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Abstract: For any prime power ¢ and any u = (o1,...,%n),v = (Y1,...,Yn) € Fro set (u,v) 1= »_aly;. For any

k € Fy and any n x n matrix M over F

¢2» the k-numerical range Numy (M) of M is the set of all (u, Mu) for u € F}

with (u,u) =k [5]. Here, we study the case ¢ = 2, which is quite different from the case ¢ # 2.
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1. Introduction and main results

Let ¢ be a prime power. Let F, denote the only field, up to field isomorphisms, with |Fy| = ¢ ([8, Theorem
2.5]). Let ey,...,e, be the standard basis of ng. For all v,w € IFZQ, say v = aie1 + --- + anen, and

w=biey+ - +bye,, set (v,w) =1 alb;. (, ) is the standard Hermitian form of Flz. Forany n > 1 and

any a € Iy set

Cn(a) = {(ml, . ,.’En) € ]FZQ ‘ :L’tthl + ... +m‘r]7.+1 — a}.

The set Cp(1) is an affine chart of the Hermitian variety of P"(F,2) ([6, Chapter 5], [7, Chapter 23]).
Take M € M, ,(Fgs), i.e. let M be an n x n matrix with coefficients in Fp. For any k € F, set
Numy (M) = {(u, Mu) | u € Cp(k)} € Fpz. Set Num(M) := Num;(M). The set Num(M) is called the
numerical range of M. These concepts were introduced in [5] when ¢ is a prime p = 3 (mod 4) and in [1] in
the general case. We always have 0 € Numg(M). When n > 2, we defined in [4] the set Numg (M) as the set of
all (u, Mu) for some u € Fy2 \ {0} such that (u,u) =0. We have Numg(M) \ {0} € Numg(M) C Numg(M).
For any M = (my;) € My n(Fpe), set (MT); = m§;. For any M € M, ,(Fp) and any u € e, set
vy (u) = (u, Muy).

If ¢ = 2 then in the definition of C),(a) we just take a € Fy = {0,1}. In particular for ¢ = 2 (and for all
even ¢ by Remark 2.6), we only have to compute Num; (M) and Numg(M). The cases “q =27 and “q # 2”
(independently of the parity of ¢) are quite different, because if x € F4 \ {0}, then 2* =1 and therefore when
q =2, the set C,(a) is just the set of all (z1,...,2,) € F} such that the number of nonzero entries entries z;
is = a (mod 2) (Remark 2.8).
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Obviously all diagonal entries m;; of a matrix M belong to Num(M). If ¢ = 2 and n = 2 and
M = (my;), then Num(M) = {mq1,maz} (Remark 2.10).

We summarize our main results in the following way (here we take ¢ =2 and M = (m;;) € M, »(Fy) ).
Proposition 1.1 Assume n > 3. We have Numg(M) = {0} if and only if M = cl,x,, for some c € Fy.

Theorem 1.2 Assume n > 2. We have Numo(M) = {0,b} with b # 0 if and only if ($(M — mi1lux,))’ =
%(M —mi1lnxn) and M # miil,x, and this is the case if and only if M # dl,x, for any d and there is

c € Fy such that (%(M — )t = %(M —clpxn) -

Theorem 1.3 Take N € M, ,(Fs), n > 3. We have Numy(N) = {a,b} with a # b if and only if
(75 (N —al, )t = 72=(N —al,,) and N # cl,, , for some c.

Corollary 1.4 Assume n > 3. We have Num(M) C Fy if and only if MT = M .

Proposition 1.5 We have |Num(M)| <1 if and only if Num(M) = {mq;1}.
(a) If n =2 we have |Num(M)| =1 if and only if m11 = mas.
(b) If n > 3, then Num(M) = {m11} if and only if M = my11,xn

We also prove that Num(M) =TFy4 if n >3, M # 0L, x, and M is strictly triangular (Remark 3.5).

2. Preliminaries

For any matrix M = (m;;) € M, ,(Fp2), let MT = (a;;) be the matrix with a;; = m?i for all 4,5. M is
said to be Hermitian if MT = M. Note that the diagonal elements of a Hermitian matrix are contained in F,.
Let e1 = (1,0,...,0),...,en = (0,...,0,1) be the standard basis of F}’,. Let I,x, denote the identity n x n

matrix. For any a € F, and any n > 0 we have C,(a) # 0 by [1, Remark 3] and hence, Num, (M) # 0 for any

a, any n, and any matrix M.
Notation 2.1 Write M = (m;;), i,j=1,...,n.

Remark 2.2 Take M = (m;;) € My, n(F,). The vector e; gives m;; € Num(M). Hence, Num(M) contains

all diagonal elements of M .

Remark 2.3 For any a,b € F},, any k € Fy, and any M € M, »(Fy2), we have Numy(aM) = aNumg (M)
and Numy (M + bll,, ,) = Numg (M) + kb? ([5, Proposition 3.1], [1, Remark 7], [4, Remark 2.4]).

Remark 2.4 Take M = (m;;) € M, ,(F,) such that M' = M. For any u € Fy, we have (u, Mu) =
(MTu,u) = (Mu,u). Hence, (u, Mu) € F,. Thus, Numy(M) C F, for every k € F,.

We recall from [5] the following definitions. For any O, P € Fgp the strict affine Fy-hull ((O,P)) of O
and P is the set {tO + (1 —t)P}er,\{0,13- If O = P, then ((O, P)) = {O}. If O # P, then ((O, P)) is the
complement of {O, P} in the affine F,-line of Fp = ]Fg spanned by O and P and hence it has cardinality
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q — 2. For any two nonempty subsets 5,5’ C Fp2 set ((5,5")) := Uoes,pes/ ((O, P)). With this notation we

have the following lemma ([1, Lemma 1]).

Lemma 2.5 Let M be unitarily equivalent to the direct sums of matrices A and B. Then Num(M) =
((Num(A), Num(B))) U {Numg(A4) + Num(B)} U {Num(A) + Numy(B)}.

Remark 2.6 Each element of ¥, q even, is a square. Hence to compute all Numy (M) when q is even it is

sufficient to compute Numg(M) and Num; (M).

Unless otherwise stated, from now on m;; € F4 and ¢ = 2.

Notation 2.7 Fiz e € Fy\Fy. We have e3 =1, e2+e=1 and Fy = {0,1,e,e?}. If a € F}, then a®> = 1. If
a, b, ¢ are 3 different elements of Fy, then {a,b,c,a + b+ c} =Fy. Hence for any a € Fy the set a +F} of
all a+0b, b eF; is the set Fy\ {a}. We fix some e € Fy \ Fa and write Fy = {0,1,¢,€?}.

Remark 2.8 For each z € F}; we have 3 = 1. We obviously have 03 = 0. Take u = (z1,...,2,) € F}. We

have z3 + -+ a3 =1 (resp. o3+ ---+ a2 =0) if and only if z; # 0 for an odd (resp. an even) number of

indices 1.
Remark 2.9 Take u € F} and t € Fj. We have (tu, M (tu)) =t (u, Mu) = (u, Mu), because t3 = 1.

Remark 2.10 Assume n = 2. By Remark 2.8, we have Num(M) = {my1,maa}.

3. Strictly triangular matrices

We first list some cases with n = 3 in which we prove that Num(M) = F4. All these matrices are triangular
matrices with equal entries, mi;, on the diagonal. By [5, Lemma 2.7] to compute Num(M), it is sufficient to

compute Num(N), where N is the strictly triangular matrix M — mq;l3x5.

Proposition 3.1 Fiz a,b,c € Fy with ab# 0. Take

Il
c oo
oo o
=

Then Num(M) =Fy.

Proof Taking %(M — cl3x3) instead of M and applying [5, Lemma 2.7], we reduce to the case ¢ = 0 and
a = 1. Note that even after this reduction step, we have b € Fy \ {0}. Take u = (z1,z2,23) € C3(1), i.e.
assume x5 + x5 + 23 = 1. We have (u, Mu) = x3(bx? + xow3). Taking z1 = x3 = 1 and z2 = 0, we get
0 € Num(M). From now on we always take x5 = 1 and in particular 23 = 1. Thus, we may use any 1,z
with 23 + 23 = 0, i.e. any (z1,73) € F5 with either ;1 = 23 = 0 or x1w3 # 0. Fix ¢ € Fyq )\ {b}. If
u = (1,1,¢ — b), then (u, Mu) = 1(b+ ¢ —b) = c. Note that 1 + e # 0 and hence, b(1 4+ ¢e) # 0. We take
u=(e,1,b(1+e)) =be+b+be=5b. O
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Proposition 3.2 Fix a,b,c,d € Fy with abd # 0. Take

c b d
M=|0 ¢ a
0 0 ¢

Then Num(M) =TFy.

Proof As in the proof of Proposition 3.1, we reduce to the case ¢ = 0 and d = 1. Take u = (21,22, 23) € C3(1),
i.e. assume 2§ + 23 + 23 = 1. We have Mu = (bxy + x3,aw3,0) and hence, (u, Mu) = brox? + x32% + awzzs.
Taking u = (1,0,0), we get 0 € Num(M). From now on we always take xo = 1 and in particular x3 = 1.
Thus, we may use any x1, Ty with 23 +23 =0, i.e. any (x1,73) € F7 with either 21 = 23 = 0 or x723 # 0. Fix
c € Fy\ {0}. Tt is sufficient to find x1, 23 € Fy\ {0} with 23(b+x3) = c+ax3. Since a # 0 and |F4\ {0}| = 3,
there is w € Fy \ {0} such that b +w # 0 and ¢+ aw # 0. Since the Frobenius map ¢ ~ t* induces a
permutation Fy\ {0} — F4\ {0}, there is z € Fy \ {0} such that 22 = (c+aw)/(b+w). Take u = (z,1,w). O

Proposition 3.3 Fiz a,b,c € Fy with (a,b) # (0,0). Take

(=

I
coo
o0
=

Then Num(M) = Fy.

Proof It is sufficient to do the case ¢ = 0. Take u = (x1,x2,23) € C3(1), i.e. assume that 2 or none
among w1, T2, 73 are zeroes. We have Mu = (awy + bx3,0,0) and hence, (u, Mu) = z%(axy + bxz). Taking
u = (1,0,0), we get 0 € Num(M). Fix w € Fy \ {0}. Since (a,b) # (0,0), there is (az,a3) € (F4\ {0})? such
that aas + baz # 0. Since the Frobenius map ¢ + t? induces a permutation Fy \ {0} — F4\ {0}, there is
z € Fy \ {0} such that 22 = w/(aay + baz). Take u = (2,az,a3). O

Proposition 3.4 Take M = (m;;) € My, o(Fs), n > 3, such that m;; = 0 for all i > j. We have
Num(M) =Fy if and only if M #0.

Proof Since Num(0L,x,) = {0}, we only need to prove the “ if ” part. Assume m,;; # 0 for some ¢ < j. Take
any principal minor of M associated to i, and some h € {1,...,n}\ {i,j} and apply one of the Propositions

above. O

Remark 3.5 Take M as in one of the Propositions 5.1, 3.2, 3.3, 3.4. A similar proof works for M'. Thus,
we computed Num(M) for all strictly triangular matrices and proved that Num(M) = Fy, unless either n = 2

or M = m11]13><3.

4. The proofs

Lemma 4.1 Take n = 2. We have Numgy(M) = {0, m11 +mas +mia +ma1, mi1 + mas +mige +mare?, myy +

Mmoo —+ m12€2 + mgle} .
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1. Numg(M) = {0} if and only if m11 = may and mias = mg; = 0.

2. If my1 = mag and miz = maoy # 0, then Numo(M) = {0, m12}.

3. Assume myy = mag. If either mis =0 and may #0 or may =0 and mis # 0, then Numg(M) =TFy.
4. If mi1 = mag, mia # mao1 and miamey # 0, then Numg(M) = {0, m12, ma }.

5. If my1 # mag and may; = mia =0, then Numg(M) = {0, m11 + maa}.

6. If mi1 # mas and ma; = myg # 0, then Numg(M) = {0, m11 + maz, m11 + Mas + mia}; this set has two

elements if and only if mas = my11 + Moy .

7. Assume myy # maoy and either miz = 0 and may # 0 or miz # 0 and may = 0, then |Numg(M)| = 3
and Numg(M) =Fy \ {m11 + maa}.

8. If mi1 7§ ma2, M21M12 }é 0 and mi9 # ma1, then Numo(M) = {O,m11 —|— >y} + (5 P) + €2m21,m11 +
Moo + e2mis + emar }; we have [Numg(M)| = 2 if and only if either myy + mas + emiz + €2ma; = 0 or

mi1 + mo9 + €2m12 + €mso1 = 0.

Proof Take u = (71,22) € F2 with 23 + 3 = 0. The case u = (0,0) gives 0 € Numg(M). By Remark 2.8 to
compute the other elements of Numg (M), we may assume z7 # 0 and z2 # 0. Using Remark 2.9 with ¢t = x;l
we reduce to the case x7 = 1. Taking x5 = 1 (resp. x3 = e, resp. Tz = €2), we get my1 + mia + Moy + Mag €
Numg(M) (resp. mii + mise + mare? + mag € Numg (M), mi1 + mag + mize? + maje € Numg(M). We have
mige + maore? = mige? + mare if and only if mia(e + €2) = mai(e + €2), i.e. if and only mqz = ma;. We
have mis + ma1 = mige + mare? if and only if miz(1 + €) = may(1 + €2), i.e. if and only if mize = ma;. We
have mis + ma1 = mize? + maoye if and only if (mi2(1+ €?) = ma1(1 + ¢€), i.e. if and only if miy = emay, i.e.
mize? = moy .

(a) Assume my; = mag. If miz = mo; = 0, then Numg(M) = {0}. Now assume miz = mo; # 0.
Since e?+e = 1, we get that Numg (M) = {0, mi2e,m12}. If mia = 0 # may (resp. ma; = 0 and mqz # 0), then
Numg (M) contains 0, may1, emay, €2maor (resp. 0, mya, emia, e?mys); in both cases we get Numg(M) = Fy.
Now assume mia # mao; and miama; # 0. Set t := miz/mo;. Either t = e or t = ¢?. Assume t = e (the
case t = €2 being similar). Numg(M) is the union of 0, mao1(1 + €) = ma1e? = mya, mai(e+ €2) = mo; and
mai(e? 4+ e?) = 0. Hence, Numg(M) = {0, m12,m21}.

(b) Assume myy # mas. If ma; = miz2 = 0, then Numg(M) = {0, m11+mas}. If ma; = mys # 0, then
Numg (M) is the union of {0}, my1 +mae and mqy +mas +mis (recall that 2mis = 0 and e+e? = 1). Assume
miz = 0 and mao; # 0. We get Numg(M) = {0,m11 + maz + ma1, m11 + Moz + mare, mi1 + maz + mare?}.
Since {ma1, mare, mare?} = F;, we get |Numg(M)| =3 and Numg(M) = F4 \ {m11 +mas}. The same answer
comes if mis # 0 and mo; = 0. Now assume mis # 0, mo; # 0, and mis # mo;. We first check that
A = {mya + ma1,emia + €2may, €>mia + ema1 } has cardinality 2. Since e # €% and mis # ma1, we have
emis + e2moy # e2mis + emor. We have mis + maoy = emis + e2mo; if and only if (14 €)mis = (1 + e?)may,
i.e. if and only if e?mis = emay, ie. if and only if emis = ma;. In the same way, we see that mig + mo; =
e?mia + emay if and only if e*miz = mor. Since mai/mia ¢ {0,1}, we have ma;/mia € {e,e?}. Hence

A = {em1a + €*may, €>mia + ema1 }. We get part (8). O
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Lemma 4.2 Take ¢q =2, n=3 and mi; = Moy = M33.
1. If my; =0 for all i # j, then Numy(M) = {0}.
2. If miy; =0 and mj; #0 for some 4,j, then Numg(M) =Fy.
3. If mi; # mj;, then Numg(M) D {0, m;;,mj;}.
4. If mij =mj; # 0, then Numg(M) D {0, m;;}.

All nonzero m;; are in Numg(M) \ {0} and they are the only elements of Numy(M) \ {0} unless there is i, j

with m;; =0 and mj; # 0.

Proof Take u = (z1,72,23) € Fy with 23 +23+23 = 0. By Remark 2.8 either u = 0 or there is i,j € {1,2,3}
with i # j and zj, # 0 if and only if h € {7,j}. Apply Lemma 4.1 to the restriction of M to Fse; +Fse;. O

Remark 2.8, Lemma 4.1, and the proof of Lemma 4.2 give the following result.

Lemma 4.3 Toke n = 3 and mi; = moy # mgs. Let A = (a;;) and B = (b;;) be the 2 x 2 matrices with
aijj =mpe, h=1i+1, k=i4+1,and bjj =myw, v=1 ifi=1,v=3ifi=2, w=jif j=1, w=3 if

j=2. A and B are as in one of the last 4 cases of Lemma j.1.
1. If miame; =0 and mig # may, then Numg(M) =Fy
2. If mia = may =0, then Numg(M) = Numg(A) U Numg(B).

3. If miamar # 0 and mia # may, then Numg(M) = Numg(A4) U Numg(B) U {mi2,m21}; we have
[Numg(M)| > 3; we have Numg(M) # Fy if and only if Numg(A) UNumg(B) D {0,m12,mo1}.

Take the set-up of (8), i.e. assume mismoy # 0 and miy # moy. Numg(A) D {0, m12,ma1} if and only if
either miz = ms1 = 0 and my1 + ms3 € {Mmi12,ma1 or msy = miz # 0 and my1 + mas, m11 + mss + miz} C
{0,m12,mo1 or mizmgzy = 0, myz # mz1 and Fy\ {my; + maz} or mgimiz # 0, myz # mg and
{ma1 +maz+emiz+e?may, miy +maz+e?miz+emsr } C {0,m12,ma1}. The same list works for B exchanging
the indices 1 and 2.

Lemma 4.4 Take n = 3 and |{my1,ma2,m33}| = 3. Let A, = (a?j), 1,7 = 1,2, h =1,2,3, be the matriz
obtained from M deleting the h-th row and the h-th column; each Ay is as in one of the last 4 cases of Lemma
4.1. We have Numg(M) = Numg(A;) UNumg(As) UNumg(As). Hence, Numg(M) = Fy if one of the following

conditions is satisfied:
1. my; =0 forall i#j.
2. There is i € {1,2,3} such that, writing {1,2,3} = {1, 4, h}, we have mjpm;p, =0 and m;, # mp; .

3. There is © € {1,2,3} such that, writing {1,2,3} = {i,j,h}, we have m;; # 0, mj; # 0, mp; # 0,

™Mip 7é O, and {mij,mji,mih,mhi} = FZ
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Proof Remark 2.8, Lemma 4.1, and the proof of Lemma 4.2 give Numg(M) = Numg(A;) U Numg(Az) U
Numg(A4s).

(a) Assume m;; = 0 for all ¢ # j. Since mq1 +maz, mi1 + masz, and mas +mg3 are distinct elements
of F}, we have {0, m11 + mag, m11 + ma3, Mmoo + mas} =TFy.

(b) Assume miamao; = mizmsy = 0 and mis + me; # 0, mis + ms; # 0. We have Numg(As) =
Fy\{mi11+maoz} and Numg(As) = Fy\ {m11 +m33} and thus, Numgy(M) = F4. The same proof works if either
magmaz = mizmaz1 = 0 and ma3 + maz # 0, miz +ma1 # 0 or miama; = magmaz = 0 and miz + ma1 # 0,
maog +mgzz # 0.

(c) Assume myg # 0, may # 0, miz # 0, and mgy # 0 and {my2,ma1, m31, M3} = F;. The last 2
cases in Lemma 4.1 give Numg(As) U Numg(As) = F4. The same proof works for Numg(A;) U Numg(As) and
Numg(Asz) U Numg(A4;7). O

Lemma 4.5 Assume n = 3. Num(M) is the union of {mi1,maa, mss}, Zij:l My, M1 + Moy + M3z +
e(miz + maoz + mas1) + €2(maz + ma1 + ma2), ma1 + mas + maz + €2 (maz + moz + ma1) + e(miz + moy + ma)
and By, h=1,2,3, where (writing {i,j,h} = {1,2,3}) By = {mi; + my; +mj; +mj; + mpp + e(mp +mjp) +

e (mp; + Mhj), Mii + Mij +mj; +myj; + mpp + e (min + mjn) + e(mp; +mn;)}-

Proof Take u = (z1,79,23) € F} with 23 + 23 + 23 = 1. By Remark 2.8, there is an odd number of
indices ¢ with x; # 0. Taking u with exactly one nonzero coordinate, we get {mq1,maz, mz3} C Num(M).
Thus, it is sufficient to test all u with x; # 0 for every i. Taking u = (¢,¢,t) for some t # 0, we get

Z?,j:l m;; € Num(M). Now assume that u has exactly two different entries, say x; = x; with ¢ # j and

xn # i, {i,5,h} = {1,2,3}. By Remark 2.9, we may assume that x; = 1 and hence, either z;, = e or zj; = 2.

In the first case, (u, Mu) = mj; +m;j+mji+m;; +mpp+e(min+mjp) +e2(mp; +mp;) . In the second case, we
have (u, Mu) = my; +m;; +mj; +mj; +mpn + e?(min +my;p) +e(mp; +mp;) . Now assume that all entries of u
are different. By Remark 2.9, we may assume that z; = 1. Hence, either (z2,23) = (e,e?) or (xq,23) = (€2,€).
In the first case, we have (u, Mu) = mq1 + maa + ma3 + e(mi2 + maz + maz1) + €2(m13 + ma1 + ms32). In the

second case, we have (u, Mu) = my1 + mag + maz + €2(mia + ma3 + ma1) + e(maz + may + maz). O

Corollary 4.6 Assume n = 3 and |{mi1,m22, m33}| = 3. We have Num(M) = Fy if one of the following
conditions is satisfied
1. mi2 +mog +m31 = t(m13 + mo1 + m32) with t € {6, 62};

2. my; =mag forall i#j.

Proof Since |[{m11, maz, ms3}| = 3, we have Fy = {mq1,maz2, m33,m11 + maa + ms3} (Remark 2.7). Hence,
it is sufficient to check if mq1 + maogz +mgs € Num(M). To get (1), use the third and fourth sum in Lemma 4.5
and that 3 + ¢ = 0. To get (2), use B; in Lemma 4.5. O

Corollary 4.7 Assume n =3 and |{mi1, Moz, m3s}| = 3. Fiz 5 of the elements m;; with i # j, say all except

mp . There is a choice of mpy with Num(M) =TFy.
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Proof Since |[{m11,ma2,m33}| = 3, we have Fy = {mq1, maz, mss, m11 +mao +ms3} (Remark 2.7). Hence, it
is sufficient to check that mi; 4+ ma2 + m33 € Num(M) for some choice of mpy. We do the case h =1, k = 2,
because the other cases are similar. We take mjs := e(my3 + ma1 + ma2) + maz + mg1 and apply part (1) of

Corollary 4.6. The proof shows that if mi3 + mo1 + mge # 0, we have at least 2 choices for mys. O

Lemma 4.8 Take n =3. We have |Num(M)| =1 if and only if M = mq1l3x3.

Proof Since the “if ” part is trivial, we assume |Num(M)| = 1. Since we have {mi1, maz, m33} € Num(M)
(Remark 2.2), we have m1; = maos = mga3. Since e = 1, Lemma 4.5 gives mya+maoz+ma; = e(mi3+ma;+mszo)
and mi2 + mag + ma1 = e*(miz + mo1 + ma2). Hence, miz + maog + m31 = miz + ma1 + maz = 0, ie.
ms1 = miz2+mag and Mgy = mi3+me;. Lemma 4.5 implies that m;; +my; +e(min +mgn) +e(mp; +mp;) =0
and mi; +mj; + e2(min + mjn) + e(mpi +mp;) = 0 for all {i, j,h} = {1,2,3}. Since e? — e = 1, subtracting
these equalities, we get m;4 +mjn = mp; +mp; for all 4, h, j. In particular, we have mi3 +ma3 = ms1 +mss =
mi2 + Masg + mi3 + Moy, i.e. mi2 = Moy . In the same way, we get m;; = mj; for all 4 # j. Then the set By
in the statement of Lemma 4.6 gives e(m;, +mjpn) + €(mun +mj;) = 0. Since e # €%, we get m;p +mjp =0,
ie. my, = myp, for all {i,7,h} = {1,2,3}. Since M is symmetric, we get m;; = mqo for all ¢ # j. Since

miz2 = 3Mi2 = M2 + ma3 +msz1 =0, we get m;; =0 for all 7 # j. =

Proof [Proof of Proposition 1.1:] The “ if ” part is obvious, while the “ only if ” part follows from part (1) of
Lemma 4.1. O

Proof [Proof of Proposition 1.5:] We always have {mi1,...,mp,} € Num(M) (Remark 2.2) and this inclusion
is an equality if n = 2 (Remark 2.10), proving the case n = 2. The case n = 3 is true by Lemma 4.8. Now
assume n > 4 and |Num(M)| = 1. Hence m;; = mq; for all i. By Lemma 4.8 applied to all Fye; +Fye; +Fuep

we have m;; =0 for all i # j. O

Proof [Proof of Theorem 1.2:] Taking $M instead of M, we reduce to the case b = 1 (Remark 2.3). Note
that Numgo(M) = Numg(M —cll,, «,,) for any ¢ € F4 (Remark 2.3). Hence, Remark 2.4 and Proposition 4.4 give
the “if 7 part. Note that M — mq11,«, is Hermitian if and only if mfj =my; for all ¢ # j and my; —mq1 € Fa
for all i. Hence, M — m11l,,«,, is Hermitian if and only if M — my;1, «, is Hermitian for some ¢ € {1,...,n}
and hence, that M — mq11,x, is Hermitian if and only if there is ¢ € Fy with M — cl,,x,, Hermitian.

Now, assume that Numg(M) C {0,1}. Taking A := Mg,c, e, With i # j we reduce to the case n = 2;
we write A = (apk), h,k = 1,2. Then taking M —a11lax2, we reduce to the case a;; = 0. After this reduction,
we need to prove that Mt = M. If n = 2 we assume Numg(M) = {0,1}, but if n > 3 we only assume that
Numg(A4) C {0,1}.

First, assume that ass = 0. Set o := a9 + as1, B := eais + €2as; and v := e2a12 + ag1. Since 2a =0
foralla€Fy, e +1=e,e+1=e2and e2+1=a,wehave a+=7v, B+~v=a and o+~ = 3. Lemma
4.1 gives a, 3,y € Fo. First, assume that a = 0, i.e. aj2 = az;. We get 8 = (e? + e)ajs and so ajp € Fo.
Thus, A is Hermitian in this case.

Now, assume that age # 0 = aj;. If a;2 = ag; = 0, then part (5) of Lemma 4.1 implies that

age € Fy and hence, A is Hermitian. Case (7) of Lemma 4.1 excludes the case where ajsas; = 0 and
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(a12,a21) # (0,0). If a;o = a1 # 0, then case (6) of Lemma 4.1 gives age = a11 + ag1, i.e. age = a1z = ao;
since a11+a22+a12+az2 € Numg(M) C {0,1} and a1 =0, we get a;; € Fo forall 4,5 =1,2. Since as; = ai2,
this 2 x 2 matrix is Hermitian. Now, assume that a1o # ag; and ajsas; # 0. Part (8) of Lemma 4.1 gives
that either § := ags + eais + €2as; = 0 or 7 := asy + €2a12 + eas; = 0 and that (since ajs # as;) either § =0
and p=1or §=1and n=0. Since €2 +e =1, we have 1 = § + 7 = (e? + e)ais + (€2 + €)as; = a1 + aiz.
Since aj2 # 0 and as; # 0, we get (a12,a21) € {(e,e?),(e?,e)} and hence, az; = a2,. Since e = 1, if
(a12,a921) = (€%,€) (resp. (a1, masr) = (e,e?)), then § € Fy (resp. 1 € Fy) gives ags € Fo. Hence, this 2 x 2
matrix is Hermitian. O

Proof [Proofs of Theorem 1.3 and Corollary 1.4]: Take N € M,, ,,(F4) such that Num(N) = {a, b} with a # b
and set M := ﬁ(N —al,, ). By Remark 2.3, we have Num(M) = {0,1}. By Theorem 1.2, the matrices N
and M are not a multiple of I, ,,. Hence, to prove Theorem 1.3, it is sufficient to prove Corollary 1.4. Also
note that in the last assertion of Theorem 1.3, it is sufficient to assume that N # cll,,«,, with ¢ € {a,b}.

If Mt = M, then for any u € F}, we have (u, Mu) = (Mu,u) = ({u, Mu))? and hence, Num(M) C Fo,
proving the * if ” part.

Now, assume that Num(M) C Fy. Since (e;, Me;) = my;, we have m;; € Fo for all . Taking the
restriction to Fye; + Fae; + Faep for all 4, j,h with 1 <i < j <h < n, we reduce to the case n = 3.

(a) First, assume that m;; = my; for all i. By Remark 2.3, taking Io.o + M instead of M if mi; =1,
we reduce to the case mi; = maog = mg3 = 0. Set « := mqya + mog + m31 and [ := my3 + me; + msz. By
Lemma 4.5 a+ 8 € Fy, ea + €238 € Fy and e2a +eB € Fy. Since e +e =1 we get a + 3 € Fy. For any
{i,5,h} = {1,2,3} set 6; :== m;}, +myp;. By Lemma 4.5, each element of By, h = 1,2,3, is contained in Fs.
Since e 4+ e = 1, the sum of the two elements of B}, gives 0; +96; € Fa.

Since Zij m;; € Num(M) (Lemma 4.5), we have 61 + d2 + J3 € Fo. Hence, §; € Fy for all .

Let B = (b;j), 4,5 = 1,2,3, be the 3 x 3-matrix with b;; = 0 for all 4, b;; = m,; if j < ¢ and b;; = bfj
if ¢ < j. Thus, B is a Hermitian matrix and therefore, Num(D) C Fy if D := M + B. Note that D = (d;;)
di; = 0 if either 4 > j or i < j and my; = mfj and that d;; =1 if i < j and mj; # m?i, because 2% + 1z =1
if t€Fy\Fy and 22 +2 =0 if € Fy.

(al) Assume that D has exactly one nonzero entry. First, assume that djs = 1; take u = (1,¢e,1);
we have Du = (e,0,0) and (u, Du) = e ¢ Fq, a contradiction. If d13 = 1 take u = (1,1,¢e). If do3 = 1, take
u=(1,1,e).

(a2) Now, assume that D has 2 nonzero entries. First, assume that dio = di3 = 1 and dog = 0;
take u = (1,e,1); we have Du = (e +1,0,0) and (u, Du) = e+ 1 ¢ Fa, a contradiction. Now, assume that
dia = 0 and dy3 = daz = 1; take u = (1,e,¢e); we have Du = (e,e,0) and (u,Du) =e+e* =e+1¢ Fy, a
contradiction. Now, assume that dia = dog = 1 and di3 = 0; take u = (1,e,e); we have Du = (e,e,0) and
(u,Du) = e+ e®> =e+1 ¢ Fy, a contradiction.

(a3) Now, assume that di = dy3 = dog = 1; take u = (1,e,1); since e+1 = €2, we have Du = (€2, ¢, 0)
and (u, Du) = €? + € ¢ Fy, a contradiction.

(b) Now, assume that m;; # m;; for some i # j. Let E = (e;;) € M3 3(F2) be the diagonal matrix with

eii = my; for all 7. Since my; € Fy for all ¢, we have ET = E and hence, G := M + E is Hermitian if and only
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if G is Hermitian. Since E is Hermitian, (u, Fu) € Fy for all u € F}. Hence, (u, Gu) = (u, Mu) + (u, Eu) € Fy

for all u € C3(1). Since all diagonal elements of G are zero, step (a) gives GT = G and so MT = M. O
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