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Abstract: In this paper, we introduce and investigate a new subclass of strongly Ozaki bi-close-to-convex functions in
the open unit disk. We have also found estimates for the first two Taylor—-Maclaurin coefficients for functions belonging
to this class. The results presented in this paper have been shown to generalize and improve the work of Brannan and
Taha.
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1. Introduction
Let A be the class of all analytic functions f in the open unit disk U= {z : z € C and |z| < 1} and normalized
by the conditions f(0) = f/(0) — 1 = 0 and having the following form:

fz)=z+ Z anz". (1.1)
n=2

Also denote by S the class of all functions in A that are univalent in U (see, for details, [5]).

By the Koebe one-quarter theorem, we know that the range of every function in S contains the disk
{w:|w| < $} [5]. Therefore, every univalent function f has an inverse f~' so that f~!(f(z)) = 2 (z €U)
and f(f~'(w)) = w (Jw| < ro(f); ro(f) >1/4). In fact, the inverse function g = f~! is given by the

power series
o0
g(w) = fﬁl(w) =w+ Z bpw"
n=2

=w — agw? + (203 — az)w® — (5a3 — bagaz + ag)w* + - - . (1.2)

1 are univalent in

A function f € A is said to be bi-univalent in U if both f and its inverse map g = f~
U. Let ¥ be the class of all bi-univalent functions in U having the series expansion (1.1). For a brief history
of functions in the class 3, see the work of Srivastava et al. [16] (see also [4, 9, 20]).

Coefficient bounds for various subclasses of bi-univalent functions were obtained by several authors

including Ali et al. [1], Srivastava et al. [17], and Siimer Eker [19]. Judging by the remarkable flood of
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papers on the subject, the pioneering work of Srivastava et al. [16] appears to have revived the study of analytic
and bi-univalent functions in recent years.

A function f € S is said to be starlike of order a (0 < a < 1), denoted f € S*(«), if

Re (ZJ{;S)) >a(0<a<l, z€l),

and is said to be convez of order o (0 < a < 1), denoted f € K(a), if

2f"(2)
f'(2)

Re<1+ )>a, 0<a<l, z€).
For a = 0, these classes reduce well-known classes S* and K, the class of starlike functions and the class of
conver functions, respectively.

Furthermore, a function f € S is said to be strongly starlike of order «, if for all z € U

g3l

and is said to be strongly convex of order «, if for all z € U

2f"(z)
f'(z)

arg(1+ )’Sag, (0<a<l).
We denote by S*() and K(a) the class strongly starlike of order o and the class strongly convex of order «,

respectively. These classes were introduced by Brannan and Kirwan [3] and Stankiewicz [18], independently.

It is well known that, as « increases, the sets S*(a) and K(a) become smaller but the sets S* () and
(

K(a) become larger. For more information about the classes S*(a), K(a), S*(a), and K(a), see [6].

Theorem 1 [7, 10] If f and ¢ are analytic in any domain D, ¢ is univalent and convex in D, and

Re (2;8) >0 (1.3)

in D, then f is also univalent in D.

Kaplan gave the name “close-to-convex in D” to functions f that satisfy the conditions of Theorem 1.
Now we take D = U. In Theorem 1, the usual normalization plays no role. Since we can multiply f and ¢ by
a positive constant without harm to the inequality (1.3), we may assume without loss of generality that f has
the form given by (1.1), #(0) =0, and |¢/(0)] = 1. (A normalization ¢'(0) =1 will cause a serious loss to the

set of close-to-convex functions.) Therefore, we add a factor ¢ in (1.3) and use the form

Re <€ZJ;§,Z()Z)> > 0, (1.4)

where ¢(z) = z+ ... is in K. Thus, if the inequality (1.4) is satisfied in U for some § and some ¢ € K, then

f is univalent in U and so is a close-to-convex function in U. Now we can give the following definition.
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Definition 1 [7] A function f, analytic in U, is said to be close-to-convex in U if there is a function ¢ € K
and a real B such that the inequality (1.4) holds in U. We let C denote the set of all functions of the form

(1.4) that are close-to-convex in U.

By the Alexander theorem, we know that ¢ is convex if and only if ¢(z) = 2¢/(z) is starlike. Then we

can rewrite the inequality (1.4) by the following condition: there is ¢ € §* such that

() 70

Geometrically, f is close-to-convex if and only if the image of |z| = R has no “hairpin turns”; that is,

there are no sections of the curve f(Cpr) in which the tangent vector turns backward through an angle > 7.

Although the class of close-to-convex functions was introduced by Kaplan [7] in 1952, in 1935 Ozaki
[10, 11] had already considered the functions in A satisfying the following condition:

')\ L
Re (1+ 70 > > =5 (z € ). (1.5)

The functions satisfying the inequality (1.5) are close-to-convex and therefore they are in S by the
definition of Kaplan [7].

Recently, Kargar and Ebadian [8] generalized Ozaki’s condition as follows:

Definition 2 [8] Let F(\) denote the class of locally univalent normalized analytic functions f in the unit
disk satisfying the condition

YL
Re (1+ e ) >3-\ (zeU), (1.6)

for some —1/2 < X < 1. The class F(1) was studied by Ponnusamy et al. [13]. Also, F(3) = K. Clearly,
FA) CcKcCS* forall Xe(-1/2,1/2).

Recently, Allu et al. extended the class F(A) as follows:

Definition 3 [2, 21] Let f € A. Then f is called strongly Ozaki-close-to-convez if and only if

22 —1 2 zf"(2) ar
1 — <1, 1/2<A<1 ,
a7“9<2)\+1+2)\+1< + 71(2) <5 (O<asl 12A<1ze)

This class is denoted by Fo(A, ).

The object of the present paper is to introduce a new subclass of the function class ¥, namely strongly
Ozaki bi-close-to-convex functions, and find an estimate on the coefficients |az| and |ag| for functions in this

class.
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2. Main results
Definition 4 A function f given by (1.1) is said to be in the class Fox (A a), (0 <a<1; 1/2<AX<1), if

the following conditions are satisfied:

22 —1 2 z2f"(2) am
- < .
fex and arg<2)\+1+2)\+1<1+ e <3 O<a<l,zel) (2.1)
and
22 —-1 2 wg” (w) am
arg<2)\+1+2)\+1< + 7 <5 (0<a<l,wel), (2.2)

where the function g is given by (1.2).

We first state and prove the estimates on the coefficients |as| and |ag| for functions in the class Fo » (A, a).

Theorem 2 If f given by (1.1) is in the class Fo x(A, ), then

al2X+1)
N e ey EwT 23)
and
las| < a(2/\2—|— 1) 2.0
Proof For f given by (1.1), we can write from (2.1) and (2.2)
22 —1 2 z2f"(2)\ o
A+l oA+l (1 T ) = ()% (2.5)
A\ — "
§A+1 * 2A2+ 1 (1 o (w)> = lat)l, (2.6)

g9'(z)
where p(z) and ¢(w) are in Carathe6dory class P. Thus, p(z) and ¢(w) have the following series expansions:
p(2) = 1+ prz +poz® +p3z’ + - (2.7)

and
g(w) =1+ qw + gw? + gguw® + - - - . (2.8)

Now, equating coefficients (2.5) and (2.6), we find that

40,2
_ 2.9
a1 P (2.9)

12a3 8a3 ala—1) 4

= _ 2.10
ATl 2l T T (2.10)

4a2
— = 2.11
oa+1 I (2.11)
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and
2
216121 - 212131 tant a(az et
From (2.9) and (2.11), we get
p1=—q
and
32a2

— A2(n2 2.
(2)\+1)2 «a (p1+Q1)

Also, from (2.10), (2.12), and (2.14), we get

02— a®(2A 1+ 1)°(p2 + ¢2)
27 8a(2A +1) +16(1 — )’

(2.12)

(2.13)

(2.14)

(2.15)

It is well known that from the Caratheédory lemma, the coefficients of |p,| < 2 and |g,| < 2 for n € N

(see [5]). If we take the absolute value of both sides of a3 and if we apply the Carathéodory lemma to coefficients

po and gy, we obtain
a?(2\ +1)2
a@A+1)+4(1—- )

3] < 5

This gives the desired bound for |as|, as asserted in (2.3).

Now, in order to find the bound on |az|, from (2.10) and (2.12) and (2.13), we can write

120,3
22 +1

Bala—1) 4

If we take a = 1 and apply the Caratheédory lemma, then

Now we consider the case 0 < « < 1. From (2.16), we can write

12

e _ )
2)\+1Re(a3) aRe{( P2 + g2) +

2

27 —it
1+ ze
= ——du (t
p(z) /0 1 — se—it Ml( )

and

27 —it
1+ we
= ———dus(t
a(w) /0 1— we™it Ha(t),

where p;(t) are increasing on [0,27] and p;(27) — p;(0) =1, i =1,2.

866

=a(2p2+q2) + Tpl.

3la—1) ,

P

b

From Herglotz’s representation formula [12] for the functions p(z) and ¢(w), we have

(2.16)

(2.17)
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We also have

2m
Gn = 2/ e M duy(t), n=12....
0

Now (2.17) can be written as follows :

12 2

2m 2m 2m
———Re(az) = 4a/ cos?tdul(t)+2a/ cos2td s (t)—6a(l—a) (/ costd,ult)

([ sintdul<t>>2]

2 2m 2 2
< 4a/ cos2tdpy (t) + Qa/ cos2tdus(t) + 6a(1 — ) </ sintdul(t))
0 0 0

= 2a {2 /0%(1 — 2sin?t)dpy (t) + /0%(1 — 2sin?t)dp(t) + 3(1 — a) (/0% sintdul(t)> 2} .

By Jensen’s inequality [14], we have

2

</027T |sim€|du(t)) < </027T sithdu(t)) .

Hence,
12 27 27
Re(az) <2043 -2 / sintdus(t) — (1 + 3a) / sin®tdpy (t)
2X + 1 0 o
and thus
22+ 1
Re(az) < o2\ + ),
2
which implies
a2\ +1
o < 2D
This completes the proof of the theorem. O

3. Coeflicient estimates for the functions class Fo (), )

Definition 5 A function f given by (1.1) is said to be in the class Fox(A\,5), (0<8<1; 1/2< A <1) if

the following conditions are satisfied:

22 —1 2 2f"(2)
fex and Re(2)\+1+2)\+1(1+ f’(z))>>ﬂ (z€U) (3.1)

and

Re <§i+1 + 2A2+1 <1+ w;’,/;il)”)» >B8  (wel), (3.2)

where the function g is given by (1.2).
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For A = %, the class of Fo x(A,B) is reduced to Cx(8) of biconvex order 8 (0 < 8 < 1), which was
introduced by Brannan and Taha [4].

Theorem 3 If f given by (1.1) is in the class Fo x(X, B), then

las| < E}AZZJ§Zégf§jf4¥) (3.3)
and
o < L2, »
Proof We can write the inequalities in (3.1) and (3.2) as follows:
2A-1, 2 2f"(2)\
w+1+2A+1<*‘f@)>—5+0—5m@) (3.5)
and
2A-1 2 wg (w)\
IN+1 T oA+ 1 (1 J'(2) ) =B+ (1-Bg(w), (3.6)

where p(z) and ¢(w) are given by (2.7) and (2.8), respectively. Like the proof of Theorem 1, equating coefficients
of (3.5) and (3.6) yields
4&2

oy _ S _(1_p) (35)
M+l 2A+1 P2, :
4&2 o
4@A+14%1*5Mh (3.9)
and
16a2 12a
2 _ 28 (1- B)ge. (3.10)

22+1 2241
From (3.7) and (3.9) we get

p1=—q (3.11)
and
3243 2(,2 2
=(1— . 12
Ty = (= R+ ) (312)
Also, from (3.8) and (3.10), we obtain
8a3 B
N1 =(1-8)p2 + a2). (3.13)
Thus, clearly we have
1-06)2A+1
< EZOBED 4 (3.14)
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If we apply the Carathéodory lemma to coefficients of ps and g¢o, we find the upper bound on |ag| as given in
(3.3).
In order to find the bound on |as|, we multiply (3.8) by 2 and add it to (3.10), and we obtain:

12&3
22 +1

= (1= 8)(2p2 + q2)- (3.15)

Now let us take the absolute value of the both sides of (3.15). After that, if we apply the Carathéodory lemma
to coefficients of po and g2, we find
1-— 220 +1
< A=)
which is asserted in (3.4). O

If we take A = % , in Theorem 3, we obtain the following corollary due to the result of Brannan and Taha:
Corollary 1 [4] Let f given by (1.1) belong to C,(8) (0 < < 1). Then
las] < \/1-20 and lag| <1 - 8.
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