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Abstract: We investigate under what conditions the Fatou, Julia, and escaping sets of a transcendental semigroup are
respectively equal to the Fatou, Julia, and escaping sets of their subsemigroups. We define the partial fundamental set
and fundamental set of a holomorphic semigroup, and on the basis of these sets, we prove that the Fatou and escaping
sets of a transcendental semigroup S are nonempty.
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1. Introduction
We confine our study to the Fatou, Julia, and escaping sets of a holomorphic semigroup and its subsemigroup.
A semigroup S is a very classical algebraic structure with a binary composition that satisfies the associative
law. Semigroups arose naturally from the general mappings of a set into itself. Hence, a set of holomorphic
functions on complex plane C or Riemann sphere C∞ naturally forms a semigroup. Here, we take a set A

of holomorphic functions and construct a semigroup S that consists of all elements that can be expressed as
a finite composition of elements in A . We call such a semigroup S the holomorphic semigroup generated by
the set A . A nonempty subset T of a holomorphic semigroup S is a subsemigroup of S if f ◦ g ∈ T for all
f, g ∈ T .

For simplicity, we denote the class of all rational functions on C∞ by R and the class of all transcendental
entire functions on C by E . Let F = {fα : α ∈ ∆} ⊆ R or E . The holomorphic semigroup generated by F

is denoted by
S = ⟨fα⟩.

The index set ∆ is allowed to be infinite in general unless otherwise stated. It is easy to see that S is a collection
of holomorphic functions, and is closed under functional composition. S is called a rational semigroup or a
transcendental semigroup depending on whether F ⊆ R or F ⊆ E . A holomorphic semigroup S is abelian if
fα ◦ fβ = fβ ◦ fα for all generators fα and fβ of S .

A semigroup generated by finitely many holomorphic functions fi, (i = 1, 2, . . . , n) is called a finitely
generated holomorphic semigroup, and we write S = ⟨f1, f2, . . . , fn⟩ . If S is generated by only one holomorphic
function f , then S is called a cyclic semigroup, and we write S = ⟨f⟩ . In this case, each g ∈ S can be written
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as g = fn , where fn is the nth iterate of f with itself. We say that S = ⟨f⟩ is a trivial semigroup. By the
definition of holomorphic semigroup, we at once get the following result.

Proposition 1.1 Let S = ⟨fα⟩ be a holomorphic semigroup. Then for every f ∈ S , fm (for all m ∈ N) can
be written as fm = fα1

◦ fα2
◦ fα3

◦ · · · ◦ fαp
, where αi ∈ {α : α ∈ ∆} , for some p ∈ N .

A family F of holomorphic functions forms a normal family in a domain D if every sequence (fα) ⊆ F

has a subsequence (fαk
) which is uniformly convergent or divergent on all compact subsets of D . If there is a

neighborhood U of a point z ∈ C such that F is a normal family in U , then we say that F is normal at z .
We say that a holomorphic function f is iteratively divergent at z ∈ C if

fn(z) → ∞ as n → ∞.

A semigroup S is iteratively divergent at z if every f ∈ S is iteratively divergent at z . A semigroup S is said
to be iteratively bounded at z if there is an element f ∈ S which is not iteratively divergent at z .

Like in classical complex dynamics (that is, based on the Fatou-Julia-Eremenko theory of a holomorphic
function), the Fatou, Julia, and escaping sets in the settings of a holomorphic semigroup are defined as follows:

Definition 1.1 (Fatou, Julia, and escaping sets) The Fatou set of the holomorphic semigroup S is defined
by

F (S) = {z ∈ C : S is normal at z} ,

and the Julia set J(S) of S is the complement of F (S) . If S is a transcendental semigroup, the escaping set
of S is defined by

I(S) = {z ∈ C : S is iteratively divergent at z}.

We call each point of the set I(S) an escaping point.

It is obvious that F (S) is the largest open subset (of C or C∞ ) on which the semigroup S is normal. And
its complement J(S) is a closed set for any semigroup S . However, the escaping set I(S) is neither an open
nor a closed set (if it is nonempty) for any transcendental semigroup S . Any maximally connected subset U

of the Fatou set F (S) is called a Fatou component. If S = ⟨f⟩ , then the Fatou, Julia, and escaping sets are
respectively denoted by F (f), J(f) , and I(f) .

It is possible that the Fatou, Julia, or escaping set of a holomorphic semigroup may be equal, respectively,
to the Fatou, Julia, or escaping set of a proper subsemigroup.

Definition 1.2 (Finite index and cofinite index) A subsemigroup T of a holomorphic semigroup S is said
to be of finite index if there exists a finite collection {f1, f2, . . . , fn} of elements of S1 , where S1 = S∪{Identity} ,
such that

S = (f1 ◦ T ) ∪ (f2 ◦ T ) ∪ . . . ∪ (fn ◦ T ). (1.1)

The smallest n that satisfies 1.1 is called the index of T in S . Similarly, a subsemigroup T of a holomorphic
semigroup S is said to be of cofinite index if there exists finite collection {f1, f2, . . . , fn} of elements of S1 such
that for any f ∈ S , there is i ∈ {1, 2, . . . , n} such that

fi ◦ f ∈ T. (1.2)

The smallest n that satisfies 1.2 is called the cofinite index of T in S .
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Note that the size of a subsemigroup T of a semigroup S is measured in terms of index. If a subsemigroup T

has a finite index or cofinite index in the semigroup S , then we say T is a finite indexed subsemigroup or a
cofinite indexed subsemigroup, respectively.

For any holomorphic function f ,

CV (f) = {w ∈ C : w = f(z) for some z such that f ′(z) = 0}

(where f
′ represents derivative of f with respect to z ) is the set of critical values of f . The set AV (f)

consisting of all w ∈ C such that there exists a curve Γ : [0,∞) → C so that Γ(t) → ∞ and f(Γ(t)) → w as
t → ∞ is the set of asymptotic values of f and

SV (f) = (CV (f) ∪AV (f))

is the set of singular values of f . If SV (f) is finite, then f is said to be of finite type. If SV (f) is bounded,
then f is said to be of bounded type. The sets

S = {f : f is of finite type}

and
B = {f : f is of bounded type}

are respectively known as Speiser class and Eremenko-Lyubich class.
In [8, Theorem 5.1], Poon proved that the Fatou and Julia sets of a finitely generated abelian transcen-

dental semigroup S is the same as the Fatou and Julia sets of each of its particular functions if the semigroup S

is generated by finite type transcendental entire functions. In [13, Theorems 3.3], we proved that the escaping
set of a transcendental semigroup S is the same as the escaping set of each of its particular functions if the
semigroup S is generated by finite type transcendental entire functions. In this paper, we prove the following
assertion:

Theorem 1.1 If a subsemigroup T has finite index or cofinite index in an abelian transcendental semigroup
S , then I(S) = I(T ), J(S) = J(T ) and F (S) = F (T ) .

In Section 2, we define Rees index in semigroups. We then prove Theorem 1.1 for a subsemigroup T having
finite Rees index.

From [11, Theorem 3.1 (1) and (3)], we can say that Fatou and escaping sets of holomorphic semigroup
may be empty. The result [8, Theorem 5.1] is one of the case of nonempty Fatou set and that of [13, Theorem
3.3] is a case of the nonempty escaping set of transcendental semigroup. We obtain another case of nonempty
Fatou and escaping sets on the basis of the following definition.

Definition 1.3 (Partial fundamental set and fundamental set) A set U is called a partial fundamental
set for the semigroup S if

1. U ̸= ∅ ,

2. U ⊂ R(S) ,

3. f(U) ∩ U = ∅ for all f ∈ S .
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If in addition to (1) , (2) , and (3), U satisfies the property

4.
∪

f∈S f(U) = R(S) ,

then U is called a fundamental set for S .

The set R(S) is defined and discussed in Remark 4.1 of Section 4. On the basis of Definition 1.3, we obtain the
following result.

Theorem 1.2 Let S be a holomorphic semigroup and U a partial fundamental set for S . Then U ⊂ F (S) .
If, in addition, S is a transcendental semigroup and U is a fundamental set, then U ⊂ I(S) .

The organization of this paper is as follows: In Section 2, we briefly review the notion of finite index sub-
semigroups and cofinite index subsemigroups with suitable examples, we review some results from rational
(sub)semigroup dynamics, and we extend the same in transcendental (sub)semigroup dynamics. We introduce
the Rees index of a subsemigroup, and we prove the dynamical similarity of a holomorphic semigroup and its
subsemigroup. In Section 3, we prove Theorem 1.1, and we also prove it without the abelian condition for the
subsemigroup having finite Rees index. In Section 4, we define discontinuous semigroups, and on the basis of
this notion, we discuss partial fundamental sets and fundamental sets, and then we prove Theorem 1.2.

2. Results from general holomorphic (sub)semigroup dynamics

There are various notions of how large a substructure is inside of an algebraic object in order that the two
structures share certain properties. One such a notion is index, and it plays an important role in general group
theory and semigroup theory. It is used to measure the difference between a group (semigroup) and a subgroup
(subsemigroup). It occurs in many important theorems of the group theory and semigroup theory. The notions
of finite index, cofinite index and Rees index of subsemigroup have been used to gauge the size of subsemigroup.
If the subsemigroup T is big enough in semigroup S , then S and T share many properties. In this context,
Theorem 1.1 states that if T has finite index or cofinte index in S , then both S and T share the same Fatou,
Julia, and escaping sets. In the semigroup theory, the cofinite index is also known as Grigorochuk index, and
this index was introduced by Grigorochuk [3] in 1988. Maltcev and Ruskuc [7, Theorem 3.1] proved that for
every element f of a finitely generated semigroup S and every proper cofinite indexed subsemigroup T , one
has f ◦ T ̸= S . Note that if the semigroup is a group, the notion of finite index and cofinite index coincide.
The subsemigroup T of a finitely generated semigroup S consisting of all words of finite length (compositions
of a finite number of holomorphic functions) has a finite index and a cofinite index in S .

From Definition 1.2, the finite index and cofinite index of subsemigroups of the following examples will
be clear.

Example 2.1 A subsemigroup

T = ⟨sin sin z, cos cos z, sin cos z, cos sin z⟩

of the transcendental semigroup S = ⟨sin z, cos z⟩ has finite index 3 and cofinite index 2.

Example 2.2 A subset T = {words (compositions) begining with f} of a holomorphic semigroup S = ⟨f, g⟩ is
clearly a subsemigroup of S . Then T has an infinite index but cofinite index 1 in S .
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Note that in Example 2.2, S is finitely generated but T is not. Since any generating set of T must
contain {f ◦ gn : n ≥ 1} . The only cofinite subsemigroup of T is T itself. Hence, T has cofinite index 1 in S .

Example 2.3 Let S = ⟨f⟩ where f is a holomorphic function. Then the subsemigroup T = ⟨fn : n ∈ N⟩ . has
finite index n in S and cofinite index 1 in S .

Note that in Example 2.3, the subsemigroup T has n different translates in S , which are T, f ◦
T, . . . , fn−1 ◦ T . Here, the only cofinite subsemigroup of T is T itself. If we choose the subsemigroup of
S to be S itself, then there are infinitely many translates of S , namely, h ◦ S = h ◦ ⟨f⟩ for all h ∈ S . So S

has an infinite index in itself. Again, it has cofinite index 1 in itself.
Using Theorem 3.1 of [11], we can prove the following assertion:

Lemma 2.1 For any subsemigroup T of a holomorphic semigroup S , we have F (S) ⊂ F (T ), J(S) ⊃ J(T ) .

Proof We prove that F (S) ⊂ F (T ) . The next inclusion follows taking the complements. By Theorem 3.1
of [11], F (S) ⊂ ∩f∈SF (f) , and F (T ) ⊂ ∩g∈TF (g) for any subsemigroup T of the semigroup S . Since any
g ∈ T is also in S ; thus, by the same Theorem 3.1 of [11], we also have F (S) ⊂ F (g) for all g ∈ T and hence,
F (S) ⊂ ∩g∈TF (g) . Now for any z ∈ F (S) , we have z ∈ ∩g∈TF (g) for all g ∈ T . This implies that z ∈ F (g)

for all g ∈ T . This proves z ∈ F (T ) and hence, F (S) ⊂ F (T ) . 2

Hinkannen and Martin [4, Theorem 2.4] proved that if a subsemigroup T has a finite index or a cofinite
index in the rational semigroup S , then F (S) = F (T ) and J(S) = J(T ) . In the following theorem, we prove
the same result in the case of a general holomorphic semigroup. Note that by a general holomorphic semigroup,
we mean either a rational semigroup or a transcendental semigroup.

Theorem 2.1 If a subsemigroup T has a finite index or a cofinite index in the holomorphic semigroup S , then
F (S) = F (T ) and J(S) = J(T ) .

Proof From Lemma 2.1, F (S) ⊂ F (T ) for any holomorphic semigroup S . If S is a rational semigroup, the
result follows from [4, Theorem 2.4]. We prove the reverse inclusion, if S is a transcendental semigroup.

Let the subsemigroup T of a semigroup S has finite index n . Then by Definition 1.2, there exists a
finite collection {f1, f2, . . . , fn} of elements of S1 such that

S = f1 ◦ T ∪ f2 ◦ T ∪ . . . ∪ fn ◦ T.

Then for any g ∈ S , there is an h ∈ T such that g = fi ◦ h . Choose a sequence (gj)j∈N in S . Then each gj

is of the form gj = fi ◦ hj , where hj ∈ T and 1 ≤ i ≤ n . Here, we may assume the same i for all j . Hence,
without loss of generality, we may choose a subsequence (gjk) of (gj) such that gjk = fi ◦hjk for particular fi ,
where (hjk) is a subsequence of (hj) in T . Since on F (T ) , the sequence (hjk) has a convergent subsequence
so do the sequences (gjk) and (gj) in F (S) . This proves that F (T ) ⊂ F (S) .

Let the subsemigroup T of a semigroup S have cofinite index n . Then by Definition 1.2, there exists
a finite collection {f1, f2, . . . , fn} of elements of S1 such that for every f ∈ S , there is i ∈ {1, 2, . . . , n} such
that fi ◦ f ∈ T . Let us choose a sequence (gj)j∈N in S . Then, for each j , there is an i with 1 ≤ i ≤ n such
that fi ◦ gj = hj ∈ T . Let z ∈ F (T ) . Then the sequence (hj) has a convergent subsequence in T , and hence
so does the sequence (gj) in F (S) . This proves that F (T ) ⊂ F (S) . 2
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Next, we see a special subsemigroup of a holomorphic semigroup that yields a cofinite index.

Definition 2.1 (Stablizer, wandering component and stable domains) For a holomorphic semigroup
S , let U be a component of the Fatou set F (S) and Uf be a component of the Fatou set containing f(U)

for some f ∈ S . The set of the form
SU = {f ∈ S : Uf = U}

is called the stabilizer of U on S . If SU is nonempty, we say that a component U satisfying Uf = U is a stable
basin for S . The component U of F (S) is said to be wandering if the set {Uf : f ∈ S} contains infinitely many
elements. That is, U is a wandering domain if there is sequence (fi)i∈N of elements of S such that Ufi ̸= Ufj

for i ̸= j .

Note that for any rational function f , we always have Uf = U . So US is nonempty for a rational
semigroup S . However, if f is transcendental, it is possible that Uf ̸= U . Hence, SU may be empty for a
transcendental semigroup S . Bergweiler and Rohde [1] proved that Uf − U contains at most one point which
is an asymptotic value of f if f is an entire function.

Lemma 2.2 Let S be a holomorphic semigroup. Then the stabilizer SU (if it is nonempty) is a subsemigroup
of S and F (S) ⊂ F (SU ), J(S) ⊃ J(SU ) .

Proof Let f, g ∈ SU . Then by Definition 2.1, Uf = U and Ug = U , where Uf and Ug are components
of the Fatou sets containing f(U) and g(U) , respectively. Then f(U) ⊆ Uf = U and g(U) ⊆ Ug = U =⇒
(f ◦ g)(U) = f(g(U)) ⊆ f(Ug) = f(U) ⊆ Uf = U . Since (f ◦ g)(U) ⊆ Uf◦g , so either Uf◦g ⊆ U or U ⊆ Uf◦g .
The only possibility in this case is Uf◦g = U . Hence, f ◦ g ∈ SU , which proves that SU is a subsemigroup of
S . The proofs of F (S) ⊂ F (SU ), J(S) ⊃ J(SU ) follow from Lemma 2.1. 2

There may be a connection between having no wandering domains and the stable basins of cofinite index.
We have established the connection in the following theorem for a general holomorphic semigroup S .

Theorem 2.2 Let S be a holomorphic semigroup with no wandering domains. Let U be any component of the
Fatou set. Then the forward orbit {Uf : f ∈ S} of U under S contains a stabilizer of U of cofinite index.

Proof If S is a rational semigroup, see, for instance, the proof of [4, Theorem 6.1]. If S is a transcendental
semigroup, we sketch our proof in the following way.

We are given that U is a nonwandering component of the Fatou set F (S) . So U has a finite forward
orbit U1, U2, . . . , Un (say) with U1 = U .
Case (i): If for every i = 1, 2, . . . n , there is fi ∈ S such that fi(Ui) ⊆ U1 , then by Lemma 2.2 the stabilizer
SU1

= {f ∈ S : U1f = U1} is a subsemigroup of S . For any f ∈ S , there is fi for each i = 1, 2, . . . , n such that
U1fi◦f

= U1 . This shows that fi ◦ f ∈ SU1 . Therefore, U1 is a required stable basin such that the stabilizer
SU1 has a cofinite index in S .
Case (ii): If, for every j = 2, . . . n , there is fj ∈ S such that fj(Uj) ⊆ V , where V = Uj such that j ≥ 2 , then
the number of components of forward orbits of V is strictly less than that of U . In this way, we can find a
component W = Ui for some i ≤ n whose forward orbit has fewest components. For every component Wg of
the forward orbit of W , there is f ∈ S such that f(Wg) ⊆ W . That is, Wg◦f = W , and it follows that W is
a required stable basin such that the stabilizer SW has a cofinite index. 2
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Let S be a holomorphic semigroup and f ∈ S . Then S ◦ f and f ◦ S are subsemigroups of S . Note
that S ◦ f and f ◦ S may not be finitely generated even if the semigroup S is. If S ◦ f = ⟨f1, f2, . . . , fn⟩
where fi ∈ S for i = 1, 2, . . . n , then fi = gi ◦ f , where gi ∈ S . For any g ∈ S , we have gn ◦ f ∈ S ◦ f for
all n ≥ 1 but not every gn ◦ f ∈ ⟨f1, f2, . . . , fn⟩ . From this fact, we came to know that the notion of cofinite
index fails to preserve the basic finiteness (finitely generated) condition of a subsemigroup. That is, if T is a
subsemigroup of cofinite index in semigroup S , then S being finitely generated may not always imply that T is
finitely generated. There is another notion of index which preserves the finiteness condition of a subsemigroup.

Definition 2.2 (Rees index) Let S be a semigroup and T be a subsemigroup. The Rees index of T in S is
defined as |S−T |+1 , where |S−T | represents the cardinality of S−T . In this case, T is a large subsemigroup
of S , and S is a small extension of T .

The Rees index was first introduced by Jura [5] in the case where T is an ideal of the semigroup S . In
such a case, the Rees index of T in S is the cardinality of factor semigroup S/T . From Definition 2.2, it is
clear that the Rees index of T in S is the size of the complement S − T . For a subsemigroup to have finite
Rees index in its parent semigroup is a fairly restrictive property, and it occurs naturally in semigroups (for
instance, all ideals in the additive semigroup of positive integers are of finite Rees index). Note that Rees index
does not generalize group index, and even the notion of finite Rees index does not generalize finite group index.
That is, if G is an infinite group and H is a proper subgroup, the group index of H in G may be finite even
though the Rees index is infinite. In fact, let G be an infinite group and H is a subgroup of G . Then H has
finite Rees index in G if and only if H = G .

Next, we investigate how similar a semigroup S and its large subsemigroup T are. One basic similarity
(proved first by Jura [5]) is the following result.

Lemma 2.3 Let T be a large subsemigroup of a semigroup S . Then S is finitely generated if and only if T is
finitely generated.

Proof See for instance [10, Theorem 1.1]. 2

On the basis of Lemma 2.3, we obtain the following dynamical similarity of a holomorphic semigroup and its
subsemigroup.

Theorem 2.3 Let T be a large subsemigroup of a finitely generated holomorphic semigroup S . Then F (S) =

F (T ) and J(S) = J(T ).

Proof We prove that F (S) = F (T ) . The other equality follows by taking complements. By Lemma 2.1,
it is clear that F (S) ⊂ F (T ) . Hence, it is sufficient to prove that F (T ) ⊂ F (S) . By Lemma 2.3, T is
finitely generated. Let X = {f1, f2, . . . , fn} ⊂ S be a generating set of T . Clearly, S is generated by the
set Y = X ∪ (S − T ) . Every sequence (fi) in F (T ) (where fi = fi1 ◦ fi2 ◦ . . . ◦ fin , and in ∈ {1, 2, . . . , n})
has a convergent subsequence. Now each element gm of a sequence (gm) in S can be written as gm =

fi1 ◦fi2 ◦ . . .◦fin ◦hj1 ◦hj2 ◦ . . .◦hjk , where S−T = {h1, h2, . . . , hk} ⊂ S and jk ∈ {1, 2, . . . , k} . Since S−T is
finite, a convergent sequence in F (T ) can be extended to a convergent sequence in F (S) . Thus, every sequence
(gm) in F (S) has a convergent subsequence. Hence F (T ) ⊂ F (S) . 2
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3. Proof of Theorem 1.1
We now prove a result analogous to Lemma 2.1 in the case of an escaping set of a transcendental semigroup.

Lemma 3.1 For any subsemigroup T of a transcendental semigroup S , we have I(S) ⊂ I(T ) .

Proof By Theorem 3.1 of [11], I(S) ⊂ ∩f∈SI(f) and I(T ) ⊂ ∩g∈T I(g) for any subsemigroup T of S . Since
T ⊂ S , the same theorem implies that I(S) ⊂ I(g) for all g ∈ T . Hence, I(S) ⊂ ∩g∈T I(g) . Now for any
z ∈ I(S) , we have z ∈ ∩g∈T I(g) for all g ∈ T . This implies that z ∈ I(g) for all g ∈ T . By Definition 1.1, we
have gn(z) → ∞ as n → ∞ for all g ∈ T . This proves that z ∈ I(T ) and hence, I(S) ⊂ I(T ) . 2

Lemma 3.2 Let S be a transcendental semigroup. Then

1. int.(I(S)) ⊂ F (S) and ext.(I(S)) ⊂ F (S) , where int. and ext. respectively denote the interior and
exterior of I(S) .

2. ∂I(S) = J(S) , where ∂I(S) denotes the boundary of I(S) .

Proof We refer to Lemma 4.2 and Theorem 4.3 of [6]. 2

Note that Lemma 3.2 is an extension of Eremenko’s result [2], ∂I(f) = J(f) , of classical transcendental
dynamics to more general semigroup dynamics. We prove the following assertion which can be an alternative
definition of escaping set.

Lemma 3.3 If z ∈ C is an escaping point of a transcendental semigroup S , then every nonconvergent sequence
in S has a divergent subsequence at z .

Proof Let z ∈ C be an escaping point of a transcendental semigroup S . Let f ∈ S . Then by Definition 1.1,
there is a sequence (gn)n∈N in S representing g1 = f, g2 = f2, . . . , gn = fn, . . .(say) such that gn(z) → ∞ as
n → ∞ or there is a sequence in S which contains (gn)n∈N as a subsequence such that gn(z) → ∞ as n → ∞ .
More generally, every nonconvergent sequence in S has a subsequence which diverges infinity at z . 2

We are now ready to prove Theorem 1.1.

Proof [Proof of Theorem 1.1] We prove I(S) = I(T ) . The fact that J(S) = J(T ) is obvious from Lemma 3.2
(2). That F (S) = F (T ) is also obvious. By Lemma 2.1, we always have I(S) ⊂ I(T ) for any subsemigroup T

of S . For proving this theorem, it is enough to show the reverse inclusion I(T ) ⊂ I(S) .
Let a subsemigroup T of a semigroup S have finite index n . Then, by Definition 1.2, there exists a finite

collection {f1, f2, . . . , fn} of elements of S1 such that

S = f1 ◦ T ∪ f2 ◦ T ∪ . . . ∪ fn ◦ T.

Then, for any g ∈ S , there is h ∈ T such that g = fi ◦ h . Choose a sequence (gj)j∈N in S . Then each gj is
of the form gj = fi ◦ hj , where hj ∈ T , 1 ≤ i ≤ n . Here, we may assume the same i for all j . Let z ∈ I(T ) .
Then by Lemma 3.3, every nonconvergent sequence (hj)j∈N in T has a divergent subsequence (hjk)jk∈N at
the point z . That is, hn

jk
(z) → ∞ as n → ∞ for all jk . In this case, every sequence (gj)j∈N in S has a

subsequence (gjk)k∈N , where gjk = fi ◦ hjk with hn
jk
(z) → ∞ as n → ∞ . Since S is an abelian transcendental
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semigroup, gjk = fi ◦hjk = hjk ◦ fi . Thus, we may write gnjk(z) = hn
jk
(fi(z)) → ∞ as n → ∞ . This shows that

fi(z) ∈ I(S) . If fi = identity for a particular i , we are done. If fi is not identity, then it is an element of an
abelian transcendental semigroup S , and in this case I(S) is backward invariant by [12, Theorem 2.6]. Thus,
we must have z ∈ I(S) . Therefore, I(T ) ⊂ I(S) .

Let a subsemigroup T of a semigroup S have cofinite index n . Then by Definition 1.2, there exists a
finite collection {f1, f2, . . . , fn} of elements of S1 such that for every f ∈ S , there is i ∈ {1, 2, . . . , n} such
that fi ◦ f ∈ T . Let us choose a sequence (gj)j∈N in S . Then for each j , there is a i with 1 ≤ i ≤ n such
that fi ◦ gj = hj ∈ T . Let z ∈ I(T ) . Then by Lemma 3.3, every nonconvergent sequence (hj)j∈N in T has a
divergent subsequence (hjk)jk∈N at the point z . This follows that sequence (fi◦gj) has a divergent subsequence
(fi◦gjk) (say) at z . Since S is abelian, we can write that (fi◦gjk)(z) = (gjk ◦fi)(z) = gjk(fi(z)) = hjk(z) . Now
for any z ∈ I(T ) , hjk ∈ T , we must have hn

jk
(z) = gnjk(fi(z)) → ∞ as n → ∞ . This implies that fi(z) ∈ I(S) .

If fi = identity for a particular i , we are done. If fi is not the identity, then of it is an element of abelian
transcendental semigroup S . Then as in the first part, we write that I(T ) ⊂ I(S) . 2

The abelian hypothesis can be deleted from Theorem 1.1 if we use the Rees index. Thus, we have the
following generalization of Theorem 1.1.

Theorem 3.1 If a subsemigroup T of a finitely generated transcendental semigroup S has a finite Rees index,
then I(S) = I(T ), J(S) = J(T ) and F (S) = F (T ) .

Proof If we prove I(S) = I(T ) , then the equality J(S) = J(T ) will follow from Lemma 3.2 (2). The inclusion
I(S) ⊂ I(T ) follows from Lemma 3.1. Thus, we prove I(T ) ⊂ I(S) .

By Theorem 2.3, T is finitely generated. Let X = {f1, f2, . . . , fn} ⊂ S be a generating set of T . Clearly,
S is generated by the set Y = X ∪ (S − T ) . By Lemma 3.3, every nonconvergent sequence (fi) in T (where
fi = fi1 ◦ fi2 ◦ · · · ◦ fin , and in ∈ {1, 2, . . . , n}) has a divergence subsequence (fnk

) at each point of I(T ) . Now
each element gm of the sequence (gm) in S can be written as gm = fi1 ◦ fi2 ◦ · · · ◦ fin ◦ hj1 ◦ hj2 ◦ · · · ◦ hjk ,
where S − T = {h1, h2, . . . , hk} ⊂ S is a finite set and jk ∈ {1, 2, . . . , k} . This shows that a divergent sequence
in I(T ) can be extended to a divergent sequence in I(S) . Thus, every sequence (gm) in I(S) has a divergent
subsequence. Hence I(T ) ⊂ I(S) . 2

4. Proof of Theorem 1.2
It is known that for certain holomorphic semigroups, the Fatou sets and the escaping sets might be empty. In
this section, we discuss the notion of discontinuous semigroup. This notion yields a partial fundamental set and
a fundamental set. We prove Theorem 1.2 by showing that a partial fundamental set is in the Fatou set F (S)

and that a fundamental set is in the escaping set I(S) .

Definition 4.1 (Discontinuous semigroup) A semigroup S is said to be discontinuous at a point z ∈ C if
there is a neighborhood U of z such that f(U)∩U = ∅ for all f ∈ S or equivalently, translates of U by distinct
elements of S (S -translates) are disjoint. The neighborhood U of z is also called a nice neighborhood of z .

Remark 4.1 Given a holomorphic semigroup S , there are two natural subsets associated with S .

1. The regular set R(S) that consists of points z ∈ C at which S is discontinuous.
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2. The limit set L(S) that consists of points z ∈ C for which there is a point z0 , and a sequence (fn) of
distinct elements of S such that fn(z0) → z as n → ∞ .

A set X ⊂ C is S-invariant or invariant under S if f(X) = X for all f ∈ S . It is clear that both of the sets
R(S) and L(S) are S-invariant. If U is a nice neighborhood, then U ⊂ R(S) . Thus, R(S) is an open set,
whereas the set L(S) a closed set, and R(S) ∩ L(S) = ∅ . Recall that a set U is a partial fundamental set for
the semigroup S if (1) U ̸= ∅ , (2) U ⊂ R(S) , (3) f(U) ∩ U = ∅ for all f ∈ S . If in addition to (1) , (2) , and
(3), U satisfies the property (4)

∪
f∈S f(U) = R(S) , then U is called a fundamental set for S . We say that

x, y ∈ C are S - equivalent if there is an f ∈ S such that f(x) = y . Condition (3) asserts that no two points
of U are S -equivalent under semigroup S , and condition (4) asserts that every point of R(S) is equivalent
to some point of U . Note that if we replace (3) by f−1(U) ∩ U = ∅ for all f ∈ S , we say U is a backward
partial fundamental set for S ; if, in addition, U satisfies

∪
f∈S f−1(U) = R(S) , then we say U is a backward

fundamental set. Note that Theorems 1.2 and 4.1 hold if we have given (partial) backward fundamental set
in the statements. Similar to the results of Hinkkanen and Martin [4, Lemma 2.2] in the case of a rational
semigroup, we prove the following in the case of transcendental semigroup S .

Proof [Proof of Theorem 1.2] Let S be a holomorphic semigroup. The set U is a nonempty open set, and
f(U) ∩ U = ∅ for all f ∈ S by Definition 4.1. The statement f(U) ∩ U = ∅ for all f ∈ S implies that S omits
U on U . Since U is open, it contains more than two points. Then by Montel’s theorem, S is normal on U .
Therefore, U ⊂ F (S) .

Let S be a transcendental semigroup. To prove U ⊂ I(S) , we have to show that fn(z) → ∞ as n → ∞
for all f ∈ S and for all z ∈ U . The condition f(U) ∩ U = ∅ for all f ∈ S implies that fn(U) ∩ U = ∅ , since
f ∈ S implies fn ∈ S . Also, U is a fundamental set, so by Definition 1.3 (4), we have

∪
f∈S f(U) = R(S) .

By Remark 4.1(2), there are no points in U which appear as the limit points under distinct (fm)m∈N in S .
That is, (fm) has a divergent subsequence (fmk

) at each point of U . Thus, by [11, Theorem 2.2], for any
z ∈ U, fn(z) → ∞ as n → ∞ for any f ∈ (fm) . This shows that U ⊆ I(S) . 2

Finally, we generalize Theorem 1.2 in the following form. We give a short sketch of the proof. For a more
detailed proof, we refer to [9, Theorem 2.1].

Theorem 4.1 Let U1 and U2 be two (partial) fundamental sets for transcendental semigroups S1 and S2 ,
respectively. Suppose furthermore that C \ U1 ⊂ U2 and C \ U2 ⊂ U1 . Then the semigroup S = ⟨S1, S2⟩ is
discontinuous, and U = U1 ∩ U2 is a (partial) fundamental set for the semigroup S .

Proof [Sketch of the proof] Let U1 , U2 and S1 , S2 be as given in the theorem. It is clear from Theorem 1.2
that F (S1) ̸= ∅, F (S2) ̸= ∅ ; also I(S1) ̸= ∅ and I(S2) ̸= ∅ if U1 and U2 are fundamental sets of S1 and S2

respectively. Note that U ̸= ∅ by the assumption. Clearly, f(U) ∩ U = ∅ for every f ∈ S . This proves S is
discontinuous and that U is a (partial) fundamental set for S . 2
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