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Abstract: We investigate the global asymptotic stability of the difference equation of the form

xn+1 =
Ax2

n + F

ax2
n + exn−1

, n = 0, 1, . . . ,

with positive parameters and nonnegative initial conditions such that x0+x−1 > 0 . The map associated to this equation
is always decreasing in the second variable and can be either increasing or decreasing in the first variable depending on
the parametric space. In some cases, we prove that local asymptotic stability of the unique equilibrium point implies
global asymptotic stability.
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1. Introduction
In this paper, we investigate the global dynamics of the following difference equation

xn+1 =
Ax2n + F

ax2n + exn−1
, n = 0, 1, . . . , (1.1)

where A,F, a, e ∈ (0,∞) and the initial conditions x−1 and x0 are arbitrary nonnegative real numbers such
that x0 + x−1 > 0 . The special case of Equation (1.1), where a = 0 ,

xn+1 =
Ax2n + F

exn−1
, n = 0, 1, . . . , (1.2)

which exhibits nonconservative chaos was studied in detail in [8].
Equation (1.1) is the special case of a general second order quadratic fractional difference equation of the form

xn+1 =
Ax2n +Bxnxn−1 + Cx2n−1 +Dxn + Exn−1 + F

ax2n + bxnxn−1 + cx2n−1 + dxn + exn−1 + f
, n = 0, 1, . . . , (1.3)
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with nonnegative parameters and initial conditions such that A + B + C > 0, a + b + c + d + e + f > 0 and
x0 + x−1 + f > 0 . Several global asymptotic results for some special cases of Equation (1.3) were obtained
in [3, 4, 6, 9–11, 16, 17, 21, 22]. Two interesting special cases of Equation (1.3) are the following difference
equations:

xn+1 =
α+ γxn−1

Bxn +Dxnxn−1 + xn−1
, n = 0, 1, . . . , (1.4)

studied in [12], and

xn+1 =
Ax2n + Exn−1 + F

ax2n + exn−1 + f
, n = 0, 1, . . . , (1.5)

studied in [7]. In [7], we performed the extensive local stability analysis of all equilibrium solutions of Equation
(1.5) and we concluded that Naimark–Sacker bifurcation is not possible while the period-doubling bifurcation is
possible, which was explored in full detail for the special case of (1.5) A = F = 0 in [6]. The global asymptotic
stability results were obtained in [7] for several special cases of Equation (1.5), where the right-hand side does
not change its monotonicity, such as the special case A = E = 0 . No global dynamic results on the special cases
of Equation (1.5) with mixed monotonicity was given in [7]. In both equations, (1.4) and (1.5), the associated
map changes its monotonicity with respect to its variable. In this paper, in some cases when the associated
map changes its monotonicity with respect to the first variable, in invariant interval, we will use results first
obtained in [2, 13]. Those results were extended to the case of higher order difference equations and systems in
[14, 19].
Note that the problem of determining invariant intervals in the case when the associated map changes its
monotonicity with respect to its variable, has been considered in [18–20, 23].
In order to obtain the convergence results, we will also use the following theorems.

Theorem 1.1 (See [1], Theorem 1.4) Let f be the function from

xn+1 = f(xn, xn−1), n = 0, 1, . . . , (1.6)

with
1. f ∈ C [(0,∞)× (0,∞) , (0,∞)] ;
2. f (u, v) is nonincreasing in u and v respectively;
3. xf (x, x) is nondecreasing in x ;
4. Equation (1.6) has a unique positive equilibrium x .

Then every positive solution {xn}∞n=−1 of Equation (1.6) which is bounded from above and from below by positive
constants converges to x .

The following result which provides the existence of full solutions of general difference equation is from [5],
Theorem 1.8.

Theorem 1.2 Consider the difference equation

xn+1 = f(xn, xn−1, . . . , xn−k), (1.7)
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where f ∈ C[Jk+1, J ] for some interval J of real numbers and some nonnegative integer k . Let {xn}∞n=−k be
a solution of (1.7). Set I = lim inf

n→∞
xn and S = lim sup

n→∞
xn , and suppose that I, S ∈ J . Let L0 be a limit point

of the sequence {xn}∞n=−k . Then, the following statements are true.

1. There exists a solution {Ln}∞n=−∞ of (1.7), called a full limiting sequence of {xn}∞n=−k , such that
L0 = L0 , and such that for every N ∈ Z , LN is a limit point of {xn}∞n=−k . In particular,

I ≤ Ln ≤ S for all N ∈ Z.

2. For every i0 ∈ Z , there exists a subsequence {xri}∞i=0 of the solution {xn}∞n=−k such that

LN = lim
i→∞

xri+N for all N ≥ i0.

The rest of this paper is organized as follows. The second section presents the local stability of the unique
positive equilibrium solution. The third section gives conditions for existence of the minimal period-two solution
and its local stability. The fourth section presents global dynamics in certain regions of the parametric space.
The results and techniques depend on monotonic character of the transition function f(x, y) which is either
decreasing in both arguments or increasing in first and decreasing in second argument. The results of this paper
show that Equation (1.1) is an example of difference equation where the addition of terms (in this case term
ax2n in denominator) simplifies and stabilizes global dynamics in the sense that the unique equilibrium solution
of the resulting equation is in many cases globally asymptotically stable while it is never asymptotically stable
for Equation (1.2). In fact, we conjecture that the unique equilibrium solution of Equation (1.1) is globally
asymptotically stable whenever it is locally asymptotically stable, see Conjecture 4.12. In addition, while
Equation (1.2) cannot have period-two solutions, the perturbed Equation (1.1) has, in a parametric region,
locally stable period-two solution which was conjectured to be global attractor as well, see Conjecture 4.14.

2. Linearized stability analysis

In this section, we present the local stability of the unique positive equilibrium of Equation (2.1). Notice first
that we can easily eliminate one parameter, for example parameter a , so we will in the rest of the paper consider
equation of the form

xn+1 = f(xn, xn−1) =
Ax2n + F

x2n + exn−1
, n = 0, 1, . . . . (2.1)

The equilibrium points of Equation (2.1) are the positive solutions of the equation

x =
Ax2 + F

x2 + ex
, (2.2)

or equivalently
x3 + (e−A)x2 − F = 0. (2.3)

Denote by
φ (x) = x3 + (e−A)x2 − F.
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Now, we have

φ′(x) = 3x2 + 2(e−A)x⇒ φ′(x) = 0 ⇔
(
x = 0 ∨ x =

2(A− e)

3

)
.

Notice that

φ

(
2(A− e)

3

)
= −4(A− e)3

27
− F < 0 for A ≥ e,

and
φ′(x) > 0 for A < e and x > 0,

and since φ(−∞) = −∞ , φ(∞) = ∞ , φ(0) = −F , we conclude that there is a unique positive equilibrium
point of Equation (2.1). Now, we investigate the stability of the positive equilibrium of Equation (2.1). Set

f (u, v) =
Au2 + F

u2 + ev
.

Then Equation (2.1) has a linearized equation zn+1 = pzn + qzn−1 , where

p =
∂f

∂u
(x, x) =

2 (Aex− F )

x (x+ e)
2 =

−2(x−A)

x+ e
, q =

∂f

∂v
(x, x) = −

e
(
Ax2 + F

)
x2 (x+ e)

2 = − e

x+ e
. (2.4)

Notice that q ∈ (−1, 0) .
In next result, we use standard local stability analysis, see [13, 15].

Theorem 2.1 Let F0 = 4 (A+ 3e) (A+ e)2 . The unique equilibrium point x of Equation (2.1) is:

i) locally asymptotically stable if F < F0 ,

ii) a saddle point if F > F0 ,

iii) a nonhyperbolic point if F = F0 .

Proof For equilibrium point to be locally asymptotically stable, the well-known condition |p| < 1 − q < 2

must hold. Since q ∈ (−1, 0) , the second condition is already satisfied, so we need to prove the following

|p| < 1− q ⇔ −2e+ x

e+ x
<

−2(x−A)

e+ x
<

2e+ x

e+ x
.

Solving the inequality on the left-hand side, we get

2e+ x

e+ x
− 2(x−A)

e+ x
> 0,

and it leads to
x < 2 (A+ e) ,

which is true only if φ(2(A+ e)) > 0 . Since,

φ (2 (A+ e)) = −F + 12e3 + 28Ae2 + 20A2e+ 4A3,
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the condition is satisfied for
F < 4 (A+ 3e) (A+ e)

2
= F0.

Analogously, solving the inequality on the right-hand side, we get

−2(x−A)

e+ x
− 2e+ x

e+ x
< 0 ⇔ x >

2 (A− e)

3
,

which is obviously true if A ≤ e , and in the case A > e , it demands φ
(
2(A− e)

3

)
< 0 . Since

φ

(
2 (A− e)

3

)
= − 4

27
(A− e)3 − F,

the previous condition is satisfied if F > − 4
27 (A− e)3 , which is always true. Because q ∈ (−1, 0) , equilibrium

point x cannot be a repeller; thus, for the value of parameter F = F0 equilibrium point x is obviously
nonhyperbolic. Moreover, in that case, equilibrium point x is of the form x = 2(A + e) , and expressions in
relation (2.4) are given with

p = −2 (A+ 2e)

2A+ 3e
and q = − e

2A+ 3e
.

Now, corresponding characteristic equation is

λ2 +
2 (A+ 2e)

2A+ 3e
λ+

e

2A+ 3e
= 0

for which the solutions are λ1 = −1 and λ2 = − e

2A+ 3e
∈ (−1, 0) . 2

3. Period-two solutions
Now, we present the results about the existence and local stability of minimal period-two solutions of Equation
(2.1).

Theorem 3.1 Suppose F > F0 . Then, Equation (2.1) has a minimal period-two solution . . . , ϕ, ψ, ϕ, ψ, . . .

where

ϕ =

(
e2−A2+

√
(A−e)2(A+e)2+4Fe

)
−
√
2

√
2Fe+(A+e)(A+3e)

(
A2−e2−

√
(A−e)2(A+e)2+4Fe

)
4e ,

ψ =

(
e2−A2+

√
(A−e)2(A+e)2+4Fe

)
+
√
2

√
2Fe+(A+e)(A+3e)

(
A2−e2−

√
(A−e)2(A+e)2+4Fe

)
4e .

Proof Assume that there exists a minimal period-two solution (ϕ, ψ) of Equation (2.1), where ϕ and ψ are
distinct nonnegative real numbers. Then, (ϕ, ψ) satisfies

ϕ =
Aψ2 + F

ψ2 + eϕ
,

ψ =
Aϕ2 + F

ϕ2 + eψ
,

(3.1)
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or, equivalently ϕ
(
ψ2 + eϕ

)
= Aψ2 + F,

ψ
(
ϕ2 + eψ

)
= Aϕ2 + F.

(3.2)

By subtracting and adding those equations, we get

(e+A)(ϕ+ ψ)− ϕψ = 0, ϕψ(ϕ+ ψ) + (e−A)(ϕ+ ψ)2 − 2(e−A)ϕψ − 2F = 0. (3.3)

Let {
ϕ+ ψ = u,

ϕψ = v.
(3.4)

Now, (3.3) takes the form

u (e+A)− v = 0,

uv + u2 (e−A)− 2v (e−A)− 2F = 0.

If we substitute v from the first equation and replace it in the second one, we get

eu2 − (e2 −A2)u− F = 0,

from where it follows

u± =
(e2 −A2)±

√
(e2 −A2)2 + 4eF

2e
.

It is obviously u− < 0 , so there is only one positive solution u+ . By using (3.4), we have

ϕ+ ψ =
1

2e

(
e2 −A2 +

√
(e2 −A2)2 + 4eF

)
,

ϕψ =
1

2e
(e+A)

(
e2 −A2 +

√
(e2 −A2)2 + 4eF

)
,

i.e.

ϕ =
1

2
u+ − 1

2

√
(u+ − 4 (A+ e))u+, ψ =

1

2
u+ +

1

2

√
(u+ − 4 (A+ e))u+.

The periodic solution is real if

u+ > 4 (A+ e) ⇔ F > 4 (A+ 3e) (A+ e)
2
= F0.

2

By substitution xn−1 = un , xn = vn , Equation (2.1) becomes the system of equations
un+1 = vn,

vn+1 =
Av2 + F

v2 + eu
.

(3.5)

The map T corresponding to (3.5) is of the form

T

(
u
v

)
=

(
v

h(u, v)

)
, (3.6)
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where h(u, v) = Av2+F
eu+v2 . The second iteration of the map T is

T 2

(
u
v

)
= T

(
v

h(u, v)

)
=

(
h(u, v)
H(u, v)

)
, (3.7)

where

H(u, v) =
Ah(u, v) + F

h2(u, v) + ev
.

Theorem 3.2 Assume F > F0 . Then the minimal period-two solution (ϕ, ψ) of Equation (2.1) is locally
asymptotically stable.

Proof The Jacobian matrix of the map T 2 is of the form

JT 2 =

 ∂h(u,v)
∂u

∂h(u,v)
∂v

∂H(u,v)
∂u

∂H(u,v)
∂v

 ,

where

∂h(u,v)
∂u = − e(Av2+F)

(eu+v2)2
,

∂h(u,v)
∂v = − 2v(F−Aeu)

(eu+v2)2
,

∂H(u,v)
∂u =

2e(Av2+F)
2
(eu+v2)(F−Aev)

(v3(A2v+e(2eu+v2))+2AFv2+e3u2v+F 2)2
,

∂H(u,v)
∂v = −

(eu+v2)
(
A3ev4(v2−3eu)+2A2eFv2(v(2u+3v)−eu)+AF 2(e2u+ev(4u+5v)−4v3)+F

(
e(eu+v2)

3−4F 2v
))

(v3(A2v+e(2eu+v2))+2AFv2+e3u2v+F 2)2
.

By using (3.1), the following holds

∂h(u, v)

∂u

∣∣
(ϕ,ψ) = − eϕ

eϕ+ ψ2
,

∂h(u, v)

∂v
|(ϕ,ψ) = 2ψ(A−ϕ)

eϕ+ψ2 ,

∂H(u, v)

∂u
|(ϕ,ψ) =

2eϕ2(ψ −A)

(eψ + ϕ2) (eϕ+ ψ2)
,

∂H(u, v)

∂v
|(ϕ,ψ) = 4ϕψ(A−ϕ)(A−ψ)

(eψ+ϕ2)(eϕ+ψ2) −
eψ

eψ+ϕ2 .

Hence,

JT 2 ((ϕ, ψ)) =

 − eϕ
eϕ+ψ2

2ψ(A−ϕ)
eϕ+ψ2

− 2eϕ2(A−ψ)
(eψ+ϕ2)(eϕ+ψ2)

4ϕψ(A−ϕ)(A−ψ)
(eψ+ϕ2)(eϕ+ψ2) −

eψ
eψ+ϕ2

 .

Furthermore,

p = TrJT 2((ϕ, ψ)) =
4ϕψ(A− ϕ)(A− ψ)− e(ϕ3 + ψ3)− 2e2ϕψ

(eψ + ϕ2) (eϕ+ ψ2)
,

q = DetJT 2((ϕ, ψ)) =
e2ϕψ

(eψ + ϕ2) (eϕ+ ψ2)
.
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Notice 0 < q < 1 . Let us see when the following inequalities hold |p| < 1 + q < 2 , i.e. |p| < 1 + q . We have

|p| < 1 + q ⇔ −(1 + q) < p < 1 + q

Solving the inequality on the left-hand side, we get

p > −(1 + q) ⇔ p+ 1 + q > 0,

ϕψ
(
4A2 − 4A(ϕ+ ψ) + 5ϕψ

)
(eψ + ϕ2) (eϕ+ ψ2)

> 0.

The straightforward calculation gives

4A2 − 4A (ϕ+ ψ) + 5ϕψ = 4A2 − 4A (ϕ+ ψ) + 5 (A+ e) (ϕ+ ψ)

= (ϕ+ ψ) (A+ 5e) + 4A2 > 0,

hence, the inequality on the left-hand side is always satisfied. Similarly, we need to prove

p− 1− q < 0,

ϕψ
(
4A2 − 4A(ϕ+ ψ) + 3ϕψ

)
− 4e2ϕψ − 2e

(
ϕ3 + ψ3

)
(eψ + ϕ2) (eϕ+ ψ2)

< 0.

In order to determine the sign of the numerator, we will transform it in the equivalent form:
−2eϕ3 − 2eψ3 + ϕψ

(
−4Aϕ− 4Aψ + 3ϕψ + 4A2 − 4e2

)
= −2e

(
(ϕ+ ψ)

3 − 3ϕψ (ϕ+ ψ)
)
+ (A+ e) (ϕ+ ψ)

(
−4A (ϕ+ ψ) + 3 (A+ e) (ϕ+ ψ) + 4A2 − 4e2

)
= (ϕ+ ψ) (4 (A+ e)− (ϕ+ ψ))

(
2e (ϕ+ ψ) +A2 − e2

)
.

Notice the following: first factor is obviously positive, the third one also, since the following holds

2e (ϕ+ ψ) +A2 − e2 = 2e

(
e2−A2+

√
(A−e)2(A+e)2+4Fe

)
2e +A2 − e2

=

√
(A− e)

2
(A+ e)

2
+ 4Fe > 0.

The second factor can be written as

4 (A+ e)− (ϕ+ ψ) = 4 (A+ e)−
(
e2−A2+

√
(A−e)2(A+e)2+4Fe

)
2e

=
1

2e

(
(A+ e) (A+ 7e)−

√
(A− e)

2
(A+ e)

2
+ 4Fe

)
,

and it is negative if

(A+ e) (A+ 7e) <

√
(A− e)

2
(A+ e)

2
+ 4Fe ⇔ (A+ e)

2
(A+ 7e)

2
< (A− e)

2
(A+ e)

2
+ 4Fe

⇔ F > 4 (A+ 3e) (A+ e)
2
= F0,

which completes the proof of the theorem. 2
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4. Global asymptotic stability

Notice that the function f(u, v) is always decreasing with respect to the second variable, and it could be
increasing or decreasing with respect to the first variable. The critical point of the function f(u, v) in the first
variable is

∂f (u, v)

∂u
= 0 ⇔ 2u (Ave− F ) = 0 ⇔ u = 0 ∨ v =

F

Ae
.

Thus, if v ≥ F
Ae , function f(u, v) is increasing, and if v ≤ F

Ae function f(u, v) is decreasing. Since

f

(
F

Ae
,
F

Ae

)
=
A
(
F
Ae

)2
+ F(

F
Ae

)2
+ e FAe

= A,

we distinguish the following three cases:

(1) F
Ae < A⇔ F < A2e ,

(2) F
Ae > A⇔ F > A2e ,

(3) F
Ae = A⇔ F = A2e .

Denote Fg = A2e , and notice that Fg < F0 , which means that the function f(u, v) changes its monotonicity
inside the interval where the equilibrium point x is locally asymptotically stable.

Case (1) F < Fg < F0

In this case, the function f(u, v) is increasing with respect to the first variable and decreasing with
respect to the second variable on the invariant interval. The invariant interval is of the form

[L,U ] =

[
F

Ae
,A

]
.

Since
min

(x,y)∈[L,U ]2
f(x, y) = f(L,U) and max

(x,y)∈[L,U ]2
f(x, y) = f(U,L),

it has to be f(L,U) ≥ L and f(U,L) ≤ U. A straightforward calculation shows that

f(L,U) = f

(
F

Ae
,A

)
=
AF (Ae2 + F )

A3e3 + F 2
≥ L =

F

Ae

⇔ A2Fe(Ae2 + F ) ≥ F (A3e3 + F 2) ⇔ F ≤ A2e,

which is true. Furthermore,

f(U,L) = f

(
A,

F

Ae

)
= A ≤ A,

which implies that [L,U ] =

[
F

Ae
,A

]
is an invariant interval. We need to show that the equilibrium point

belongs to the invariant interval, i.e., we will show that φ
(
F
Ae

)
φ(A) < 0 . Indeed,

φ

(
F

Ae

)
φ(A) = −F (A

2e− F )2(Ae2 + F )

A3e3
< 0.
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Lemma 4.1 Let {xn}∞n=−1 be a solution of Equation (2.1). The following statements are true for n = 0, 1, . . . :

(a) If xn−1 ≤ A , then xn+1 ≥ F

Ae
;

(b) If xn−1 ≥ F

Ae
, then xn+1 ≤ A .

In other words,
[
F

Ae
,A

]
is an invariant interval.

Proof

(a) Suppose that xn−1 ≤ A . Then, we have

xn+1 −
F

Ae
=

(A2e− F )x2n + Fe(A− xn−1)

Ae(x2n + exn−1)
> 0,

since F < Fg = A2e , i.e., A2e− F > 0 .

(b) Also, if xn−1 ≥ F

Ae
, we have

xn+1 −A =
F −Aexn−1

x2n + exn−1
≤ 0.

2

Lemma 4.2 If F < Fg , then
[
F

Ae
,A

]
is an attracting interval. In other words, there exists N ∈ Z such that

xn ∈
[
F

Ae
,A

]
for all n ≥ N .

Proof Let I = lim inf
n→∞

xn and S = lim sup
n→∞

xn . Then, if either I ∈
[
F

Ae
,A

]
or S ∈

[
F

Ae
,A

]
, the proof is

done, since by Lemma 4.1, if I ∈
[
F

Ae
,A

]
, then S ∈

[
F

Ae
,A

]
and vice versa. Assume now that I /∈

[
F

Ae
,A

]
and S /∈

[
F

Ae
,A

]
. It follows from Lemma 4.1 that I < F

Ae
and S > A . Hence, there is an open neighborhood

O containing S such that O ∩
[
F

Ae
,A

]
= ∅ . By Theorem 1.2, let Sn+1 be a full-limiting sequence such that

lim
n→∞

Sn+1 = S . Thus, there exists a positive integer N , such that Sn−1 ∈ O for n ≥ N . According to Lemma

4.1, if Sn−1 > A >
F

Ae
, then Sn+1 <

F

Ae
, which is a contradiction. Thus, it must be the case that both I and

S are in the interval
[
F

Ae
,A

]
. 2

In this case, depending on the corresponding monotonicity of the map associated to Equation (2.1), we
will consider the system of equations

f(m,M) = m and f(M,m) =M, (4.1)

(see [13], Theorem 1.4.5). Number of the solutions of System (4.1) is analyzed in the following Lemma.
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Lemma 4.3 System (4.1) has:
(A1) only one solution - equilibrium solution, if any of the following conditions are satisfied:

(i) F+ < F < Fg < F0 ;

(ii) F = F+ < Fg < F0 and A ≤ 5
3e ;

(iii) 0 < Fc ≤ F < F+ < Fg < F0 and A < 5
3e ;

(A2) three positive solutions if any of the the following conditions hold:

(i) F = F+ < Fg < F0 and A > 5
3e ;

(ii) F < Fc < F+ < Fg < F0 ;

(A3) five positive solutions if max{0, Fc} < F < F+ < Fg < F0 and A > 5
3e ;

where F+ = 1
27

(
2

√
(A2 +Ae+ e2)

3 − (A− e)(2A+ e)(A+ 2e)

)
and Fc = − 4

27A
2(A− 3e) .

See Figure 1 for visual interpretation of different regions in Lemma 4.3 in the parametric (A,F ) plane.

Proof System (4.1) is of the form

{
Am2+F
m2+eM = m,
AM2+F
M2+em =M,

(4.2)

Figure 1. Visual representation of Lemma 4.3 in (A,F ) plane.
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or {
Am2 + F = m3 + emM,
AM2 + F =M3 + emM.

(4.3)

By subtracting equations, we get

(m−M)[(m+M)2 −A(m+M)−mM ] = 0,

and by adding them,
A(m2 +M2) + 2F = m3 +M3 + 2emM.

If we put
m+M = y, mM = x, (4.4)

we have {
y2 −Ay − x = 0,

y3 −Ay2 + (2A− 3y + 2e)x− 2F = 0.
(4.5)

Since x > 0 , y > 0 , we obtain
x > 0 ⇔ y2 −Ay > 0 ⇔ y > A. (4.6)

System (4.5) is equivalent to the next equation

−2y3 + 2(2A+ e)y2 − 2A(A+ e)y − 2F = 0. (4.7)

Let H(y) = −2y3+2(2A+e)y2−2A(A+e)y−2F and notice that H(0) = −2F, H(+∞) = −∞, H(−∞) = +∞ .
Furthermore, we have

H ′(y) = −6y2 + 4(2A+ e)y − 2A(A+ e),

and

H ′(y) = 0 ⇔ y± =
2A+ e±

√
A2 +Ae+ e2

3
> 0.

Observe the following

H(y−)H(y+) = 4F 2 +
8

27
(A− e)(2A+ e)(A+ 2e)F − 4

27
A2e2(A+ e)2,

i.e. we can consider H(y−)H(y+) as quadratic function by variable F . Now, we distinguish three cases:

(a) If H(y−)H(y+) > 0 , there is no positive solution of Equation (4.7), as it could be seen at Figure 2a.

H(y−)H(y+) = 0 ⇔ F± =
1

27

(
−(A− e)(2A+ e)(A+ 2e)± 2

√
(A2 +Ae+ e2)

3

)
.

Now we have

F− = − 1

27
(A− e)(2A+ e)(A+ 2e)− 2

27

√
(A2 +Ae+ e2)3 < 0

and

F+ = − 1

27
(A− e)(2A+ e)(A+ 2e) +

2

27

√
(A2 +Ae+ e2)3 > 0.

Thus, H(y−)H(y+) > 0 ⇔ F > F+ , i.e., if F ∈ (F+, Fg) , and that completes the proof of the statement
(A1) (i).
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(a) (b)

Figure 2. Some positions of the function H(y−)H(y+) .

(b) If H(y−)H(y+) = 0 , i.e. F = F+ , then Equation (4.7) has only one positive solution y+ = 2A+e+
√
A2+Ae+e2

3 .
See Figure 2b. Now, from (4.4) and (4.5), replacing y with y+ , we get:{

m+M = y+,
mM = y2+ −Ay+.

(4.8)

The solutions of the above system are

(m1,M1) =

(
2A+ e+ γ +

√
9A2 − 3Ae− 6e (γ + e)

6
,
2A+ e+ γ −

√
9A2 − 3Ae− 6e (γ + e)

6

)

and

(m2,M2) =

(
2A+ e+ γ −

√
9A2 − 3Ae− 6e (γ + e)

6
,
2A+ e+ γ +

√
9A2 − 3Ae− 6e (γ + e)

6

)
,

where
γ =

√
A2 +Ae+ e2 > 0.

If 9A2 − 3Ae− 6e (γ + e) < 0 ⇔ A < 5e
3 , there is no other real solutions of the system except equilibrium

solution. If 9A2 − 3Ae− 6e (γ + e) = 0 ⇔ A = 5e
3 , then y+ =

4A

3
, and System (4.8) has solution

m =
2A+ e− γ

6
= e =M = x,

and that completes the proof of the statement (A1) (ii).
If

9A2 − 3Ae− 6e
(√

A2 +Ae+ e2 + e
)
> 0

and

2A+ e+
√
A2 +Ae+ e2 −

√
9A2 − 3Ae− 6e

(√
A2 +Ae+ e2 + e

)
> 0,
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which is equivalent to A >
5e

3
, m1 and M1 are positive and real, so System (4.8) has three solution and

that completes the proof of the statement (A2) (i).

(a) (b) (c)

Figure 3. Some positions of the function H(y−)H(y+) .

(c) If H(y−)H(y+) < 0 , then Equation (4.7) has two real and positive solutions y1,2 . See Figure 3.
Condition H(y−)H(y+) < 0 is equivalent to F ∈ (0, F+) , where F+ < Fg . Then system

{
m+M = yi,

mM = y2i −Ayi,
i = 1, 2

is equivalent to the Equation

M2 − yiM + y2i −Ayi = 0,

whose solutions are given as

M1,2 =
yi ±

√
y2i − 4(y2i −Ayi)

2
=
yi ±

√
−3y2i + 4Ayi

2
.

i) If −3y2i + 4Ayi ≤ 0 ⇔ yi ∈
[
4
3A,+∞) , which is true if H

(
4
3A
)
≤ 0 and 4

3A < y+ , there is no real
solution of System (4.3) except the equilibrium solution.

H

(
4

3
A

)
≤ 0 ⇔ − 8

27
A2(A− 3e)− 2F ≤ 0

⇔ F ≥ − 4

27
A2(A− 3e) = Fc.

It is obviously Fc < F+ . The following holds

y+ >
4

3
A ⇔ 1

3
(2A+ e+

√
(2A+ e)2 − 3A(A+ e)) >

4

3
A

⇔
√
A2 +Ae+ e2 > 2A− e

⇔ A <
5

3
e.
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Notice that

y+ > A ⇔ 1

3
(2A+ e+

√
(2A+ e)2 − 3A(A+ e)) > A

⇔
√
A2 +Ae+ e2 > A− e

⇔ 3Ae > 0, which is always satisfied.

So if F ∈ [Fc, F+) and A <
5

3
e , System (4.3) has only one solution which proves (A1) (iii) .

ii) If −3y2i +4Ayi > 0 , then yi ∈ (0, 43A) . By using (4.6), it has to be yi > A , so yi ∈ (A, 43A) . Now, we
need to analyze when zeros of Equation (4.7) yi, i = 1, 2 , are in the interval (A, 43A) .
If just one zero of Equation (4.7) belongs to the interval (A, 43A) , which is true if H(A)H

(
4
3A
)
< 0 , and

since H(A) = −2F < 0 , the previous condition is reduced to H( 4A3 ) > 0 , i.e. F < Fc , then System (4.3)
has three solutions (case (A2) (ii)) . See Figure 3b.
If both of zeros yi belong to the interval (A, 43A) , which is satisfied if H

(
4
3A
)
< 0 ⇔ F > Fc and

A < y+ < 4
3A ⇔ A >

5e

3
, System (4.3) has five solutions which completes the proof of the case (A3) .

See Figure 3c.
2

Theorem 4.4 If any of conditions (A1) (i), (ii) , or (iii) of Lemma 4.3 holds, then the equilibrium solution x

of Equation (2.1) is globally asymptotically stable.

Proof Proof of the statement follows from Theorem 1.4.5 in [13], Theorem 2.1 and Lemmas 4.2 and 4.3. 2

Case (2) Fg < F < F0

In this case, in view of the fact that f(x, y) is decreasing in both arguments, we will consider the system of
equations

f(m,m) =M and f(M,M) = m. (4.9)

Number of the solutions of System (4.9) is analyzed in the following Lemma.

Lemma 4.5 (a) If Fg < F ≤ Fd = 4A2(A+ e) < F0 , then the system of the algebraic equations (4.9) has the
unique solution (m,M) = (x, x) .

(b) If Fg < Fd < F < F0 , then the system of the algebraic equations (4.9) has three solutions: (m1,M1) ,
(M1,m1) , and the equilibrium point (x, x) .

Proof

(a) System (4.9) of the form {
AM2+F
M2+eM = m,
Am2+F
m2+em =M,

(4.10)
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or {
AM2 + F = mM (M + e) ,
Am2 + F = mM (m+ e) .

(4.11)

By subtracting the equations, it leads to

(M −m) (AM +Am−Mm) = 0. (4.12)

Thus, M = m or m = AM
M−A , M > A . By substituting m in the first equation in (4.11), we get the

following
(A+ e)AM2 − FM +AF = 0. (4.13)

Solutions of Equation (4.13) are

M1,2 =
F ±

√
F (F − 4A2 (A+ e))

2A (A+ e)
.

If the discriminant F (F − 4A2 (A+ e)) < 0 , i.e. F < 4A2 (A+ e) = Fd , then Equation (4.13) does not
have real solutions, and the equilibrium point x is a unique solution of (4.10). If F − 4A2 (A+ e) = 0 ,
i.e. F = Fd , then

M =
F

2 (A+ e)A
=

4A2 (A+ e)

2 (A+ e)A
= 2A and m =

AM

M −A
=

2A2

A
= 2A,

i.e. m =M , so the conclusion is the same as in the previous case.

(b) If F − 4A (A+ e)A > 0 , i.e., F > Fd , the solutions of Equation (4.13) are real. The following holds

0 < M1 =
F −

√
F (F − 4A2 (A+ e))

2A (A+ e)
< M2 =

F +
√
F (F − 4A2 (A+ e))

2A (A+ e)
,

and M1,2 ∈
[
A, FAe

]
. Next, we have

m1 =
AM1

M1 −A
=

A

(
F−

√
F (F−4A2(A+e))

2A(A+e)

)
F−

√
F (F−4A2(A+e))

2A(A+e) −A
=
F +

√
F (F − 4A2 (A+ e))

2A (A+ e)
=M2,

m2 =
AM2

M2 −A
=

A

(
F+

√
F (F−4A2(A+e))

2A(A+e)

)
F+

√
F (F−4A2(A+e))

2A(A+e) −A
=
F −

√
F (F − 4A2 (A+ e))

2A (A+ e)
=M1,

so the conclusion follows. 2

In this case, the function f (u, v) is nonincreasing in both variables on invariant interval which is of the form

[L,U ] =

[
A,

F

Ae

]
,

909



HRUSTIĆ et al./Turk J Math

with the property that f : [L,U ]2 → [L,U ] . Indeed, since

max
(x,y)∈[L,U ]2

f (x, y) = f (L,L) and min
(x,y)∈[L,U ]2

f (x, y) = f (U,U) ,

we need to show that f(U,U) ≥ L and f(L,L) ≤ U . By straightforward calculation, we get

f(U,U) = f

(
F

Ae
,
F

Ae

)
= A,

f(L,L) = f(A,A) =
A3 + F

A2 +Ae
≤ F

Ae
⇐⇒ A3 + F

A2 +Ae
− F

Ae
≤ 0 ⇐⇒ F ≥ A2e,

which is true. Furthermore, since

φ

(
F

Ae

)
φ(A) = −F (A

2e− F )2(Ae2 + F )

A3e3
< 0,

the equilibrium point is inside the invariant interval [L,U ] .

Lemma 4.6 Let {xn}∞n=−1 be a solution of Equation (2.1). The following statements are true.

(a) If xn−1 ≤ F

Ae
, then xn+1 ≥ A ;

(b) If xn−1 ≥ A , then xn+1 ≤ F

Ae
.

In other words,
[
A,

F

Ae

]
is an invariant interval.

Proof The proof is similar to that of Lemma 4.1. 2

Lemma 4.7 If F > Fg , then
[
A,

F

Ae

]
is an attracting interval. In other words, there exists N ∈ Z such that

xn ∈
[
A,

F

Ae

]
for all n ≥ N .

Proof The proof is similar to that of Lemma 4.2. 2

Theorem 4.8 If Fg < F ≤ Fd < F0 , where Fd = 4A2(A+e) , then the equilibrium x is globally asymptotically
stable.

Proof By using Lemmas 4.5 (a) and 4.7, Theorem 1.4.7 in [13] and Theorem 2.1, we get the conclusion that
the equilibrium x is globally asymptotically stable. 2

Remark 4.9 Also, to prove Theorem 4.8, we can apply Theorem 1.1. In this case, for Fg < F ≤ Fd , and[
A,

F

Ae

]
, there exists N ∈ N for which A ≤ xn ≤ F

Ae
holds, for all n ≥ N which implies that every solution
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{xn}∞n=−1 of Equation (2.1) is bounded from above and from below by positive constants. Since

xf (x, x) = x
Ax2 + F

x2 + ex
=
Ax2 + F

x+ e
,

and
d

dx
(xf (x, x)) =

(2A− x)x

x+ e
> 0,

if
x < 2A⇔ φ (2A) > φ (x) = 0 ⇔ F < 4A2 (A+ e) ⇔ F < Fd,

and f clearly satisfies the conditions 1 and 2 of Theorem 1.1. By Theorem 1.1, every solution {xn}∞n=−1 of
Equation (2.1) converges to x .

Case (3) F = Fg < F0

If we replace F with Fg = A2e , then x = A , and Equation (2.1) is of the form

xn+1 =
xx2n + x2e

x2n + exn−1
. (4.14)

Lemma 4.10 Assume that F = Fg < F0 . Then Equation (4.14) does not possess a minimal period-four
solution.

Proof Suppose the opposite, that Equation (4.14) has a minimal period-four solution . . . x, y, z, t, x, y, z, t, . . . ,
i.e. 

z =
xy2 + x2e

y2 + ex
,

t =
xz2 + x2e

z2 + ey
,

x =
xt2 + x2e

t2 + ez
,

y =
xx2 + x2e

x2 + et
.

(4.15)

By eliminating z and t , we obtain

x

x
(
xy2+x2e
y2+ex

)2
+ x2e(

xy2+x2e
y2+ex

)2
+ ey


2

+ ex

(
xy2 + x2e

y2 + ex

)
− x

x
(
xy2+x2e
y2+ex

)2
+ x2e(

xy2+x2e
y2+ex

)2
+ ey


2

− x2e = 0,

yx2 + ey

x
(
xy2+x2e
y2+ex

)2
+ x2e(

xy2+x2e
y2+ex

)2
+ ey

− xx2 − x2e = 0,

(4.16)

or, after straightforward calculation,
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x (x− x) (Λ + Γ)

(ex+ y2)
(
ey5 + x4e2 + x2y4 + 2x3ey2 + 2e2xy3 + e3x2y

)2 = 0,

(x− y)
(
x5e3 + x4e2x2 + 2x4e2y2 + x2x2y4 + 2e2x3y3 + x3ey4 + ex2y5 + e3x4y + 2x3ex2y2

)
ey5 + x4e2 + x2y4 + 2x3ey2 + 2e2xy3 + e3x2y

= 0,

where

Λ = x5y10 + e3y12 + x3e7x5 + 2x6e6x3 + 2x2e2y11 + x3e2y10 + 4x3e3y9 + 2x4e4y7 + 8x5e2y8

+8x6e3y6 + 6x7e2y6 + 4x7e4y4 + 4x8e3y4 + x8e5y2 + x9e4y2 + 6e5x2y8 + 4e6x3y6 + e7x4y4

+x9e5x+ 3x4ey10 + 4x6ey8 + 4e4xy10 + 4x2e3xy9 + 5x3e3xy8 + 8x3e4xy7 + 6x4e2xy8 > 0,

Γ = 4x4e5xy5 + 12x5e3xy6 + 4x6e2xy6 + 6x6e4xy4 + 6x7e3xy4 + 4x8e4xy2 + 2x2e4x2y7

+10x3e4x2y6 + 4x3e5x2y5 + 10x3e5x3y4 + 5x3e6x4y2 + 6x4e3x2y6 + 2x4e4x3y4

+2x4e6x2y3 + 12x5e4x2y4 + 4x5e5x3y2 + 6x6e5x2y2 + x5exy8 > 0.

Hence, x = x , y = x , z = xy2+x2e
y2+ex = x and t = xz2+x2e

z2+ey = x is only solution of System (4.15). Thus, Equation

(4.14) does not posses a minimal period-four solution. 2

Theorem 4.11 Assume that F = Fg = A2e < F0 . Then, the unique equilibrium point x = A of Equation
(4.14) is globally asymptotically stable. Also, every solution of Equation (4.14) oscillates about the equilibrium
point x with semicycles of length two.

Proof Notice that

xn+1 − x =
ex (x− xn−1)

x2n + exn−1
,

i.e. xn+1 and xn−1 are from the different sides of the equilibrium point. Also, it means that xn+1 and xn+5

are always from the same side of the equilibrium point x . Since

xn − xn+4 = (xn − x)
x2n+1x

2
n+3 + xex2n+1 + exnx

2
n+3

x2n+1x
2
n+3 + x2e2 + xex2n+1 + exnx2n+3

,

the following holds
xn − xn+4

xn − x
=

x2n+1x
2
n+3 + xex2n+1 + exnx

2
n+3

x2n+1x
2
n+3 + x2e2 + xex2n+1 + exnx2n+3

> 0.

Furthermore,
xn − xn+4

xn − x
< 1 ⇔

x2n+1x
2
n+3 + xex2n+1 + exnx

2
n+3

x2n+1x
2
n+3 + x2e2 + xex2n+1 + exnx2n+3

< 1 ⇔ x2e2 > 0,

which is always true. Also,

xn > x⇒ xn > xn+4 > x, n ∈ N,

xn < x⇒ xn < xn+4 < x, n ∈ N,
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which means that every sequence {x4k}∞k=1 , {x4k+1}∞k=0 , {x4k+2}∞k=0 , {x4k+3}∞k=0 is monotone and bounded.
That implies that each of the sequences is convergent. Since, by Theorem 3.1 and Lemma 4.10, Equation (4.14)
has neither minimal period-two nor period-four solutions, the following holds

lim
k→∞

x4k = lim
k→∞

x4k+1 = lim
k→∞

x4k+2 = lim
k→∞

x4k+3 = x,

which implies that the equilibrium x is an attractor and by using Theorem 2.1, that completes the proof of the
theorem. 2

Case (4) F = F0

In this case, equilibrium point is a nonhyperbolic point and by Theorem 3.1, there is no period-two solutions.
We give simulations for some numerical values of parameters.
Based on many numerical simulations, we believe that the following conjectures are true.

Conjecture 4.12 If F < F0 , then the equilibrium point x of Equation (2.1) is globally asymptotically stable.

Conjecture 4.13 If F = F0 , then every solution of Equation (2.1) converges to the equilibrium point x .

Conjecture 4.14 If F > F0 , then every solution of Equation (2.1) converges to either the equilibrium point x
or to unique period-two solution (ϕ, ψ) . More precisely, every solution which starts off the global stable manifold
of the equilibrium E(x̄, x̄) converges to the period-two solution (ϕ, ψ) .

For some numerical values of parameters, we give a visual evidence for Conjecture 4.14. See Figures 4 and 5.

(a) (x0, x−1) = (3.4, 6) (b) (x0, x−1) = (3.1, 1.1)

Figure 4. The orbits for values of parameters A = 2 , e = 1 and F = 190 > F0 = 180 .

Figure 5. The phase portrait for values of parameters A = 2 , e = 1 , and F = 190 > F0 = 180 , and initial conditions
(x0, x−1) = (3.4, 6) -green, (x0, x−1) = (3.1, 1.1) -blue.
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