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Abstract: In this manuscript, we study nonself-adjoint second-order differential operators with two constant delays.
We investigate the properties of the spectral characteristics and the inverse problem of recovering operators from their
spectra. An inverse spectral problem is studied of recovering the potential from spectra of two boundary value problems
with one common boundary condition. The uniqueness theorem is proved for this inverse problem.
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1. Introduction
The method of separation of variables for solving PDEs with two constant delays naturally led to ODEs with
two constant delays inside of the interval, which often appear in mathematics, physics, mechanics, geophysics,
electronics, meteorology, etc. The inverse spectral problem consists of recovering operators from their spectral
characteristics. The inverse spectral Sturm–Liouville problem can be regarded as three aspects: existence,
uniqueness, and reconstruction of the coefficients of given specific properties of eigenvalues and eigenfunctions
(see [2, 6, 9, 11, 17] and the references therein).

The interest in differential equations with delay started intensively growing in the twentieth century,
stimulated by the appearance of various applications in natural sciences and engineering, including the theory
of automatic control, the theory of self-oscillating systems, long-term forecasting in the economy, biophysics,
etc. For general background on functional differential equations, we refer to the monographs [8, 12, 16] and the
references therein.

There exist a number of results revealing spectral properties of differential operators with delay (see, e.g.,
[13] and the references therein). At the same time, concerning the inverse spectral theory, its classical methods
do not work for such operators as well as for other classes of nonlocal operators, and therefore there are only
a few separate results in this direction, which do not form a comprehensive scheme. However, some aspects of
inverse problems for differential operators with a constant delay were studied in [3, 7, 10, 14, 15, 18, 19].

Recently, Freiling and Yurko in [7] proved that if the spectra of the problems Lj(q) , j = 0, 1, coincide
with the spectra of Lj(0), j = 0, 1, respectively, then q(x) = 0 a.e. on (0, π) . Pikula et al. in [15] and Vladicic
and Pikula in [18] studied the reconstruction of the potential function q(x) and the delay point a from the two
spectra if a ∈ (π/2, π) . Buterin and Yurko in [4] and Buterin et al. in [3] studied the inverse Sturm–Liuoville
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differential operator with constant delay. Also, the necessary and sufficient conditions for the solvability of the
inverse problem in terms of asymptotics have been proved. More recently, Shahriari et al.∗ studied the inverse
delay Sturm–Liouville problems with transmission conditions inside the interval.

In the present paper, we study an inverse problem of Sturm–Liouville differential operators. In inverse
spectral problems, the task is to find a coefficient in the equation using the spectral data. In this note, we discuss
the uniqueness of the spectral problem by developing the result of [7] for the inverse Sturm–Liouville problem
with two delay constants inside the interval. For this purpose, we study the asymptotic form of solutions,
eigenvalues, and eigenfunctions of the problems. We investigate the inverse spectral problem of recovering
operators from their two spectra in the Dirichlet–Dirichlet and Dirichlet–Neumann boundary conditions with
two constant delays inside the interval.

2. Asymptotic form of solutions and eigenvalues

We consider the boundary value problem Lj := Lj(q1(x); q2(x); a1; a2) , j = 0, 1 , of the form

ℓy : = −y′′(x) + q1(x)y(x− a1) + q2(x)y(x− a2) = λy(x), x ∈ (0, π), (2.1)

with the boundary conditions

y(0) = y(j)(π) = 0, (2.2)

where q1(x) ∈ L(a1, π) , q2(x) ∈ L(a2, π) , q1(x) = 0 for x < a1 , and q2(x) = 0 for x < a2 are complex-valued
functions. The coefficients a1, a2 ∈ [0, π) are real and assumed to be known a priori and fixed and a1 < a2 .
Let φ(x, λ) be the solution of Eq. (2.1) with a1N < π ≤ a1(N + 1) and a2M < π ≤ a2(M + 1) under the
initial conditions φ(0, λ) = 0 , φ′(0, λ) = 1 . For each fixed x , and j = 0, 1 , the functions φj(x, λ) are entire in
λ of order 1/2 . The function φ(x, λ) is the unique solution of the integral equation

φ(x, λ) =
sin ρx

ρ
+

∫ x

0

sin ρ(x− t)

ρ
(q1(t)φ(t− a1, λ) + q2(t)φ(t− a2, λ)) dt, (2.3)

with ρ2 = λ and ρ = σ + iτ . Solving (2.3) by the method of successive approximations, we get

φ(x, λ) = φ0(x, λ) + φ1(x, λ) + · · ·+ φN (x, λ). (2.4)

Thus, we have

φ0(x, λ) =
sin ρx

ρ
, (2.5)

φk(x, λ) =



0, x ≤ ka1,∫ x

ka1

sin ρ(x−t)
ρ q1(t)φk−1(t− a1, λ)dt, ka1 ≤ x ≤ ka2,∫ x

ka1

sin ρ(x−t)
ρ q1(t)φk−1(t− a1, λ)dt

+
∫ x

ka2

sin ρ(x−t)
ρ q2(t)φk−1(t− a2, λ)dt, x ≥ ka2,

(2.6)

∗Shahriari M, Nemati Saray B, Manafian J. Reconstruction of the Sturm–Liouville differential operators with discontinuity
conditions and a constant delay, unpublished.
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φ′
k(x, λ) =


0, x ≤ ka1,∫ x

ka1
cos ρ(x− t)q1(t)φk−1(t− a1, λ)dt, ka1 ≤ x ≤ ka2,∫ x

ka1
cos ρ(x− t)q1(t)φk−1(t− a1, λ)dt

+
∫ x

ka2
cos ρ(x− t)q2(t)φk−1(t− a2, λ)dt, x ≥ ka2,

(2.7)

for k = 1, 2, . . . ,M and

φk(x, λ) =

{
0, x ≤ ka1,∫ x

ka1

sin ρ(x−t)
ρ q1(t)φk−1(t− a1, λ)dt, x ≥ ka1,

(2.8)

φ′
k(x, λ) =

{
0, x ≤ ka1,∫ x

ka1
cos ρ(x− t)q1(t)φk−1(t− a1, λ)dt, x ≥ ka1,

(2.9)

for k = M + 1,M + 2, . . . , N . Then for k ≥ 1 , by using the formulas (2.5)–(2.7), we calculate

φ1(x, λ) =



0, x ≤ a1,∫ x

a1

sin ρ(x−t)
ρ q1(t)φ0(t− a1, λ)dt, a1 ≤ x ≤ a2,∫ x

a1

sin ρ(x−t)
ρ q1(t)φ0(t− a1, λ)dt

+
∫ x

a2

sin ρ(x−t)
ρ q2(t)φ0(t− a2, λ)dt, x ≥ a2,

=



0, x ≤ a1,∫ x

a1

sin ρ(x−t)
ρ q1(t)

sin ρ(t−a1)
ρ dt, a1 ≤ x ≤ a2,∫ x

a1

sin ρ(x−t)
ρ q1(t)

sin ρ(t−a1)
ρ dt

+
∫ x

a2

sin ρ(x−t)
ρ q2(t)

sin ρ(t−a2)
ρ dt, x ≥ a2,

=



0, x ≤ a1,
1

2ρ2

(
− cos ρ(x− a1)

∫ x

a1
q1(t)dt+

∫ x

a1
cos ρ(2t− x− a1)q1(t)dt

)
, a1 ≤ x ≤ a2,

1
2ρ2

(
− cos ρ(x− a1)

∫ x

a1
q1(t)dt− cos ρ(x− a2)

∫ x

a2
q2(t)dt

+
∫ x

a1
cos ρ(2t− x− a1)q1(t)dt+

∫ x

a2
cos ρ(2t− x− a2)q2(t)dt

)
, x ≥ a2,

(2.10)

and

φ′
1(x, λ) =



0, x ≤ a1,
1
2ρ

(
sin ρ(x− a1)

∫ x

a1
q1(t)dt+

∫ x

a1
sin ρ(2t− x− a1)q1(t)dt

)
, a1 ≤ x ≤ a2,

1
2ρ

(
sin ρ(x− a1)

∫ x

a1
q1(t)dt+ sin ρ(x− a2)

∫ x

a2
q2(t)dt

+
∫ x

a1
sin ρ(2t− x− a1)q1(t)dt+

∫ x

a2
sin ρ(2t− x− a2)q2(t)dt

)
, x ≥ a2.

(2.11)
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For k = 2 from (2.7)–(2.11), we get

φ2(x, λ) =



0, x ≤ 2a1,∫ x

2a1

sin ρ(x−t)
ρ q1(t)φ1(t− a1, λ)dt, 2a1 ≤ x ≤ 2a2,∫ x

2a1

sin ρ(x−t)
ρ q1(t)φ1(t− a1, λ)dt

+
∫ x

2a2

sin ρ(x−t)
ρ q2(t)φ1(t− a2, λ)dt, x ≥ 2a2,

(2.12)

and

φ′
2(x, λ) =


0, x ≤ 2a1,∫ x

2a1
cos ρ(x− t)q1(t)φ1(t− a1, λ)dt, 2a1 ≤ x ≤ 2a2,∫ x

2a1
cos ρ(x− t)q1(t)φ1(t− a1, λ)dt

+
∫ x

2a2
cos ρ(x− t)q2(t)φ1(t− a2, λ)dt, x ≥ 2a2.

(2.13)

From Eqs. (2.10)–(2.13) with a simple calculation, we obtain

φ
(j)
2 (x, λ) =

{
0, x ≤ 2a1,
O(ρj−3 exp(|τ |(x− 2a1))), x ≥ 2a1,

|ρ| → ∞, (2.14)

where τ = Imρ . Using Eqs.(2.5)–(2.11) by induction, it is easy to show that

φ
(j)
k (x, λ) =

{
0, x ≤ ka1,
O(ρj−k−1 exp(|τ |(x− ka1))), x ≥ ka1,

|ρ| → ∞. (2.15)

Denote ∆j(λ) := φ(j)(π, λ) , j = 0, 1 . The functions ∆j(λ) are entire functions in λ of order 1
2 and the

zeros of ∆j(λ) coincide with the eigenvalues λnj of Lj(q) . Thus, the function ∆j(λ) is called the characteristic
function for Lj(q) . From Eqs. (2.4)–(2.5), (2.10)–(2.11), and (2.13), we obtain the following asymptotic formula
for |ρ| → ∞ :

∆0(λ) =φ(π, λ) (2.16)

=
sin ρπ

ρ
+

1

2ρ2

[
− cos ρ(π − a1)w1 − cos ρ(π − a2)w2

+

∫ π

a1

cos ρ(2t− π − a1)q1(t)dt+

∫ π

a2

cos ρ(2t− π − a2)q2(t)dt
]

+O

(
exp(|τ |(π − a1))

ρ3

)
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and
∆1(λ) =φ′(π, λ) (2.17)

= cos ρπ +
1

2ρ

[
sin ρ(π − a1)w1 + sin ρ(π − a2)w2

+

∫ π

a1

sin ρ(2t− π − a1)q1(t)dt+

∫ π

a2

sin ρ(2t− π − a2)q2(t)dt
]

+O

(
exp(|τ |(π − a1))

ρ2

)
,

where w1 :=
∫ π

a1
q1(t)dt and w2 :=

∫ π

a2
q2(t)dt . Using (2.16) and (2.17), by the well-known method used in [6],

we get the asymptotic formula for the eigenvalues λnj = ρ2nj as n → ∞ :

ρn0 = n+
1

2πn
[w1 cosna1 + w2 cosna2] + o

(
1

n

)
, (2.18)

ρn1 = n− 1

2
+

1

2πn

[
w1 cos

(
n− 1

2

)
a1 + w2 cos

(
n− 1

2

)
a2

]
+ o

(
1

n

)
.

Lemma 2.1 The specification of the spectrum {λnj} , n ≥ 1 and j = 0, 1 , uniquely determines the characteristic
function ∆j(λ) by the formulas

∆0(λ) = π

∞∏
n=1

λn0 − λ

n2
and ∆1(λ) =

∞∏
n=1

λn1 − λ

(n− 1
2 )

2
. (2.19)

Proof By Hadamard’s factorization theorem [5, p. 289], ∆0(λ) is uniquely determined up to a multiplicative
constant by its zeros:

∆0(λ) = C

∞∏
n=1

(
1− λ

λn0

)
(2.20)

(the case when ∆0(0) = 0 requires minor modifications). Consider the function

∆̃0(λ) :=
sin ρπ

ρ
= π

∞∏
n=1

(
1− λ

n2

)
;

then
∆0(λ)

∆̃0(λ)
=

C

π

∞∏
n=1

n2

λn0

∞∏
n=1

(
1 +

λn0 − n2

n2 − λ

)
.

Taking (2.16) and (2.18) into account, we calculate

lim
λ→−∞

∆0(λ)

∆̃0(λ)
= 1, lim

λ→−∞

(
1 +

λn0 − n2

n2 − λ

)
= 1

and hence

C = π

∞∏
n=1

λn0

n2
.
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Substituting this into (2.20), we arrive at (2.19). The proof of ∆1(λ) is the same as that of ∆0(λ) . 2

Denote
L(ρ) := ∆1(λ) + iρ∆0(λ).

The function L(ρ) is entire in ρ , and L(ρ) is the characteristic function for the Regge-type boundary value
problem (2.1) with the boundary conditions y(0) = y′(π) + iρy(π) = 0 . It follows from (2.4) that

L(ρ) = L0(ρ) + L1(ρ) + L2(ρ) + · · ·+ LN (ρ), (2.21)

where Lk(ρ) = φ′
k(π, λ) + iρφk(π, λ). In particular, L0(ρ) = exp(iρπ) . Using (2.6) and (2.7), we get

Lk(ρ) =


∫ π

ka1
exp(iρ(π − t))q1(t)φk−1(t− a1, λ)dt

+
∫ π

ka2
exp(iρ(π − t))q2(t)φk−1(t− a2, λ)dt, for k = 1, 2, . . . ,M,∫ π

ka1
exp(iρ(π − t))q1(t)φk−1(t− a1, λ)dt, for k = M + 1,M + 2, . . . , N.

(2.22)

Moreover, it follows from (2.10) and (2.11) that

L1(ρ) =
exp(iρ(π − a1))

2iρ
w1 +

exp(iρ(π − a2))

2iρ
w2 (2.23)

− exp(iρ(π + a1))

2iρ

∫ π

a1

exp(−2iρt)q1(t)dt−
exp(iρ(π + a2))

2iρ

∫ π

a2

exp(−2iρt)q2(t)dt.

Taking (2.15) and (2.22) into account, we get

Lk(ρ) = O

(
exp iρ(π + (k − 1)a1)

ρk

[∫ π

ka1

exp(−iρ(2t− a1))q1(t)dt

+

∫ π

ka2

exp(−iρ(2t− a2))q2(t)dt

])
, (2.24)

for Imρ > 0 , |ρ| → ∞ , and k ≥ 1 .

3. The uniqueness theorem

Let {λ̃nj}n≥1 , j = 0, 1, be the eigenvalues of the boundary value problems L̃j := Lj(q̃1; q̃2; a1; a2) with

q̃1(x) = 0 and q̃2(x) = 0 . Then λ̃n0 = n2 and λ̃n1 = ρ◦n
2 =

(
n− 1

2

)2 . Denote by L̃(ρ) the characteristic

function of L̃ := L(q̃1; q̃2; a1; a2) . Clearly, L̃(ρ) = exp(iρπ) .

Theorem 3.1 (Main theorem) If λ̃nj = λnj for all n ≥ 1 and j = 0, 1 , then q1(x) = 0 a.e. on (a1, π) and
q2(x) = 0 a.e. on (a2, π] .

Proof (1) By virtue of Lemma 2.1, one has

∆0(λ) =
sin ρπ

ρ
, ∆1(λ) = cos ρπ

and consequently L(ρ) = exp(iρπ) . Using (2.21), we get

L1(ρ) = −L+(ρ), (3.1)
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where

L+(ρ) =

N∑
k=2

Lk(ρ), for k ≥ 2 and L+(ρ) = 0, for k = 1.

It follows from (2.18) that w1 cosna1+w2 cosna2 = 0 . The functions cosna1 and cosna2 , (a1 > a2) are linear
independent. We get w1 = 0 and w2 = 0 . Together with (2.23) this yields

L1(ρ) =− exp(iρπ)
2iρ

∫ π

a1

exp(−iρ(2t− a1))q1(t)dt (3.2)

− exp(iρπ)
2iρ

∫ π

a2

exp(−iρ(2t− a2))q2(t)dt.

(2) Let N = 1 , i.e. a1 ∈ (π2 , π) , and then L+(ρ) = 0 . From (3.1), we see that L1(ρ) = 0 . Using (3.2),
we get

exp(iρπ)
2iρ

[∫ π

a1

exp(−iρ(2t− a1))q1(t)dt+

∫ π

a2

exp(−iρ(2t− a2))q2(t)dt

]
= 0.

By rewriting Eq. (3.2) and with the assumption of q2(x) , we obtain

exp(iρπ)
2iρ

[∫ π

a1

exp (−2iρt) exp(iρa1)q1(t)dt+
∫ π

a1

exp (−2iρt) exp(iρa2)q2(t)dt
]
= 0

or ∫ π

a1

exp (−2iρt) (exp(iρa1)q1(t) + exp(iρa2)q2(t)) dt = 0.

From the completeness of exp (−2iρt) on (a1, π) , we obtain

exp(iρa1)q1(t) + exp(iρ(a2))q2(t) = 0 a.e. on (a1, π) .

The functions exp(iρa1) and exp(iρa2) are linear independent in ρ , so we get q1(x) = 0 and q2(x) = 0 a.e. on
(a1, π) . Thus, Theorem 3.1 is proved for N = 1 . 2

Below, we will assume that N ≥ 2 .

Lemma 3.2 If q1(x) = 0 and q2(x) = 0 a.e. on (2a1, π) , then q1(x) = 0 and q2(x) = 0 a.e. on (a1, π) .

Proof For the proof, we consider two cases:

• 2a1 ≤ a2 . The proof is similar to [7, Lemma 2].

• 2a1 > a2 . By virtue of (2.24), for q1(x) = 0 and q2(x) = 0 a.e. on (2a1, π) , we get Lk(ρ) = 0 for k ≥ 2

and hence L+(ρ) = 0 . From Eq. (3.1), we get L1(ρ) = 0 ; consequently, q1(x) = 0 and q2(x) = 0 a.e. on
(a1, π) .

2

(3) For definiteness, we assume that N = 2S + 1 , S ≥ 1 , i.e. N is odd. (The case when N is even
requires minor technical modifications.)
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Lemma 3.3 Fix ν = 0, 2S − 1 . If q1(x)+q2(x) = 0 a.e. on the interval (π−νa1/2, π) , then q1(x)+q2(x) = 0

a.e. on the interval (π − (ν + 1)a1/2, π) .

Proof Since π − νa1/2 > 2a1 , from (2.24) we have

L2(ρ) =


O
(

exp(iρ(π+a1))
ρ2

∫ π−νa1/2

2a1
exp(−iρ(2t− a1))q1(t)dt

)
, π − νa1/2 < 2a2;

O
(

exp(iρ(π+a1))
ρ2

[∫ π−νa1/2

2a1
exp(−iρ(2t− a1))q1(t)dt

+
∫ π−νa1/2

2a2
exp(−iρ(2t− a2))q2(t)dt

])
, π − νa1/2 > 2a2.

(3.3)

In the integrals 2t− π − 2a1 ∈ (2a1 − π, π − (ν + 2)a1) , where π − (ν + 2)a1 ≥ π −Na1 > 0 . This yields

L2(ρ) = O

(
1

ρ2
exp(−iρ(π − (ν + 2)a1))

)
, Imρ ≥ 0, |ρ| → ∞. (3.4)

For k ≥ 2 , the functions Lk(ρ) have less growth than the right-hand side in (3.4). This means that

L+(ρ) = O

(
1

ρ2
exp(−iρ(π − (ν + 2)a1))

)
, Imρ ≥ 0, |ρ| → ∞. (3.5)

It follows from (3.1), (3.2), and (3.5) that

L1(ρ) =− exp(iρ(π + a1))

2iρ

∫ π−νa1/2

a1

exp(−2iρt)q1(t)dt

− exp(iρ(π + a2))

2iρ

∫ π−νa1/2

a2

exp(−2iρt)q2(t)dt

=O

(
1

ρ
exp(−iρ(π − (ν + 2)a1))

)
, Imρ ≥ 0, |ρ| → ∞.

It follows from the above equation that

exp(iρ(2π − (ν + 1)a1))

∫ π−νa1/2

a1

exp(−2iρt) exp(iρa1)q1(t)dt

+ exp(iρ(2π − (ν + 1)a1))

∫ π−νa1/2

a2

exp(−2iρt) exp(iρa2)q2(t)dt

= O

(
1

ρ

)
, Imρ ≥ 0, |ρ| → ∞.

We have ∫ π−νa1/2

a1

exp(−2iρt) exp(iρa1)q1(t)dt+
∫ π−νa1/2

a2

exp(−2iρt) exp(iρa2)q2(t)dt

= O (exp(iρ(−2π + (ν + 1)a1))) , Imρ ≥ 0, |ρ| → ∞. (3.6)

Let us define the function

F (ρ) := exp(iρ(2π − (ν + 2)a1))

∫ π−νa1/2

π−(ν+1)a1/2

exp(−2iρt)
[

exp(iρa1)q1(t) + exp(iρa2)q2(t)
]
dt. (3.7)
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The function F (ρ) is entire in ρ . Clearly, F (ρ) = O(1) for Imρ ≤ 0 . From (3.6) and (3.7), we obtain
F (ρ) = O(1) for Imρ ≥ 0 . Using Liouville’s theorem (see [5, p. 77]), F (ρ) = C -const. Since F (ρ) = o(1) for
real ρ , |ρ| → ∞ . We get F (ρ) = 0 . From (3.7), we obtain

∫ π−νa1/2

π−(ν+1)a1/2

exp(−2iρt)
[

exp(iρa1)q1(t) + exp(iρa2)q2(t)
]
dt = 0.

The completeness of exp(−2iρt) in the interval (π − (ν + 1)a1/2, π − νa1/2) concludes that exp(iρa1)q1(x) +
exp(iρa2)q2(x) = 0 a.e. on the interval. Thus, we get q1(x) = 0 and q2(x) = 0 a.e. in (π − (ν + 1)a1/2, π − νa1/2) .

2

(4) Applying Lemma 3.3 successively for ν = 0, 1, . . . , 2S − 1 , we obtain q1(x) = 0 and q2(x) = 0 a.e. on the
interval (π − Sa1, π) . We note that it is not possible to use Lemma 3.3 for ν = 2S , and we need the following
lemma for this fact.

Lemma 3.4 If q1(x) = 0 and q2(x) = 0 a.e. on the interval (π − Sa1, π) , then q1(x) = 0 and q2(x) = 0 a.e.
on the interval ((S + 2)a1/2, π) .

Proof For k = S + 2 , we have π − Sa1 − ka1 ≤ π − (N + 1)a1 ≤ 0 . Consequently, Lk(ρ) = 0 for k ≥ S + 2 .
According to (2.24), for k = 2, S + 1 , we get

Lk(ρ) =O

(
exp iρ(π − (k − 1)a1)

ρk

[∫ π−Sa1

ka1

exp(−iρ(2t− a1))q1(t)dt

+

∫ π

ka2

exp(−iρ(2t− a2))q2(t)dt

])
, (3.8)

and we note that 2t− π − ka1 ≤ 0 . It follows that

Lk(ρ) = O

(
1

ρk
exp(iρ(π − ka1))

)
, Imρ ≥ 0, |ρ| → ∞ k = 2, S + 1, (3.9)

and hence

L+(ρ) = O

(
1

ρ2
exp(iρ(π − (S + 1)a1))

)
, Imρ ≥ 0, |ρ| → ∞. (3.10)

Applying (3.1), (3.2), and (3.10), we have

exp(iρ(π + a1)

[∫ π−Sa1

ka1

exp(−iρ(2t− a1))q1(t)dt+

∫ π

ka2

exp(−iρ(2t− a2))q2(t)dt

]

= O

(
1

ρ
exp(iρ(π − (S + 1)a1))

)
, Imρ ≥ 0, |ρ| → ∞.

Rewrite the equation as follows:

exp(iρ((S + 1)a1)

∫ π−Sa1

a1

exp(−2iρt)
[

exp(iρa1)q1(t) + exp(iρa2)q2(t)
]
dt

= O

(
1

ρ

)
, Imρ ≥ 0, |ρ| → ∞. (3.11)
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We thus get the equation∫ π−Sa1

a1

exp(−2iρt)
[

exp(iρa1)q1(t) + exp(iρa2)q2(t)
]
dt

= O

(
exp(−iρ((S + 1)a1)

ρ

)
, Imρ ≥ 0, |ρ| → ∞. (3.12)

Denote

F1(ρ) := exp(iρ((S + 1)a1)

∫ π−Sa1

(S+2)a1/2

exp(−2iρt)
[

exp(iρa1)q1(t) + exp(iρa2)q2(t)
]
dt.

The function F1(ρ) is entire in ρ , and F1(ρ) = O(1) for Imρ ≤ 0 . By referring to and reviewing (3.11) and
(3.12), we get F1(ρ) = O(1) for Imρ ≥ 0 . Therefore, F1(ρ) = C . Since F1(ρ) = o(1) for real ρ , as |ρ| → ∞ ,
it follows that F1(ρ) = 0 , i.e.

∫ π−Sa1

(S+2)a1/2

exp(−2iρt)(exp(iρa1)q1(t) + exp(iρa2)q2(t))dt = 0.

From the completeness of exp(−2iρt) on ((S + 2)a1/2, π − Sa1) , we get exp(iρa1)q1(t) + exp(iρa2)q2(t) = 0

a.e. on the interval. Then q1(x) = 0 and q2(x) = 0 a.e. on (a1, π) . 2

(5) If S = 1 or S = 2 , then from Lemmas 3.3 and 3.4, we have proved that q1(x) = 0 and q2(x) = 0 a.e. on
(a1, π) a.e. on (2a1, π) . According to Lemma 3.2, we conclude that q1(x) = 0 and q2(x) = 0 a.e. on (a1, π) .
Thus, Theorem 3.1 is proved for S = 1 and S = 2 .

Let S ≥ 3 . Fix ν = 5, S + 2 . Denote u := [(ν + 1)/2] . Clearly, u < ν .

Lemma 3.5 If q1(x) = 0 and q2(x) = 0 a.e. on (a1, π) on the interval (νa1/2, π) , then q1(x) = 0 and
q2(x) = 0 a.e. on (a1, π) on the interval (ua1/2, π) .

Proof Since ν/2 − k ≤ ν/2 − u ≤ 0 for k > u , it follows that Lk(ρ) = 0 for k > u . From Eq. (2.24) and
assumption of this lemma,

Lk(ρ) =O

(
1

ρk

∫ νa1/2

ka1

exp(−iρ(2t− π − (k − 1)a1))
[

exp(iρa1)q1(t) + exp(iρa2)q2(t)
]
dt

)
,

Imρ ≥ 0, |ρ| → ∞.

Since 2t− π − ka1 ≤ 0 , we get

Lk(ρ) = O

(
1

ρk
exp(iρ(π − ka1))

)
, Imρ ≥ 0, |ρ| → ∞, k = 2, u− 1,

and hence

L+(ρ) = O

(
1

ρ2
exp(iρ(π − (u− 1)a1))

)
, Imρ ≥ 0, |ρ| → ∞. (3.13)
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From Eqs. (3.1), (3.2), and (3.13), we obtain

exp(iρ(u− 1)a1)

∫ νa1/2

a1

exp(−2iρt)(exp(iρa1)q1(t) + exp(iρa2)q2(t))dt

= O

(
1

ρ

)
, Imρ ≥ 0, |ρ| → ∞. (3.14)

Moreover,

exp(iρ(u− 1)a1)

∫ ua1/2

a1

exp(−2iρt)(exp(iρa1)q1(t) + exp(iρa2)q2(t))dt

= O (exp(−iρua1)) Imρ ≥ 0, |ρ| → ∞. (3.15)

If ua1/2 < a2 , then q1(t) + q2(t) = q1(t) . Denote

F2(ρ) := exp(iρ(u− 1)a1)

∫ νa1/2

ua1/2

exp(−2iρt)(exp(iρa1)q1(t) + exp(iρa2)q2(t))dt.

The function F2(ρ) is entire in ρ , and F2(ρ) = O(1) for Imρ ≤ 0 . By referring to and reviewing (3.14)
and (3.15), we get F2(ρ) = O(1) for Imρ ≥ 0 . Therefore, F2(ρ) = C . Since F2(ρ) = o(1) for real ρ , as
|ρ| → ∞ , it follows that F2(ρ) = 0 , i.e. consequently exp(iρa1)q1(t) + exp(iρa2)q2(t) = 0 a.e. on the interval
(ua1/2, νa1/2) . Thus, we get q1(x) = 0 and q2(x) = 0 a.e. on the interval. 2

Applying Lemma 3.5 several times successively starting from ν = S + 2 , we obtain the relation q1(x) = 0 and
q2(x) = 0 a.e. on (2a1, π) . Then, by virtue of Lemma 3.2, q1(x) = 0 and q2(x) = 0 a.e. on the interval (a1, π) .
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