Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2019) 43: $862-870$
© TÜBİTAK

On strongly Ozaki bi-close-to-convex functions

Münevver TEZELCI ${ }^{1}$, Sevtap SÜMER EKER ${ }^{2, *}$ (D)
${ }^{1}$ Institute of Natural and Applied Science, Dicle University, Diyarbakır, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Science, Dicle University, Diyarbakır, Turkey

Received: 24.10.2018 • Accepted/Published Online: 11.02.2019 \quad Final Version: 27.03 .2019

Abstract

In this paper, we introduce and investigate a new subclass of strongly Ozaki bi-close-to-convex functions in the open unit disk. We have also found estimates for the first two Taylor-Maclaurin coefficients for functions belonging to this class. The results presented in this paper have been shown to generalize and improve the work of Brannan and Taha.

Key words: Bi-close-to-convex functions, coefficient estimates, bi-univalent

1. Introduction

Let \mathcal{A} be the class of all analytic functions f in the open unit disk $\mathbb{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$ and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$ and having the following form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} . \tag{1.1}
\end{equation*}
$$

Also denote by \mathcal{S} the class of all functions in \mathcal{A} that are univalent in \mathbb{U} (see, for details, [5]).
By the Koebe one-quarter theorem, we know that the range of every function in \mathcal{S} contains the disk $\left\{w:|w|<\frac{1}{4}\right\}$ [5]. Therefore, every univalent function f has an inverse f^{-1} so that $f^{-1}(f(z))=z \quad(z \in \mathbb{U})$ and $f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq 1 / 4\right)$. In fact, the inverse function $g=f^{-1}$ is given by the power series

$$
\begin{align*}
g(w) & =f^{-1}(w)=w+\sum_{n=2}^{\infty} b_{n} w^{n} \\
& =w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{1.2}
\end{align*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and its inverse map $g=f^{-1}$ are univalent in \mathbb{U}. Let Σ be the class of all bi-univalent functions in \mathbb{U} having the series expansion (1.1). For a brief history of functions in the class Σ, see the work of Srivastava et al. [16] (see also [4, 9, 20]).

Coefficient bounds for various subclasses of bi-univalent functions were obtained by several authors including Ali et al. [1], Srivastava et al. [17], and Sümer Eker [19]. Judging by the remarkable flood of

[^0]
TEZELCI and SÜMER EKER/Turk J Math

papers on the subject, the pioneering work of Srivastava et al. [16] appears to have revived the study of analytic and bi-univalent functions in recent years.

A function $f \in \mathcal{S}$ is said to be starlike of order $\alpha(0 \leq \alpha<1)$, denoted $f \in \mathcal{S}^{*}(\alpha)$, if

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha(0 \leq \alpha<1, z \in \mathbb{U})
$$

and is said to be convex of order $\alpha(0 \leq \alpha<1)$, denoted $f \in \mathcal{K}(\alpha)$, if

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha,(0 \leq \alpha<1, z \in \mathbb{U})
$$

For $\alpha=0$, these classes reduce well-known classes \mathcal{S}^{*} and \mathcal{K}, the class of starlike functions and the class of convex functions, respectively.

Furthermore, a function $f \in \mathcal{S}$ is said to be strongly starlike of order α, if for all $z \in \mathbb{U}$

$$
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right| \leq \alpha \frac{\pi}{2}, \quad(0 \leq \alpha \leq 1)
$$

and is said to be strongly convex of order α, if for all $z \in \mathbb{U}$

$$
\left|\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right| \leq \alpha \frac{\pi}{2}, \quad(0 \leq \alpha \leq 1)
$$

We denote by $\tilde{\mathcal{S}}^{*}(\alpha)$ and $\tilde{\mathcal{K}}(\alpha)$ the class strongly starlike of order α and the class strongly convex of order α, respectively. These classes were introduced by Brannan and Kirwan [3] and Stankiewicz [18], independently.

It is well known that, as α increases, the sets $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$ become smaller but the sets $\tilde{\mathcal{S}}^{*}(\alpha)$ and $\tilde{\mathcal{K}}(\alpha)$ become larger. For more information about the classes $\mathcal{S}^{*}(\alpha), \mathcal{K}(\alpha), \tilde{\mathcal{S}}^{*}(\alpha)$, and $\tilde{\mathcal{K}}(\alpha)$, see [6].

Theorem 1 [7, 10] If f and ϕ are analytic in any domain D, ϕ is univalent and convex in D, and

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f^{\prime}(z)}{\phi^{\prime}(z)}\right)>0 \tag{1.3}
\end{equation*}
$$

in D, then f is also univalent in D.
Kaplan gave the name "close-to-convex in D " to functions f that satisfy the conditions of Theorem 1. Now we take $D=\mathbb{U}$. In Theorem 1, the usual normalization plays no role. Since we can multiply f and ϕ by a positive constant without harm to the inequality (1.3), we may assume without loss of generality that f has the form given by $(1.1), \phi(0)=0$, and $\left|\phi^{\prime}(0)\right|=1$. (A normalization $\phi^{\prime}(0)=1$ will cause a serious loss to the set of close-to-convex functions.) Therefore, we add a factor $e^{i \beta}$ in (1.3) and use the form

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f^{\prime}(z)}{e^{i \beta} \phi^{\prime}(z)}\right)>0 \tag{1.4}
\end{equation*}
$$

where $\phi(z)=z+\ldots$ is in \mathcal{K}. Thus, if the inequality (1.4) is satisfied in \mathbb{U} for some β and some $\phi \in \mathcal{K}$, then f is univalent in \mathbb{U} and so is a close-to-convex function in \mathbb{U}. Now we can give the following definition.

Definition $1[7]$ A function f, analytic in \mathbb{U}, is said to be close-to-convex in \mathbb{U} if there is a function $\phi \in \mathcal{K}$ and a real β such that the inequality (1.4) holds in \mathbb{U}. We let \mathcal{C} denote the set of all functions of the form (1.4) that are close-to-convex in \mathbb{U}.

By the Alexander theorem, we know that ϕ is convex if and only if $\varphi(z)=z \phi^{\prime}(z)$ is starlike. Then we can rewrite the inequality (1.4) by the following condition: there is $\varphi \in \mathcal{S}^{*}$ such that

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{e^{i \beta} \varphi(z)}\right)>0
$$

Geometrically, f is close-to-convex if and only if the image of $|z|=R$ has no "hairpin turns"; that is, there are no sections of the curve $f\left(C_{R}\right)$ in which the tangent vector turns backward through an angle $\geq \pi$.

Although the class of close-to-convex functions was introduced by Kaplan [7] in 1952, in 1935 Ozaki $[10,11]$ had already considered the functions in \mathcal{A} satisfying the following condition:

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>-\frac{1}{2},(z \in \mathbb{U}) \tag{1.5}
\end{equation*}
$$

The functions satisfying the inequality (1.5) are close-to-convex and therefore they are in \mathcal{S} by the definition of Kaplan [7].

Recently, Kargar and Ebadian [8] generalized Ozaki's condition as follows:

Definition 2 [8] Let $\mathcal{F}(\lambda)$ denote the class of locally univalent normalized analytic functions f in the unit disk satisfying the condition

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\frac{1}{2}-\lambda, \quad(z \in \mathbb{U}) \tag{1.6}
\end{equation*}
$$

for some $-1 / 2<\lambda \leq 1$. The class $\mathcal{F}(1)$ was studied by Ponnusamy et al. [13]. Also, $\mathcal{F}\left(\frac{1}{2}\right)=\mathcal{K}$. Clearly, $\mathcal{F}(\lambda) \subset \mathcal{K} \subset \mathcal{S}^{*}$ for all $\lambda \in(-1 / 2,1 / 2)$.

Recently, Allu et al. extended the class $\mathcal{F}(\lambda)$ as follows:

Definition 3 [2, 21] Let $f \in \mathcal{A}$. Then f is called strongly Ozaki-close-to-convex if and only if

$$
\left|\arg \left(\frac{2 \lambda-1}{2 \lambda+1}+\frac{2}{2 \lambda+1}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)\right|<\frac{\alpha \pi}{2}, \quad(0<\alpha \leq 1,1 / 2 \leq \lambda \leq 1 z \in \mathbb{U})
$$

This class is denoted by $\mathcal{F}_{O}(\lambda, \alpha)$.

The object of the present paper is to introduce a new subclass of the function class Σ, namely strongly Ozaki bi-close-to-convex functions, and find an estimate on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in this class.

TEZELCI and SÜMER EKER/Turk J Math

2. Main results

Definition $4 A$ function f given by (1.1) is said to be in the class $\mathcal{F}_{O, \Sigma}(\lambda, \alpha),(0<\alpha \leq 1 ; 1 / 2 \leq \lambda \leq 1)$, if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \text { and }\left|\arg \left(\frac{2 \lambda-1}{2 \lambda+1}+\frac{2}{2 \lambda+1}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, z \in \mathbb{U}) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(\frac{2 \lambda-1}{2 \lambda+1}+\frac{2}{2 \lambda+1}\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(z)}\right)\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, w \in \mathbb{U}) \tag{2.2}
\end{equation*}
$$

where the function g is given by (1.2).
We first state and prove the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the class $\mathcal{F}_{O, \Sigma}(\lambda, \alpha)$.
Theorem 2 If f given by (1.1) is in the class $\mathcal{F}_{O, \Sigma}(\lambda, \alpha)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\alpha(2 \lambda+1)}{\sqrt{2 \alpha(2 \lambda+1)+4(1-\alpha)}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\alpha(2 \lambda+1)}{2} \tag{2.4}
\end{equation*}
$$

Proof For f given by (1.1), we can write from (2.1) and (2.2)

$$
\begin{align*}
& \frac{2 \lambda-1}{2 \lambda+1}+\frac{2}{2 \lambda+1}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=[p(z)]^{\alpha} \tag{2.5}\\
& \frac{2 \lambda-1}{2 \lambda+1}+\frac{2}{2 \lambda+1}\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(z)}\right)=[q(w)]^{\alpha} \tag{2.6}
\end{align*}
$$

where $p(z)$ and $q(w)$ are in Caratheódory class \mathcal{P}. Thus, $p(z)$ and $q(w)$ have the following series expansions:

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\cdots \tag{2.8}
\end{equation*}
$$

Now, equating coefficients (2.5) and (2.6), we find that

$$
\begin{gather*}
\frac{4 a_{2}}{2 \lambda+1}=\alpha p_{1} \tag{2.9}\\
\frac{12 a_{3}}{2 \lambda+1}=\frac{8 a_{2}^{2}}{2 \lambda+1}+\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2} \tag{2.10}\\
-\frac{4 a_{2}}{2 \lambda+1}=\alpha q_{1} \tag{2.11}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{16 a_{2}^{2}}{2 \lambda+1}=\frac{12 a_{3}}{2 \lambda+1}+\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2} \tag{2.12}
\end{equation*}
$$

From (2.9) and (2.11), we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{32 a_{2}^{2}}{(2 \lambda+1)^{2}}=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{2.14}
\end{equation*}
$$

Also, from (2.10), (2.12), and (2.14), we get

$$
\begin{equation*}
a_{2}^{2}=\frac{\alpha^{2}(2 \lambda+1)^{2}\left(p_{2}+q_{2}\right)}{8 \alpha(2 \lambda+1)+16(1-\alpha)} \tag{2.15}
\end{equation*}
$$

It is well known that from the Caratheódory lemma, the coefficients of $\left|p_{n}\right| \leq 2$ and $\left|q_{n}\right| \leq 2$ for $n \in \mathbb{N}$ (see [5]). If we take the absolute value of both sides of a_{2}^{2} and if we apply the Carathéodory lemma to coefficients p_{2} and q_{2}, we obtain

$$
\left|a_{2}^{2}\right| \leq \frac{\alpha^{2}(2 \lambda+1)^{2}}{2 \alpha(2 \lambda+1)+4(1-\alpha)}
$$

This gives the desired bound for $\left|a_{2}\right|$, as asserted in (2.3).

Now, in order to find the bound on $\left|a_{3}\right|$, from (2.10) and (2.12) and (2.13), we can write

$$
\begin{equation*}
\frac{12 a_{3}}{2 \lambda+1}=\alpha\left(2 p_{2}+q_{2}\right)+\frac{3 \alpha(\alpha-1)}{2} p_{1}^{2} \tag{2.16}
\end{equation*}
$$

If we take $\alpha=1$ and apply the Caratheódory lemma, then

$$
\left|a_{3}\right| \leq \frac{(2 \lambda+1)}{2}
$$

Now we consider the case $0<\alpha<1$. From (2.16), we can write

$$
\begin{equation*}
\frac{12}{2 \lambda+1} \operatorname{Re}\left(a_{3}\right)=\alpha \operatorname{Re}\left\{\left(2 p_{2}+q_{2}\right)+\frac{3(\alpha-1)}{2} p_{1}^{2}\right\} \tag{2.17}
\end{equation*}
$$

From Herglotz's representation formula [12] for the functions $p(z)$ and $q(w)$, we have

$$
p(z)=\int_{0}^{2 \pi} \frac{1+z e^{-i t}}{1-z e^{-i t}} d \mu_{1}(t)
$$

and

$$
q(w)=\int_{0}^{2 \pi} \frac{1+w e^{-i t}}{1-w e^{-i t}} d \mu_{2}(t)
$$

where $\mu_{i}(t)$ are increasing on $[0,2 \pi]$ and $\mu_{i}(2 \pi)-\mu_{i}(0)=1, i=1,2$.

TEZELCI and SÜMER EKER/Turk J Math

We also have

$$
\begin{aligned}
& p_{n}=2 \int_{0}^{2 \pi} e^{-i n t} d \mu_{1}(t), \quad n=1,2, \ldots \\
& q_{n}=2 \int_{0}^{2 \pi} e^{-i n t} d \mu_{2}(t), \quad n=1,2, \ldots
\end{aligned}
$$

Now (2.17) can be written as follows :

$$
\begin{gathered}
\frac{12}{2 \lambda+1} \operatorname{Re}\left(a_{3}\right)=4 \alpha \int_{0}^{2 \pi} \cos 2 t d \mu_{1}(t)+2 \alpha \int_{0}^{2 \pi} \cos 2 t d \mu_{2}(t)-6 \alpha(1-\alpha)\left[\left(\int_{0}^{2 \pi} \cos t d \mu_{1} t\right)^{2}-\left(\int_{0}^{2 \pi} \sin t d \mu_{1}(t)\right)^{2}\right] \\
\leq 4 \alpha \int_{0}^{2 \pi} \cos 2 t d \mu_{1}(t)+2 \alpha \int_{0}^{2 \pi} \cos 2 t d \mu_{2}(t)+6 \alpha(1-\alpha)\left(\int_{0}^{2 \pi} \sin t d \mu_{1}(t)\right)^{2} \\
=2 \alpha\left\{2 \int_{0}^{2 \pi}\left(1-2 \sin ^{2} t\right) d \mu_{1}(t)+\int_{0}^{2 \pi}\left(1-2 \sin ^{2} t\right) d \mu_{2}(t)+3(1-\alpha)\left(\int_{0}^{2 \pi} \sin t d \mu_{1}(t)\right)^{2}\right\}
\end{gathered}
$$

By Jensen's inequality [14], we have

$$
\left(\int_{0}^{2 \pi}|\sin t| d \mu(t)\right)^{2} \leq\left(\int_{0}^{2 \pi} \sin ^{2} t d \mu(t)\right)
$$

Hence,

$$
\frac{12}{2 \lambda+1} \operatorname{Re}\left(a_{3}\right) \leq 2 \alpha\left\{3-2 \int_{0}^{2 \pi} \sin ^{2} t d \mu_{2}(t)-(1+3 \alpha) \int_{0}^{2 \pi} \sin ^{2} t d \mu_{1}(t)\right\}
$$

and thus

$$
\operatorname{Re}\left(a_{3}\right) \leq \frac{\alpha(2 \lambda+1)}{2}
$$

which implies

$$
\left|a_{3}\right| \leq \frac{\alpha(2 \lambda+1)}{2}
$$

This completes the proof of the theorem.

3. Coefficient estimates for the functions class $\mathcal{F}_{O, \Sigma}(\lambda, \beta)$

Definition 5 function f given by (1.1) is said to be in the class $\mathcal{F}_{O, \Sigma}(\lambda, \beta),(0 \leq \beta<1 ; 1 / 2 \leq \lambda \leq 1)$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \text { and } \operatorname{Re}\left(\frac{2 \lambda-1}{2 \lambda+1}+\frac{2}{2 \lambda+1}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)>\beta \quad(z \in \mathbb{U}) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(\frac{2 \lambda-1}{2 \lambda+1}+\frac{2}{2 \lambda+1}\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(z)}\right)\right)>\beta \quad(w \in \mathbb{U}) \tag{3.2}
\end{equation*}
$$

where the function g is given by (1.2).

TEZELCI and SÜMER EKER/Turk J Math

For $\lambda=\frac{1}{2}$, the class of $\mathcal{F}_{O, \Sigma}(\lambda, \beta)$ is reduced to $C_{\Sigma}(\beta)$ of biconvex order $\beta(0 \leq \beta<1)$, which was introduced by Brannan and Taha [4].

Theorem 3 If f given by (1.1) is in the class $\mathcal{F}_{O, \Sigma}(\lambda, \beta)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{(1-\beta)(2 \lambda+1)}{2}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{(1-\beta)(2 \lambda+1)}{2} \tag{3.4}
\end{equation*}
$$

Proof We can write the inequalities in (3.1) and (3.2) as follows:

$$
\begin{equation*}
\frac{2 \lambda-1}{2 \lambda+1}+\frac{2}{2 \lambda+1}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=\beta+(1-\beta) p(z) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2 \lambda-1}{2 \lambda+1}+\frac{2}{2 \lambda+1}\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(z)}\right)=\beta+(1-\beta) q(w) \tag{3.6}
\end{equation*}
$$

where $p(z)$ and $q(w)$ are given by (2.7) and (2.8), respectively. Like the proof of Theorem 1 , equating coefficients of (3.5) and (3.6) yields

$$
\begin{gather*}
\frac{4 a_{2}}{2 \lambda+1}=(1-\beta) p_{1} \tag{3.7}\\
\frac{12 a_{3}}{2 \lambda+1}-\frac{8 a_{2}^{2}}{2 \lambda+1}=(1-\beta) p_{2} \tag{3.8}\\
-\frac{4 a_{2}}{2 \lambda+1}=(1-\beta) q_{1} \tag{3.9}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{16 a_{2}^{2}}{2 \lambda+1}-\frac{12 a_{3}}{2 \lambda+1}=(1-\beta) q_{2} \tag{3.10}
\end{equation*}
$$

From (3.7) and (3.9) we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{32 a_{2}^{2}}{(2 \lambda+1)^{2}}=(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{3.12}
\end{equation*}
$$

Also, from (3.8) and (3.10), we obtain

$$
\begin{equation*}
\frac{8 a_{2}^{2}}{2 \lambda+1}=(1-\beta)\left(p_{2}+q_{2}\right) \tag{3.13}
\end{equation*}
$$

Thus, clearly we have

$$
\begin{equation*}
\left|a_{2}\right|^{2} \leq \frac{(1-\beta)(2 \lambda+1)}{8}\left(\left|p_{2}\right|+\left|q_{2}\right|\right) \tag{3.14}
\end{equation*}
$$

TEZELCI and SÜMER EKER/Turk J Math

If we apply the Carathéodory lemma to coefficients of p_{2} and q_{2}, we find the upper bound on $\left|a_{2}\right|$ as given in (3.3).

In order to find the bound on $\left|a_{3}\right|$, we multiply (3.8) by 2 and add it to (3.10), and we obtain:

$$
\begin{equation*}
\frac{12 a_{3}}{2 \lambda+1}=(1-\beta)\left(2 p_{2}+q_{2}\right) \tag{3.15}
\end{equation*}
$$

Now let us take the absolute value of the both sides of (3.15). After that, if we apply the Carathéodory lemma to coefficients of p_{2} and q_{2}, we find

$$
\left|a_{3}\right| \leq \frac{(1-\beta)(2 \lambda+1)}{2}
$$

which is asserted in (3.4).
If we take $\lambda=\frac{1}{2}$, in Theorem 3, we obtain the following corollary due to the result of Brannan and Taha:
Corollary 1 [4] Let f given by (1.1) belong to $C_{\sigma}(\beta)(0 \leq \beta<1)$. Then

$$
\left|a_{2}\right| \leq \sqrt{1-\beta} \quad \text { and } \quad\left|a_{3}\right| \leq 1-\beta
$$

References

[1] Ali RM, Lee SK, Ravichandran V, Supramaniam S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Applied Mathematics Letters 2012; 25: 344-351.
[2] Allu V, Thomas DK, Tuneski N. On Ozaki close-to-convex functions. Bulletin of the Australian Mathematical Society 2019; 99: 89-100. doi: 10.1017/S0004972718000989
[3] Brannan DA, Kirwan WE. On some classes of bounded univalent functions. Journal of the London Mathematical Society 1969; 2: 431-443.
[4] Brannan DA, Taha TS. On some classes of bi-univalent functions. In: Mazhar SM, Hamoui A, Faour NS (editors). KFAS Proceedings Series, Vol. 3. Oxford, UK: Pergamon Press, 1988, pp. 53-60.
[5] Duren PL. Univalent Functions. Grundlehren der Mathematischen Wissenschaften. New York, NY, USA: SpringerVerlag, 1983.
[6] Goodman AW. Univalent Functions. New York, NY, USA: Mariner Publishing Company, 1983.
[7] Kaplan W. Close-to-convex schlicht functions. Michigan Math J 1952; 1 (2): 169-185.
[8] Kargar R, Ebadian A. Ozaki's conditions for general integral operator. Sahand Communications in Mathematical Analysis 2017; 5 (1): 61-67.
[9] Lewin M. On a coefficient problem for bi-univalent functions. P Am Math Soc 1967; 18: 63-68.
[10] Ozaki S. On the theory of multivalent functions. Science Reports of the Tokyo Bunrika Daigaku Section A 1935; 2 (40): 167-188.
[11] Ozaki S. On the theory of multivalent functions II. Science Reports of the Tokyo Bunrika Daigaku Section A 1941; 4 (77/78): 45-87.
[12] Pommerenke C. Univalent Functions. Göttingen, Germany: Vandenhoeck Ruprecht, 1975.
[13] Ponnusamy S, Sahoo SK, Yanagihara H. Radius of convexity of partial sums of functions in the close-to-convex family. Nonlinear Analysis 2014; 95: 219-228.
[14] Rudin W. Real and Complex Analysis. 3rd ed. New York, NY, USA: McGraw-Hill Education, 1998.

TEZELCI and SÜMER EKER/Turk J Math

[15] Srivastava HM. Some inequalities and other results associated with certain subclasses of univalent and bi-univalent analytic functions. In: Pardalos PM, Georgiev PG, Srivastava HM (editors). Nonlinear Analysis: Stability, Approximation, and Inequalities. Springer Series on Optimization and Its Applications, Vol. 68. Berlin, Germany: Springer-Verlag, 2012, pp. 607-630.
[16] Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Appl Math Lett 2010; 23: 1188-1192.
[17] Srivastava HM, Sümer Eker S, Ali RM. Coefficient bounds for a certain class of analytic and bi-univalent functions. Filomat 2015; 29: 1839-1845.
[18] Stankiewicz J. Quelques problemes extremaux dansles classes des fonctions α - angulairement etoilees. Ann Univ Mariae Curie-Skłodowska Sect A 1966; 20: 59-75 (in French).
[19] Sümer Eker S. Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions. Turk J Math 2016; 40: 641-646.
[20] Taha TS. Topics in univalent function theory. PhD, University of London, London, UK, 1981.
[21] Thomas D, Tuneski N, Vasudevarao A. Univalent Functions. A Primer. Berlin, Germany: De Gruyter, 2018.

[^0]: *Correspondence: sevtaps@dicle.edu.tr
 2010 AMS Mathematics Subject Classification: 30C45, 30C50, 30C55

