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Abstract: In this paper, we introduce and investigate a new subclass of strongly Ozaki bi-close-to-convex functions in
the open unit disk. We have also found estimates for the first two Taylor–Maclaurin coefficients for functions belonging
to this class. The results presented in this paper have been shown to generalize and improve the work of Brannan and
Taha.
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1. Introduction
Let A be the class of all analytic functions f in the open unit disk U = {z : z ∈ C and |z| < 1} and normalized
by the conditions f(0) = f ′(0)− 1 = 0 and having the following form:

f (z) = z +

∞∑
n=2

anz
n. (1.1)

Also denote by S the class of all functions in A that are univalent in U (see, for details, [5]).
By the Koebe one-quarter theorem, we know that the range of every function in S contains the disk{

w : |w| < 1
4

}
[5]. Therefore, every univalent function f has an inverse f−1 so that f−1

(
f(z)

)
= z

(
z ∈ U

)
and f

(
f−1(w)

)
= w (|w| < r0(f); r0(f) ≥ 1/4) . In fact, the inverse function g = f−1 is given by the

power series

g(w) = f−1(w) = w +

∞∑
n=2

bnw
n

= w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · · . (1.2)

A function f ∈ A is said to be bi-univalent in U if both f and its inverse map g = f−1 are univalent in
U . Let Σ be the class of all bi-univalent functions in U having the series expansion (1.1). For a brief history
of functions in the class Σ , see the work of Srivastava et al. [16] (see also [4, 9, 20]).

Coefficient bounds for various subclasses of bi-univalent functions were obtained by several authors
including Ali et al. [1], Srivastava et al. [17], and Sümer Eker [19]. Judging by the remarkable flood of
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papers on the subject, the pioneering work of Srivastava et al. [16] appears to have revived the study of analytic
and bi-univalent functions in recent years.

A function f ∈ S is said to be starlike of order α (0 ≤ α < 1) , denoted f ∈ S∗(α) , if

Re

(
zf ′(z)

f(z)

)
> α (0 ≤ α < 1, z ∈ U),

and is said to be convex of order α (0 ≤ α < 1) , denoted f ∈ K(α) , if

Re

(
1 +

zf ′′(z)

f ′(z)

)
> α, (0 ≤ α < 1, z ∈ U).

For α = 0 , these classes reduce well-known classes S∗ and K , the class of starlike functions and the class of
convex functions, respectively.

Furthermore, a function f ∈ S is said to be strongly starlike of order α , if for all z ∈ U∣∣∣∣arg zf ′(z)

f(z)

∣∣∣∣ ≤ α
π

2
, (0 ≤ α ≤ 1),

and is said to be strongly convex of order α , if for all z ∈ U∣∣∣∣arg(1 + zf ′′(z)

f ′(z)

)∣∣∣∣ ≤ α
π

2
, (0 ≤ α ≤ 1).

We denote by S̃∗(α) and K̃(α) the class strongly starlike of order α and the class strongly convex of order α ,
respectively. These classes were introduced by Brannan and Kirwan [3] and Stankiewicz [18], independently.

It is well known that, as α increases, the sets S∗(α) and K(α) become smaller but the sets S̃∗(α) and
K̃(α) become larger. For more information about the classes S∗(α) , K(α) , S̃∗(α) , and K̃(α) , see [6].

Theorem 1 [7, 10] If f and ϕ are analytic in any domain D , ϕ is univalent and convex in D , and

Re

(
f ′(z)

ϕ′(z)

)
> 0 (1.3)

in D , then f is also univalent in D .

Kaplan gave the name “close-to-convex in D” to functions f that satisfy the conditions of Theorem 1.
Now we take D = U . In Theorem 1, the usual normalization plays no role. Since we can multiply f and ϕ by
a positive constant without harm to the inequality (1.3), we may assume without loss of generality that f has
the form given by (1.1), ϕ(0) = 0 , and |ϕ′(0)| = 1 . (A normalization ϕ′(0) = 1 will cause a serious loss to the
set of close-to-convex functions.) Therefore, we add a factor eiβ in (1.3) and use the form

Re

(
f ′(z)

eiβϕ′(z)

)
> 0, (1.4)

where ϕ(z) = z + ... is in K . Thus, if the inequality (1.4) is satisfied in U for some β and some ϕ ∈ K , then
f is univalent in U and so is a close-to-convex function in U . Now we can give the following definition.
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Definition 1 [7] A function f , analytic in U , is said to be close-to-convex in U if there is a function ϕ ∈ K
and a real β such that the inequality (1.4) holds in U . We let C denote the set of all functions of the form
(1.4) that are close-to-convex in U .

By the Alexander theorem, we know that ϕ is convex if and only if φ(z) = zϕ′(z) is starlike. Then we
can rewrite the inequality (1.4) by the following condition: there is φ ∈ S∗ such that

Re

(
zf ′(z)

eiβφ(z)

)
> 0.

Geometrically, f is close-to-convex if and only if the image of |z| = R has no “hairpin turns”; that is,
there are no sections of the curve f(CR) in which the tangent vector turns backward through an angle ≥ π .

Although the class of close-to-convex functions was introduced by Kaplan [7] in 1952, in 1935 Ozaki
[10, 11] had already considered the functions in A satisfying the following condition:

Re

(
1 +

zf ′′(z)

f ′(z)

)
> −1

2
, (z ∈ U). (1.5)

The functions satisfying the inequality (1.5) are close-to-convex and therefore they are in S by the
definition of Kaplan [7].

Recently, Kargar and Ebadian [8] generalized Ozaki’s condition as follows:

Definition 2 [8] Let F(λ) denote the class of locally univalent normalized analytic functions f in the unit
disk satisfying the condition

Re

(
1 +

zf ′′(z)

f ′(z)

)
>

1

2
− λ, (z ∈ U), (1.6)

for some −1/2 < λ ≤ 1 . The class F(1) was studied by Ponnusamy et al. [13]. Also, F( 12 ) = K . Clearly,
F(λ) ⊂ K ⊂ S∗ for all λ ∈ (−1/2, 1/2) .

Recently, Allu et al. extended the class F(λ) as follows:

Definition 3 [2, 21] Let f ∈ A . Then f is called strongly Ozaki-close-to-convex if and only if

∣∣∣∣arg(2λ− 1

2λ+ 1
+

2

2λ+ 1

(
1 +

zf ′′(z)

f ′(z)

))∣∣∣∣ < απ

2
, (0 < α ≤ 1, 1/2 ≤ λ ≤ 1 z ∈ U).

This class is denoted by FO(λ, α) .

The object of the present paper is to introduce a new subclass of the function class Σ , namely strongly
Ozaki bi-close-to-convex functions, and find an estimate on the coefficients |a2| and |a3| for functions in this
class.
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2. Main results
Definition 4 A function f given by (1.1) is said to be in the class FO,Σ(λ, α) , (0 < α ≤ 1; 1/2 ≤ λ ≤ 1) , if
the following conditions are satisfied:

f ∈ Σ and
∣∣∣∣arg(2λ− 1

2λ+ 1
+

2

2λ+ 1

(
1 +

zf ′′(z)

f ′(z)

))∣∣∣∣ < απ

2
(0 < α ≤ 1, z ∈ U) (2.1)

and ∣∣∣∣arg(2λ− 1

2λ+ 1
+

2

2λ+ 1

(
1 +

wg′′(w)

g′(z)

))∣∣∣∣ < απ

2
(0 < α ≤ 1, w ∈ U), (2.2)

where the function g is given by (1.2).

We first state and prove the estimates on the coefficients |a2| and |a3| for functions in the class FO,Σ(λ, α) .

Theorem 2 If f given by (1.1) is in the class FO,Σ(λ, α) , then

∣∣a2∣∣ ≤ α(2λ+ 1)√
2α(2λ+ 1) + 4(1− α)

(2.3)

and ∣∣a3∣∣ ≤ α(2λ+ 1)

2
. (2.4)

Proof For f given by (1.1), we can write from (2.1) and (2.2)

2λ− 1

2λ+ 1
+

2

2λ+ 1

(
1 +

zf ′′(z)

f ′(z)

)
= [p(z)]α, (2.5)

2λ− 1

2λ+ 1
+

2

2λ+ 1

(
1 +

wg′′(w)

g′(z)

)
= [q(w)]α, (2.6)

where p(z) and q(w) are in Caratheódory class P . Thus, p(z) and q(w) have the following series expansions:

p(z) = 1 + p1z + p2z
2 + p3z

3 + · · · (2.7)

and
q(w) = 1 + q1w + q2w

2 + q3w
3 + · · · . (2.8)

Now, equating coefficients (2.5) and (2.6), we find that

4a2
2λ+ 1

= αp1, (2.9)

12a3
2λ+ 1

=
8a22

2λ+ 1
+ αp2 +

α(α− 1)

2
p21, (2.10)

− 4a2
2λ+ 1

= αq1, (2.11)
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and
16a22
2λ+ 1

=
12a3
2λ+ 1

+ αq2 +
α(α− 1)

2
q21 . (2.12)

From (2.9) and (2.11), we get
p1 = −q1 (2.13)

and
32a22

(2λ+ 1)2
= α2(p21 + q21). (2.14)

Also, from (2.10), (2.12), and (2.14), we get

a22 =
α2(2λ+ 1)2(p2 + q2)

8α(2λ+ 1) + 16(1− α)
. (2.15)

It is well known that from the Caratheódory lemma, the coefficients of |pn| ≤ 2 and |qn| ≤ 2 for n ∈ N
(see [5]). If we take the absolute value of both sides of a22 and if we apply the Carathéodory lemma to coefficients
p2 and q2 , we obtain ∣∣a22∣∣ ≤ α2(2λ+ 1)2

2α(2λ+ 1) + 4(1− α)
.

This gives the desired bound for |a2| , as asserted in (2.3).

Now, in order to find the bound on |a3| , from (2.10) and (2.12) and (2.13), we can write

12a3
2λ+ 1

= α (2p2 + q2) +
3α(α− 1)

2
p21. (2.16)

If we take α = 1 and apply the Caratheódory lemma, then

|a3| ≤
(2λ+ 1)

2
.

Now we consider the case 0 < α < 1 . From (2.16), we can write

12

2λ+ 1
Re(a3) = αRe

{
(2p2 + q2) +

3(α− 1)

2
p21

}
. (2.17)

From Herglotz’s representation formula [12] for the functions p(z) and q(w) , we have

p(z) =

∫ 2π

0

1 + ze−it

1− ze−it
dµ1(t)

and

q(w) =

∫ 2π

0

1 + we−it

1− we−it
dµ2(t),

where µi(t) are increasing on [0, 2π] and µi(2π)− µi(0) = 1 , i = 1, 2 .
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We also have

pn = 2

∫ 2π

0

e−intdµ1(t), n = 1, 2, . . .

qn = 2

∫ 2π

0

e−intdµ2(t), n = 1, 2, . . . .

Now (2.17) can be written as follows :

12

2λ+ 1
Re(a3) = 4α

∫ 2π

0

cos2tdµ1(t)+2α

∫ 2π

0

cos2tdµ2(t)−6α(1−α)

[(∫ 2π

0

costdµ1t

)2

−
(∫ 2π

0

sintdµ1(t)

)2
]

≤ 4α

∫ 2π

0

cos2tdµ1(t) + 2α

∫ 2π

0

cos2tdµ2(t) + 6α(1− α)

(∫ 2π

0

sintdµ1(t)

)2

= 2α

{
2

∫ 2π

0

(1− 2sin2t)dµ1(t) +

∫ 2π

0

(1− 2sin2t)dµ2(t) + 3(1− α)

(∫ 2π

0

sintdµ1(t)

)2
}
.

By Jensen’s inequality [14], we have

(∫ 2π

0

|sint|dµ(t)
)2

≤
(∫ 2π

0

sin2tdµ(t)

)
.

Hence,
12

2λ+ 1
Re(a3) ≤ 2α

{
3− 2

∫ 2π

0

sin2tdµ2(t)− (1 + 3α)

∫ 2π

0

sin2tdµ1(t)

}
and thus

Re(a3) ≤
α(2λ+ 1)

2
,

which implies

|a3| ≤
α(2λ+ 1)

2
.

This completes the proof of the theorem. 2

3. Coefficient estimates for the functions class FO,Σ(λ, β)

Definition 5 A function f given by (1.1) is said to be in the class FO,Σ(λ, β) , (0 ≤ β < 1; 1/2 ≤ λ ≤ 1) if
the following conditions are satisfied:

f ∈ Σ and Re

(
2λ− 1

2λ+ 1
+

2

2λ+ 1

(
1 +

zf ′′(z)

f ′(z)

))
> β (z ∈ U) (3.1)

and

Re

(
2λ− 1

2λ+ 1
+

2

2λ+ 1

(
1 +

wg′′(w)

g′(z)

))
> β (w ∈ U), (3.2)

where the function g is given by (1.2).
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For λ = 1
2 , the class of FO,Σ(λ, β) is reduced to CΣ(β) of biconvex order β (0 ≤ β < 1) , which was

introduced by Brannan and Taha [4].

Theorem 3 If f given by (1.1) is in the class FO,Σ(λ, β) , then

∣∣a2∣∣ ≤ √
(1− β)(2λ+ 1)

2
(3.3)

and ∣∣a3∣∣ ≤ (1− β)(2λ+ 1)

2
. (3.4)

Proof We can write the inequalities in (3.1) and (3.2) as follows:

2λ− 1

2λ+ 1
+

2

2λ+ 1

(
1 +

zf ′′(z)

f ′(z)

)
= β + (1− β)p(z) (3.5)

and
2λ− 1

2λ+ 1
+

2

2λ+ 1

(
1 +

wg′′(w)

g′(z)

)
= β + (1− β)q(w), (3.6)

where p(z) and q(w) are given by (2.7) and (2.8), respectively. Like the proof of Theorem 1, equating coefficients
of (3.5) and (3.6) yields

4a2
2λ+ 1

= (1− β)p1, (3.7)

12a3
2λ+ 1

− 8a22
2λ+ 1

= (1− β)p2, (3.8)

− 4a2
2λ+ 1

= (1− β)q1, (3.9)

and
16a22
2λ+ 1

− 12a3
2λ+ 1

= (1− β)q2. (3.10)

From (3.7) and (3.9) we get
p1 = −q1 (3.11)

and
32a22

(2λ+ 1)2
= (1− β)2(p21 + q21). (3.12)

Also, from (3.8) and (3.10), we obtain

8a22
2λ+ 1

= (1− β)(p2 + q2). (3.13)

Thus, clearly we have

|a2|2 ≤ (1− β)(2λ+ 1)

8
(|p2|+ |q2|) . (3.14)
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If we apply the Carathéodory lemma to coefficients of p2 and q2 , we find the upper bound on |a2| as given in
(3.3).

In order to find the bound on |a3| , we multiply (3.8) by 2 and add it to (3.10), and we obtain:

12a3
2λ+ 1

= (1− β)(2p2 + q2). (3.15)

Now let us take the absolute value of the both sides of (3.15). After that, if we apply the Carathéodory lemma
to coefficients of p2 and q2 , we find

|a3| ≤
(1− β)(2λ+ 1)

2
,

which is asserted in (3.4). 2

If we take λ = 1
2 , in Theorem 3, we obtain the following corollary due to the result of Brannan and Taha:

Corollary 1 [4] Let f given by (1.1) belong to Cσ(β) (0 ≤ β < 1) . Then

|a2| ≤
√
1− β and |a3| ≤ 1− β.
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