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Abstract: This paper concerns the description of the entire or meromorphic solutions to two certain types of differential-
difference equations under some certain conditions. The significance of our results lies in that we find the entire solutions
of the second type equation with the form f = AeBz , where A,B are constants that are completely determined only by
coefficients and correlated indices. Our results are accurate in a certain sense and are supplemented by an example. In
particular, our results generalize and improve a result of Zhang and Huang, and they are closely related to recent results
by Dong and Liao.
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1. Introduction
In 1964, Hayman ([11], Theorem 3.9) considered the following nonlinear differential equation:

fn(z) + Pd(f(z)) = g(z), (1.1)

where Pd(f) is a differential polynomial in f with degree d , and proved the following result.

Theorem 1.1 Suppose that f(z) is a nonconstant meromorphic function, d ≤ n − 1 , and f, g satisfy
N(r, f) + N(r, 1/g) = S(r, f) in (1.1). Then we have g(z) = (f(z) + γ(z))n , where γ(z) is meromorphic
and a small function of f(z) .

p1, p2, α1, α2 are small functions of f , and g is replaced by p1(z)e
α1(z) + p2(z)e

α2(z) for the following
equation:

fn(z) + Pd(f(z)) = p1(z)e
α1(z) + p2(z)e

α2(z). (1.2)

Li and Yang ([18], Theorem 1) observed that there are no transcendental entire solutions when n ≥ 4, d ≤ n−3 ;
later, Li ([17], Theorem 2) and Liao et al. ([21], Theorem 1) obtained entire or meromorphic solutions to the
new equations under conditions n ≥ 2 (resp.n ≥ 3), d ≤ n − 2 . Meanwhile, for some other works related to
(1.1), readers can refer to [5, 15, 16, 19–22, 30].
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Based on the above results, one sees that the right side of these equations has one or two items. Hence, a
natural question is: Can we characterize all entire or meromorphic solutions of these equations if the right side
is replaced by multiple items? In 2018, Zhang and Huang ([31], Theorem 1.1) investigated this case and got a
result of the nonlinear difference equation of the following form:

fn(z) + p(z)f(z + c) = β1e
α1z + β2e

α2z + · · ·+ βse
αsz, (1.3)

under n ≥ 2 + s and some given assumptions. They proved that any meromorphic solution f on C of the
functional equation (1.3) must satisfy σ2(f) ≥ 1 , where σ2(f) is the hyperorder of f .

Take positive integers t and k . For t + 1 complex numbers c0(= 0), c1, ..., ct , we define the following
differential-difference equations in the complex plane C :

P (f) =
∑
I∈I

aI
(

f(k)
)I

=
∑

I
aI

t∏
l=0

(
f (k)
cl

)Il
= 0, (1.4)

where k = (0, 1, ..., k) ; I = (I0, ..., It) , Il = (il0, il1, ..., ilk) are multiindices of nonnegative integers Z+ ; I is a

finite set of Z(t+1)(k+1)
+ ; f = (fc0 , ..., fct) , in which fcl is defined by fcl(z) = f(z+cl) ; f (k)

cl =
(
fcl , f

′
cl
, ..., f

(k)
cl

)
;

and
(
f
(k)
cl

)Il
= f il0

cl

(
f ′
cl

)il1 · · ·(f (k)
cl

)ilk
and aI are nonzero meromorphic functions in C . With the development

of difference analogues of Nevanlinna theory, especially the difference analogue of the logarithmic derivative
lemma given by Chiang and Feng [4] and Halburd and Korhonen [8], respectively, differential-difference equations
have been studied rapidly [1, 6, 9, 10, 21, 23, 26, 27, 29].

Our first result generalizes the result of Zhang and Huang mentioned above. We consider the following
differential-difference equation on f :

p∑
i=1

fni(z)f (k)(z) +

q∑
j=1

pj(z)f(z + cj) =

s∑
l=1

βle
αlz, (1.5)

under the condition (A): Suppose that p1(z), ..., pq(z) are polynomials, c1, c2, ..., cq, β1, β2, ..., βs are all nonzero
constants, and take positive integers ni(i = 1, 2, . . . , p) , s , k with np > np−1 > · · ·n1 ≥ s + 2 and
q∑

j=1

pj(z)f(z + cj) ̸≡ 0 . Let α1, α2, ..., αs be distinct nonzero constants satisfying αi

αj
̸= nt + 1 for all

i, j ∈ {1, 2, ..., s} and t ∈ {1, ..., p} .
We obtain the first result as follows:

Theorem 1.2 The differential-difference equation (1.5) under the assumption (A) does not have any poly-
nomial solutions, transcendental entire solutions with finite order satisfying λ(f) < σ(f) , and meromorphic
solutions with at least one pole satisfying σ2(f) < 1 .

We take n1 = 5, n2 = 6, s = 3 in Theorem 1.2 and give the following example to illustrate the correctness
of our conditions.

Example 1.3 The transcendental entire solution f(z) = eiz is a solution of

(f6 + f5)f ′ − f(z +
π

2
) = −ieiz + ie6iz + ie7iz. (1.6)
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We can easily find that the condition αi

αj
̸= nt + 1 for all i, j ∈ {1, 2, ..., s} and t ∈ {1, ..., p} is necessary in

Theorem 1.2 . However, we raise the following question.

Problem 1.4 Can the conclusion λ(f) < σ(f) in Theorem 1.2 be omitted or not?

In fact, our goal is to find and characterize the existence and general form of the entire solutions of (1.5)

under some certain conditions. Hence, we will discuss the more general equation as follows:

p∑
i=1

fni(z)f (k)(z) +

q∑
j=1

pj(z)f
(mj)(z + cj) =

s∑
l=1

βle
αlz, (1.7)

under the assumption (B): Suppose that p1(z), ..., pq(z) are polynomials, c1, c2, ..., cq, β1, . . . , βs are all nonzero
constants, and take nonnegative integers s , k , n1, . . . , np , m1, . . . ,mq with mq > · · · > m1 ≥ 0 and

np > np−1 > · · · > n1 ≥ s+ 2 and
q∑

j=1

pj(z)f
(mj)(z + cj) ̸≡ 0 . Let α1, α2, ..., αs be distinct nonzero constants,

and we prove the following result.

Theorem 1.5 If f is an entire solution of the differential-difference equation (1.7) with finite order and
λ(f) < σ(f) under the assumption (B), then f has only the following form:

f(z) = Deαkz,

where D is a constant and αk ∈ {α1, . . . , αs} . Moreover, we obtain s = p+1 and let the sequence {1, · · · , p+1}

be rearranged to coincide with {ĵ1, · · · , ĵp+1} such that |αĵ1
| < · · · < |αĵp+1

| . Then for i = 1, 2, . . . , p, the
following three conclusions hold:

(i) αk = αĵ1
, αĵi+1

= (ni + 1)αĵ1
,

(ii)
q∑

j=1

α
mj

ĵ1
eαĵ1

cjpj(z) = βĵ1
(
βĵi+1

αk
ĵ1

)
−1

ni+1 ,

(iii)D is completely determined by αĵ1
, βl, ni, k such that D = (

βĵi+1

αk
ĵ1

)
1

ni+1 .

Example 1.3 given above shows the sharpness of our results of Theorem 1.5 . According to example 1.3 ,
we can fix p1(z) = −1 , k = q = 1 , m1 = 0 , c1 = π

2 , and n1 = 5, n2 = 6, αĵ1
= βĵ2

= βĵ3
= i ,αĵ2

= 6i, αĵ3
= 7i

in (1.7) . Via Theorem 1.5 , we can observe that D = (
βĵ2

αk
ĵ1

)
1

n1+1 = (
βĵ3

αk
ĵ1

)
1

n2+1 = 1 is consistent with f(z) = eiz

being a solution of (1.6) and
q∑

j=1

α
mj

ĵ1
eαĵ1

cjpj(z) = βĵ1
(
βĵi+1

αk
ĵ1

)
−1

ni+1 is true. Moreover, αĵ2
= 6i, αĵ3

= 7i also

imply that αĵi+1
= (ni + 1)αĵ1

holds.

One notices that our Theorem 1.5 above actually provides a deep extension to the main results of Dong
and Liao [7] when we remove f (k)(z) from equation (1.7) . In particular, if we take mj = 0 (j = 1, 2, . . . , q) in
(1.7) , this is just (1.5) . We thus find the entire solutions under some certain conditions, and we also get the
following corollary.
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Corollary 1.6 If f is an entire solution of the differential-difference equation (1.5) with finite order and
λ(f) < σ(f) under the assumption (B) , then f has only form f(z) = Deαkz , satisfying (i), (iii) above, and
q∑

j=1

eαĵ1
cjpj(z) = βĵ1

(
βĵi+1

αk
ĵ1

)
−1

ni+1 .

2. Preliminaries
We assume that the reader is familiar with Nevanlinna theory [13, 25] of meromorphic functions f in C , such as
the first main theorem of f , the second main theorem of f , the characteristic function T (r, f) , the proximity
function m(r, f) , the counting functions N(r, f) , N̄(r, f) , and S(r, f) , where as usual S(r, f) denotes any
quantity satisfying S(r, f) = o(T (r, f)) as r → ∞ outside a possible exceptional set of finite logarithmic
measure. Furthermore, recall that the order of f is defined by

σ(f) = lim sup
r→∞

logT (r, f)
log r .

The hyperorder of f is defined by

σ2(f) = lim sup
r→∞

log logT (r, f)
log r .

The exponent of convergence of zeros of f is defined by

λ(f) = lim sup
r→∞

logN(r, 1
f )

log r = lim sup
r→∞

logn(r, 1
f )

log r .

The hyperexponent of convergence of poles of f is defined by

λ2

(
1

f

)
= lim sup

r→∞

log logN(r, f)

log r = lim sup
r→∞

log logn(r, f)
log r .

Take complex numbers d0(= 0), d1, ..., dt . Let R(f) be a differential-difference polynomial of f defined
by

R(f) =
∑
J∈J

bJ

t∏
l=0

(
f
(k)
dl

)Jl

, (2.1)

where k = (0, 1, ..., k) ; J = (J0, ..., Jt) , Jl = (jl0, jl1, ..., jlk) are multiindices of nonnegative integers Z+ ; J is

a finite set of Z(t+1)(k+1)
+ ; and bJ are nonzero small functions of f . For complex numbers e0(= 0), e1, ..., et , we

use Q(f) to denote a difference polynomial of f as follows:

Q(f) =
∑

K∈K

CKfK0
e0 · · · fKt

et , (2.2)

where K = (K0, ...,Kt) are multiindices of nonnegative integers Z+ ; K is a finite set of Zt+1
+ ; and CK are

nonzero small functions of f . Next we consider the following equation:

R(f)Q(f) = P (f), (2.3)
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where P (f) is a differential-difference polynomial defined by the left side of (1.4).
The first lemma is a variant of the result due to Laine and Yang [14], and this lemma is Lemma 2.2,

which was proved in [12].

Lemma 2.1 Let f be a transcendental meromorphic solution of hyperorder σ2(f) < 1 of equation (2.3) with
degP (f) ≤ degQ(f) . Assume that there is only unique monomial of degree degQ(f) in Q(f) . Then,

m(r,R(f)) = S(r, f)

holds possibly outside an exceptional set of finite logarithmic measure.

The following lemma is referred to [28, Theorem 1.52].

Lemma 2.2 If fj(z) (1 ≤ j ≤ n) and gj(z)(1 ≤ j ≤ n)(n ≥ 2) are entire functions satisfying the following
conditions:

(i)
∑n

j=1 fj(z)e
gj (z) ≡ 0 ,

(ii) the orders of fj are less than that of egh(z)−gk(z) for 1 ≤ j ≤ n , 1 ≤ h < k ≤ n ,
then fj(z) ≡ 0 for 1 ≤ j ≤ n .

The third lemma is referred to [3].

Lemma 2.3 Let f(z) be an entire function of finite order p . Then

f(z) = zmeh(z)
∏
n≥1

(1− z

zn
)e(z+

z2

2 +···+ zq

q ),

where h(z) is a polynomial of degree not greater than p , and {zn}∞n=1 from the family of zeros of f distinct
from z = 0 .

Setting E(z) =
∏
n≥1

(1 − z
zn
)e(z+

z2

2 +···+ zq

q ) , a well-known fact about Lemma 2.3 asserts that σ(E) =

λ(f) ≤ σ(f) , and σ(f) = σ(eh) when λ(f) < σ(f) .

3. Proof of Theorem 1.2
We will distinguish two cases to prove Theorem 1.2.

Case 1. f has at least one pole with σ2(f) < 1 .
Assuming that z0 is a pole of f with multiplicity m0 (≥ 1) , we can denote f(z0) = ∞m0 . From (1.5) ,

we know that there exists cn1
∈ {c1, c2, ..., cq} such that z0 + cn1

is also a pole of f , and it follows that

f(z0 + cn1
) = ∞m1 ,

where m1 ≥ (np + 1)m0 + k. Substituting z by z + cn1 into (1.5) , we get

p∑
i=1

fni(z + cn1
)f (k)(z + cn1

) +

q∑
j=1

pj(z + cn1
)f(z + cj + cn1

) =

s∑
l=1

βle
αl(z+cn1

). (3.1)
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Then, seeing (3.1) and the fact that z0+cn1 is a pole of fnpf (k) with a multiplicity ≥ (np+1)2m0+k(np+1)+k ,
it yields that there exists cn2

, n2 ∈ {1, 2, ..., q} such that z0 + cn1
+ cn2

is a pole of f with

f(z0 + cn1 + cn2) = ∞m2 ,

where m2 ≥ (np+1)2m0+k(np+1)+ k. According to the above argument, it is easily seen that for any j ≥ 1 ,

there exist some n1, n2, ..., nj such that z0 +Σj
l=1cnl

satisfy

f(z0 +Σj
l=1cnl

) = ∞mj ,

where mj ≥ (np+1)jm0+ k[(np+1)j−1+(np+1)j−2+ · · ·+1] . We can estimate the counting n(r, f) of poles
of f in the disc |z| ≤ r . Letting rt = tmax{|c1|, ...|cq|}+ |z0|+ 1 , we have for each integer t ≥ 1 that

n(rt, f) ≥ m0 +

t∑
j=1

(np + 1)jm0 + k
[
(np + 1)j−1 + (np + 1)j−2 + · · ·+ 1

]
.

Because np > np−1 > · · ·n1 ≥ 2 + s ≥ 3 by assumption, one then has

σ2(f) ≥ λ2

(
1

f

)
= lim sup

r→∞

log logn(r, f)
log r ≥ lim sup

t→∞

log logn(rt, f)
log rt

≥ lim sup
t→∞

log log(nq + 1)t

log t = 1.

It contradicts our assumption that σ2(f) < 1 .
Case 2. f is an entire function.
If f is a polynomial, we can easily yield a contradiction from (1.5) . Hence, f is transcendental. Now,

suppose that H(z) =
p∑

i=1

fni(z)f (k)(z)+
q∑

j=1

pj(z)f(z+ cj) . Differentiating both sides of the equation (1.5) , we

have

H ′(z) =

s∑
l=1

αlβle
αlz. (3.2)

Eliminating eα1z from (1.5) and (3.2) , we obtain

α1H(z)−H ′(z) =

s∑
l=2

βl(α1 − αl)e
αlz. (3.3)

Differentiating (3.3) , we have

α1H
′(z)−H ′′(z) =

s∑
l=2

βl(α1 − αl)αle
αlz. (3.4)

Then (3.3) and (3.4) further lead to

α1α2H(z)− (α1 + α2)H
′(z) +H ′′(z) =

s∑
l=3

βl(α1 − αl)(α2 − αl)e
αlz. (3.5)
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Repeating the above steps, we can deduce inductively that

s∑
j=0

(−1)jes−j(α1, ..., αs)H
(j) = 0. (3.6)

Here, ej(α1, ..., αs), j = 0, ..., s are the elementary symmetric polynomials [24] in s variables. α1, ..., αs and
ek(α1, ..., αs) for k = 0, 1, . . . , s are defined by

e0(α1, ..., αs) = 1, e1(α1, ..., αs) =
∑

1≤j≤s

αj , e2(α1, ..., αs) =
∑

1≤i<j≤s

αiαj ,

e3(α1, ..., αs) =
∑

1≤i<j<l≤s

αiαjαl,

and so forth, ending with es(α1, ..., αs) = α1α2 · · ·αs.

Let L(w) be a linear differential operator defined by

L(w) =

s∑
j=0

(−1)jes−j(α1, ..., αs)w
(j). (3.7)

Applying this operator above, we can rewrite (3.6) as

L(

p∑
i=1

fni(z)f (k)(z)) = −L(

q∑
j=1

pj(z)f(z + cj)). (3.8)

In addition, (
fnf (k)

)(l)

=

l∑
i=0

(
l
i

)
(fn)

(i)
(
f (k)

)(l−i)

=

l∑
i=1

(
l
i

) (
f (k)

)(l−i)

·
[
nfn−1f (i) +

i−1∑
j=2

∑
λ

γjλf
n−j (f ′)

λj1 (f ′′)
λj2 · · ·

(
f (i−1)

)λj,i−1

+ n(n− 1) · · · (n− (i− 1))fn−i (f ′)
i
]
+ fnf (k+l)

(3.9)

for l = 0, 1, ..., s , where γjλ are positive integers, λj1, λj2, ..., λj,i−1 are nonnegative integers, and sum
∑

λ is
carried out such that λj1 + λj2 + · · ·+ λj,i−1 = j and λj1 + 2λj2 + · · ·+ (i− 1)λj,i−1 = i .

Noting that nq > · · · > n1 , then by (3.7) and (3.9) , we get

L(

p∑
i=1

fni(z)f (k)(z)) = fn1−sφ, (3.10)

where φ is a differential polynomial in f of degree np − n1 + s+ 1 with constant coefficients.

If φ ̸= 0 , noting that L(
q∑

j=1

pj(z)f(z + cj)) is a difference polynomial in f of degree 1 with polynomial

coefficients and n1 ≥ s+ 2 , applying Lemma 2.1, we observe from (3.8) and (3.10) that

T (r, φ) = m(r, φ) = S(r, f), T (r, fφ) = m(r, fφ) = S(r, f), (3.11)
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which immediately leads to

T (r, f) ≤ T (r, fφ) + T

(
r,

1

φ

)
= S(r, f).

This is a contradiction.

If φ = 0 , then the expression of (3.8) yields L(
p∑

i=1

fni(z)f (k)(z)) = 0 and L(
q∑

j=1

pj(z)f(z+ cj)) = 0 . By

using the definition of operator L , we get

L(

q∑
j=1

pj(z)f(z + cj)) =

s∑
j=0

(−1)jes−j(

q∑
j=1

pj(z)f(z + cj))
(j) = 0.

We get the characteristic equation as follows:

(−1)sλs + (−1)s−1e1λ
s−1 + · · ·+ (−1)s−jejλ

s−j + · · ·+ es = 0. (3.12)

It follows from (3.12) that α1, α2, ..., αs are s distinct roots, and then
q∑

j=1

pj(z)f(z + cj) = b1e
α1z + b2e

α2z + · · ·+ bse
αsz, (3.13)

where bl (l = 1, 2, ..., s) are constants. Noting that f(z) is a transcendental entire function with finite order
and λ(f) < σ(f) , by Lemma 2.3, we can factorize f(z) as

f(z) = h(z)eg(z), (3.14)

where h(z) is the canonical product formed by zeros of f(z) and σ(h) = λ(f) < σ(f) , and g(z) is a polynomial.
Supposing that g(z) is a polynomial of degree 0, we get a contradiction immediately by comparing the order
of the left side and the right side of (1.5) . Hence, g(z) is a polynomial of degree not less than 1. Therefore,
substituting (3.14) into (3.13) , it yields that

q∑
j=1

Gj(z)e
g(z+cj) =

s∑
l=1

ble
αlz, (3.15)

where Gj(z) = pj(z)h(z + cj) and T (r,Gj) = o(T (r, f)), j = 1, · · · , q.
Now we confirm the fact that g(z) is a polynomial of degree 1.
Claim. Otherwise, we suppose that g(z) is a polynomial of degree n(≥ 2) . Write g(z) = anz

n +

an−1z
n−1 + · · ·+ a0 with an ̸= 0 , and then we can rewrite (3.15) as

eanz
n

q∑
j=1

G̃j(z)−
s∑

l=1

ble
αlz = 0, (3.16)

where G̃j(z) = Gj(z)e
g(z+cj)−anz

n , and σ(G̃j(z)) ≤ n− 1 . If
q∑

j=1

G̃j(z) ̸≡ 0 , then we can get

eanz
n

=

s∑
l=1

ble
αlz

q∑
j=1

G̃j(z)

. (3.17)
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Notice the order of the right-hand side of (3.17) is ≤ n−1 and the order of the left-hand side of (3.17) is n . This

is a contradiction. Hence,
q∑

j=1

G̃j(z) ≡ 0 , and then we get
s∑

l=1

ble
αlz ≡ 0 in (3.16). Noting that λ(f) < σ(f)

and invoking Lemma 2.2 to
s∑

l=1

ble
αlz = 0 , it follows that bl = 0 (l = 1, · · · , s) , which is impossible. Thus, the

claim is proved.
Then we can rewrite f as follows:

f(z) = h(z)eaz+b = h̃(z)eaz, a(̸= 0), b ∈ C, (3.18)

where h̃(z) = ebh(z). Then (3.15) becomes

q∑
j=1

Ĝj(z)e
a(z+cj) −

s∑
l=1

ble
αlz = 0, (3.19)

where Ĝj(z) = pj(z)h̃(z + cj) .
If a = αk , for some k ∈ {1, · · · , s} , then we can rewrite (3.19) in the following form:

(

q∑
j=1

Ĝj(z)e
αkcj − bk)e

αkz −
∑

1≤l(̸=k)≤s

ble
αlz = 0. (3.20)

Using Lemma 2.2 again, we find bl = 0 for l ̸= k , and bk =
q∑

j=1

Ĝj(z)e
αkcj . Substituting bk ̸= 0 into (3.13) , it

follows that
q∑

j=1

pj(z)f(z + cj) = bke
αkz. (3.21)

On the other hand, (3.18) implies

f (k)(z) = τk(z)e
αkz, (3.22)

where τk is a polynomial in h and their derivatives. Substituting (3.18) , (3.21) , and (3.22) into (1.5) , we get

p∑
i=1

h̃ni(z)τk(z)e
(ni+1)αkz + (bk − βk)e

αkz =
∑

1≤l(̸=k)≤s

βle
αlz. (3.23)

Note that αi

αj
̸= nt + 1 for all i, j ∈ {1, 2, ..., s} and t ∈ {1, ..., p} . Then we discuss the following two cases.

Subcase 2.1. s > 1 . Then by using Lemma 2.2, the above equation immediately yields βl = 0(1 ≤ l ̸=
k ≤ s) , and we obtain a contradiction.

Subcase 2.2. s = 1 . Now equation (1.5) becomes

p∑
i=1

fni(z)f (k)(z) +

q∑
j=1

pj(z)f(z + cj) = β1e
α1z. (3.24)
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Differentiating both sides of (3.24) , we get

p∑
i=1

[
nif

ni−1(z)f ′(z)f (k)(z) + fni(z)f (k+1)(z)
]
+

q∑
j=1

(pj(z)f(z + cj))
′ = α1β1e

α1z.

Combining this equation with (3.24) , we get

fn1−1F = α1

q∑
j=1

pj(z)f(z + cj)−
q∑

j=1

(pj(z)f(z + cj))
′
, (3.25)

where F =
p∑

i=1

[
nif

ni−n1(z)f ′(z)f (k)(z) + fni−n1+1(z)f (k+1)(z)− α1f
ni−n1+1(z)f (k)(z)

]
.

If F ̸= 0 , it follows from (3.25) and Lemma 2.1 that

T (r, F ) = m (r, F ) = m

r,

α1

q∑
j=1

pj(z)f(z + cj)−
q∑

j=1

(pj(z)f(z + cj))
′

fn1−1

 = S(r, f), (3.26)

T (r, fF ) = m (r, fF ) = m

r,

α1

q∑
j=1

pj(z)f(z + cj)−
q∑

j=1

(pj(z)f(z + cj))
′

fn1−2

 = S(r, f), (3.27)

since n1 ≥ 2 + s = 3 . Combining (3.26) with (3.27) , we get

T (r, f) ≤ T (r, fF ) + T

(
r,

1

F

)
= T (r, fF ) + T (r, F ) +O(1) = S(r, f).

This is a contradiction.
When F = 0 , or equivalently

p∑
i=1

nif
ni−n1(z)f ′(z)

p∑
i=1

fni−n1+1(z)

+
f (k+1)(z)

f (k)(z)
= α1;

that is,
p∑

i=1

nif
ni−1(z)f ′(z)

p∑
i=1

fni(z)

+
f (k+1)(z)

f (k)(z)
= α1;

then by integrating, it follows that
p∑

i=1

fni(z)f (k)(z) = τ1e
α1z,

where τ1 is a nonzero constant.
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It is easy to see k = 1 from s = 1 , so a = αk = α1 , and then from (3.18) we know that

f(z) = h̃(z)eα1z. (3.28)

It contradicts with
p∑

i=1

fni(z)f (k)(z) = τ1e
α1z since k ≥ 1, np > np−1 > · · · > n1 ≥ s+ 2 ≥ 3 .

If a ̸= αl(l = 1, · · · , s) , noting that λ(f) < σ(f) and applying Lemma 2.2, we have bl = 0 (l = 1, · · · , s) ,
a contradiction. Thus, the proof of Theorem 1.2 is completed.

4. Proof of Theorem 1.5
If f is an entire solution with finite order of the differetial-difference equation (1.7) , then f must be transcen-
dental. Otherwise, if f is a polynomial, it follows from (1.7) , a contradiction. Noting that λ(f) < σ(f) , then
we can factorize f(z) as

f(z) = γ(z)eg(z), (4.1)

where γ(z) is the canonical product formed by zeros of f(z) such that σ(γ) = λ(f) < σ(f) , and we can obtain
that g(z) is a polynomial of degree not less than 1 according to the same arguments as shown between (3.13)

and (3.15) .

Now, returning to (1.7) , we assume H =
p∑

i=1

fni(z)f (k)(z) +
q∑

j=1

pj(z)f
(mj)(z + cj). According to an

analogous argument as in (3.2)–(3.7) of Case 2 of Theorem 1.2, we immediately obtain

L(

p∑
i=1

fni(z)f (k)(z)) = −L(

q∑
j=1

pj(z)f
(mj)(z + cj)). (4.2)

Similarly, using parallel analysis as described in (3.10)–(3.18) , we have

q∑
j=1

pj(z)f
(mj)(z + cj) =

s∑
l=1

tle
αlz, (4.3)

where tl (l = 1, 2, ..., s) are constants, and g(z) is a polynomial of degree 1. It follows from (4.1) that

f(z) = γ(z)edz, (4.4)

where d is a nonzero constant. Then, from (4.4) , we can obtain

f (mj)(z + cj) = edcjedz
mj∑
i=0

ξiγ
(i)(z + cj), (4.5)

where ξi =
mj !d

mj−i

i!(mj−i)! . Combining with (4.3) , it follows that

edz
q∑

j=1

edcjpj(z)

mj∑
i=0

ξiγ
(i)(z + cj)−

s∑
l=1

tle
αlz = 0. (4.6)
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We shall distinguish the following two cases for discussion:
Case 1. If d ̸= αl(l = 1, · · · , s) , noticing that σ(γ) = λ(f) < σ(f) and using Lemma 2.2, we have

tl = 0 (l = 1, · · · , s) , a contradiction.
Case 2. If d = αk , for some k ∈ {1, · · · , s} , by (4.6) , we have the following form:

(

q∑
j=1

edcjpj(z)

mj∑
i=0

ξiγ
(i)(z + cj)− tk)e

αkz −
∑

1≤l(̸=k)≤s

tle
αlz = 0. (4.7)

Obviously, we obtain tl = 0 for l ̸= k , and tk =
q∑

j=1

edcjpj(z)
mj∑
i=0

ξiγ
(i)(z + cj), where Lemma 2.2 was applied.

Since tk ̸= 0 , (4.3) implies
q∑

j=1

pj(z)f
(mj)(z + cj) = tke

αkz. (4.8)

On the other hand, (4.4) implies

f (k) = edz
k∑

i=0

ξ̂iγ
(i)(z), (4.9)

where ξ̂i =
k!dk−i

i!(k−i)! . Substituting (4.4) , (4.8) , and (4.9) into (1.7) , we get

tke
αkz +

p∑
i=1

γni(z)e(ni+1)αkz
k∑

i=0

ξ̂iγ
(i)(z) =

s∑
l=1

βle
αlz. (4.10)

In fact, we have a claim that s = p + 1 . Otherwise, if s > p + 1 , noting that T (r, γ(z)) = S(r, ez) and the
assumption s+ 2 ≤ n1 < · · · < np implies (n1 + 1)αk, · · · , (np + 1)αk are different from each other. Thus, we
can obtain βl = 0 for some l by Lemma 2.2, which is a contradiction by our assumption that β1, β2, . . . , βs are
nonzero different constants.

If s < p + 1 , we can obtain tk = 0 or γni(z)
k∑

i=0

ξ̂iγ
(i)(z) = 0 for some i ∈ {1, ..., p} according to the

above argument. Noting tk ̸= 0 , then we get

γni(z)

k∑
i=0

ξ̂iγ
(i)(z) = 0.

Since γ(z) ̸= 0 , we have
k∑

i=0

ξ̂iγ
(i)(z) = 0 , and then we get f (k) = 0 from (4.9) . It indicates that σ(f) =

σ(f (k)) = 0 , which implies that the order of the left side of (1.7) is 0. However, the order of the right side of
(1.7) is 1. It is a contradiction. Hence, s = p+ 1 .

Next, noting both sides of (4.10) , we can rearrange the sequence {1, · · · , p+1} to become (ĵ1, · · · , ĵp+1)

such that
αĵ1

= αk, αĵi+1
= (ni + 1)αk, i = 1, · · · , p. (4.11)
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Then we have |αĵ1
| < · · · < |αĵp+1

| since the assumption s + 2 ≤ n1 < · · · < np implies that |α1|, · · · , |αp+1|

are different constants from (4.11) . Let αĵ1
= αk be the minimum modulus. Thus, we can rewrite (4.10) as

follows:
p∑

i=1

(γni(z)

k∑
i=0

ξ̂iγ
(i)(z)− βĵi+1

)e
αĵi+1

z
+ (tk − βĵ1

)eαĵ1
z = 0. (4.12)

Applying Lemma 2.2 again, we have

tk = βĵ1
, γni(z)

k∑
i=0

ξ̂iγ
(i)(z) = βĵi+1

, i = 1, · · · , p, (4.13)

which means that γ(z) reduces to a constant, say γ , and
k∑

i=0

ξ̂iγ
(i)(z) = dkγ . Noting the relation d = αk = αĵ1

and (4.13) , we have

γ = (
βĵi+1

αk
ĵ1

)
1

ni+1 . (4.14)

Further, substituting (4.5) , (4.13) , and (4.14) into (4.8) , we can obtain

q∑
j=1

eαĵ1
cjpj(z)α

mj

ĵ1
= βĵ1

(
βĵi+1

αk
ĵ1

)
−1

ni+1 , i = 1, . . . , p.

Noting that d = αk = αĵ1
, (4.4) , and (4.14) , we have solutions of (1.7) :

f = (
βĵi+1

αk
ĵ1

)
1

ni+1 eαĵ1
z, i = 1, . . . , p.
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