g satisfy the assumptions of Theorem 3.2. Then inequality (4.5) holds
with (n− 3)! instead of (n− 1)! in the denominator of the bound for Ak .

Proof Fix k ∈ {1, 2} . From the definition of Ak and results from the second section together with the Hölder
inequality, we get

|Ak(𝟋)| =

∣∣∣∣∣ 1

(n− 1)!

∫ b0

a0

𝟋(n)(t)Ωk(t)dt

∣∣∣∣∣ ≤ ∥𝟋(n)∥q∥λk∥r

where we denoted 1
(n−1)!Ωk by λk .

The sharpness of the constant
(∫ b0

a0
|λk(t)|r ds

)1/r
can be proved by considering the following function

𝟋 for which the equality in (4.5) is obtained.
For 1 < q < ∞ we take 𝟋 to be such that

𝟋(n)(s) = sgnλk(t) · |λk(t)|1/(q−1),

while for q = ∞ , we define 𝟋 such that
𝟋(n)(t) = sgnλk(t).

The fact that (4.5) is the best possible for q = 1 can be proved as in [2, Theorem 12].
Proof for k ∈ {3, 4} is similar to the previous case. 2

5. Mean value results
In this section, we consider mean value theorems involving Ak . Throughout the section, we use the agreement
that if k ∈ {1, 2} , then n ∈ N and if k ∈ {3, 4} , then n ≥ 3 . Furthermore, for k = 1 , we assume that∑m

i=1 ρi = 0 , for k = 2 we assume that
∫ β0

α0
ρ(ξ)dξ = 0 , for k = 3 we assume that ξ and p satisfy the

assumptions of Theorem 3.1 and for k = 4 we assume that p and g satisfy the assumptions of Theorem 3.2.

Theorem 5.1 Let k ∈ {1, 2, 3, 4} and let us consider Ak as a functional on Cn[a0, b0] . If the corresponding
conditions from the set {(2.6), (2.16), (3.9), (3.15)} related to the fixed k hold, then there exists ξk ∈ [a0, b0]

such that
Ak(𝟋) = 𝟋(n)(ξk)Ak(𝟋0), (5.1)

where 𝟋0(ξ) =
ξn

n! .
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Proof Let us define the functions
F1(ξ) = M𝟋0ξ)−𝟋(ξ)

and
F2(ξ) = 𝟋(ξ)− L𝟋0(ξ),

where L and M are the minimum and maximum of the image of 𝟋(n) , i.e.

𝟋(n)([a0, b0]) = [L,M ].

Then F1 and F2 are n−convex. Hence, Ak(F1) ≥ 0 and Ak(F2) ≥ 0 and

LAk(𝟋0) ≤ Ak(𝟋) ≤ MAk(𝟋0).

If Ak(𝟋0) = 0 , then the statement obviously holds.

If Ak(𝟋0) ̸= 0 , then Ak(𝟋)
Ak(f0)

∈ [L,M ] = 𝟋(n)([a0, b0]) , so there exist ξk ∈ [a0, b0] such that Ak(𝟋)
Ak(𝟋0)

=

𝟋(n)(ξk) . 2

When we apply Theorem 5.1 to the function ω = Ak(h)𝟋−Ak(𝟋)h , we get the following result.

Theorem 5.2 Let k ∈ {1, 2, 3, 4} and let us consider Ak as a functional on Cn[a0, b0] . If the corresponding
conditions from the set {(2.6), (2.16), (3.9), (3.15)} related to the fixed k hold, then there exists ξk ∈ [a0, b0]

such that
Ak(𝟋)

Ak(h)
=

𝟋(n)(ξk)

h(n)(ξk)

assuming that both of the denominators are non-zero.

Remark 5.3 If the inverse of 𝟋(n)

h(n) exists, then from the above mean value theorems, we can give generalized
means

ξk =

(
𝟋(n)

h(n)

)−1(
Ak(𝟋)

Ak(h)

)
. (5.2)

Remark 5.4 Using the same method as in [2], we can construct new families of exponentially convex functions
and Cauchy type means. Also, using the idea described in [2] we can obtain results for the n−convex functions
at a point.
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