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Abstract: Let G and H be Archimedean Riesz spaces. We study the properties of band operators and inverse band
operators from G to H and investigate their relations to some well-known classes of operators. Then, we show that
under some assumptions on the Riesz spaces G or H , if S is a bijective band operator from G into H then S−1 : H → G

is a band operator. Additionally, we give some conditions under which a band operator becomes order bounded.
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1. Introduction
All vector spaces are considered over the reals only. The linear subspace A of a Riesz space G is called an
ideal whenever it follows from x ∈ A, y ∈ G and |y| ≤ |x| that y ∈ A. In a Riesz space, a net (xα) is said to
be order convergent to x (in symbols, xα

o→ x) whenever there exists another net (yα) satisfying yα ↓ 0 and
|xα − x| ≤ yα for all α . A subset B of a Riesz space is said to be order closed whenever (xα) ⊆ B and xα

o→ x

imply x ∈ B . An order closed ideal is referred to as a band. An ideal A is a band if and only if (xα) ⊆ A and
0 ≤ xα ↑ x imply x ∈ A . Let A be a nonempty subset of a Riesz space G . Then the band generated by A is
the smallest band that contains A . The bands generated by a set A and an element x will be denoted by BA

and Bx , respectively.
Let G and H be Riesz spaces. The set of all order bounded operators which map G into H, is denoted

by Lb(G,H) . If H is equivalent to G, then Lb(G,H) is denoted by Lb(G) . An operator S , between G and
H , is said to be Riesz homomorphism or lattice homomorphism whenever S(x∨ y) = Sx∨Sy ( or equivalently
S(x+) = S(x)+ for all x ∈ G ) holds for all x, y ∈ G. An operator S : G → H is called disjointness preserving
if Sx ⊥ Sy for all x, y ∈ G satisfying x ⊥ y ( i.e. |x| ∧ |y| = 0 ) . A positive operator S : G → H is disjointness
preserving if and only if S is a Riesz homomorphism. An operator π : G → G on a Riesz space is said to be
band preserving whenever π(B) ⊆ B holds for each band B of G . π is a band preserving operator if and only
if π(x) ⊥ y whenever x ⊥ y in G. A band preserving and order bounded operator π is called orthomorphism
of G and the set of all orthomorphisms of G is denoted by Orth(G) . Every orthomorphism is disjointness
preserving and order continuous. The order ideal generated by the identity operator I in Orth(G) is called the
ideal centre of G and is denoted by Z(G).

In the problem section of [6] , Abramovich raises the following question: if G , H are Riesz spaces and
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S : G → H is invertible and disjointness preserving, is S−1 : H → G disjointness preserving as well? In
[1, 2] , Abramovich and Kitover constructed an invertible disjointness preserving operator S on a normed lattice
such that S−1 is not disjointness preserving. Under some conditions, the Riesz spaces G or H, some positive
solutions were given in [1, 2, 5, 7] . In [2] , Abramovich and Kitover asked the following question: Let S : G → G

be a bijective band preserving operator on a Riesz space. Is S−1 : G → G also band preserving? It was shown
that this question has an affirmative answer in the following case: G has the principal projection property or G

is relatively uniformly complete [7] . In this paper, we consider the definitions of band operator and inverse band
operator and then, we study their properties. Next, we give relationship of the band operator with disjointness
preserving operator and band preserving operator. Additionally, we investigate that the inverse of an invertible
band operator is also a band operator and give some conditions under which band operator becomes order
bounded.

We refer to [3, 9, 11, 15] for definitions and notations which are not explained here. All Riesz spaces in
this paper are Archimedean.

2. Band Operators

Now, we recall the definitions of the band operator and inverse band operator which are similar definitions
to the definitions of ideal operator and inverse ideal operator. The reader is referred to [13] for information
about ideal operators and inverse ideal operators. Uyar introduced the definition of the band operator in [14] ;
with the help of it, she solved two problems in the theory of disjointnesss preserving operators. In [12] , some
properties were proved for band operators and inverse band operators, including the relations between band
operators and disjointness preserving operators.

Definition 1 Let S be an operator between Riesz spaces G and H.

(i) S is called a band operator if S(B) is a band in H for each band B in G.

(ii) S is called an inverse band operator if S−1(B) is a band in G for each band B in H.

Both the sets of band operators and inverse band operators are not vector spaces.

Example 2 Consider the two operators I and S : R2 → R2 defined by S(x, y) = (y, 0) and I(x, y) = (x, y)

for (x, y) ∈ R2. Then I and S are both band operators. But I + S is not a band operator. Observe that
B = {(0, y) : y ∈ R} is a band in R2, but (I + S)(B) = {(y, y) : y ∈ R} is not a band in R2.

The operator S : R2 → R2 defined by S(x, y) = (−y, 0) and the operator I are inverse band operators, but
I + S is not an inverse band operator. Observe that B = {(0, y) : y ∈ R} is a band in R2, but (I + S)−1(B) =

{(y, y) : y ∈ R} is not a band in R2.

Lemma 3 Let S be an operator between Riesz spaces G and H.Then the following statements hold:
(i) S is a band operator if and only if BS(A) ⊆ S(BA) for every set A ⊆ G.

(ii) S is an inverse band operator if and only if S(BA) ⊆ BS(A) for every set A ⊆ G.

In addition, let S be a bijective. Then,
(iii) A necessary and sufficient condition for S to be a band operator is that S−1 is an inverse band operator.
(iv) A necessary and sufficient condition for S to be an inverse band operator is that S−1 is a band operator.
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Proof The proof follows from the definitions. 2

Definition 4 Let S be an operator between Riesz spaces G and H.

(i) S is called a principal band operator if BSx ⊆ S(Bx) for each x ∈ G.

(ii) S is called an inverse principal band operator if S(Bx) ⊆ BSx for each x ∈ G.

If we take A = {x} in the Lemma 3 we get the next result.

Corollary 5 Let S be an operator between Riesz spaces G and H.Then the following statements hold:
(i) If S is a band operator, then S is a principal band operator
(ii) If S is an inverse band operator, then S is an inverse principal band operator

Since Bx = B|x| and B|x| ∩ B|y| = B|x|∧|y| for each elements x, y in a Riesz space G , we have the
following lemma that was given in [12,Lemma 3.1] .

Lemma 6 Let G be a Riesz space and x, y ∈ G. Then, x ⊥ y if and only if Bx ∩By = {0} .

Proposition 7 [12,Theorem 3.1] Let G , H be Riesz spaces and S : G → H be an operator then
(i) If S is an injective principal band operator, then S is a disjointness preserving operator.
(ii) If S is a bijective inverse principal band operator, then S−1 is a disjointness preserving operator.

Proof (i) Let x ⊥ y in G. Then, Bx ∩ By = {0} and BSx ⊆ S(Bx), BSy ⊆ S(By) as S principal band
operator. Hence, BSx ∩BSy ⊆ S(Bx) ∩ S(By) = S(Bx ∩By) = {0} which yields Sx ⊥ Sy. (ii) It follows from
(i) and Lemma 3 (iv). 2

Corollary 8 Let G , H be Riesz spaces with G has the projection property and S : G → H be an operator. If
S is a surjective disjointness preserving operator then S is a band operator.

Proof Let B be a band in G , and Bd the disjoint complement of B ; thus, G = B⊕Bd . Since S is disjointness
preserving, we have S(Bd) ⊆ S(B)d which yields that H = S(G) = S(B) + S(Bd) ⊆ S(B) + S(B)d =

S(B)⊕ S(B)d . From the Theorem 24.2 in [9] , S(B) is a band in H . 2

Corollary 9 Let G and H be Riesz spaces and S : G → H be a bijective operator. S and S−1 are disjointness
preserving operators if and only if S and S−1 are band operators.

Proof Let S and S−1 be disjointness preserving operators. We have S(Dd) ⊆ S(D)d and S−1(S(D)d) ⊆
(S−1S(D))d = Dd for any subset D of G. It follows that S(D)d = S(Dd). If B is a band in G, then
S(B)dd = S(Bd)d = S(Bdd) = S(B) as B = Bdd. Therefore, S is a band operator. Similarly, it can be shown
that S−1 is a band operator. If S and S−1 are band operators, then S and S−1 are disjointness preserving
operators from the Proposition 7. 2

Corollary 10 Let S be a bijective operator between Riesz spaces G and H, and G has the projection property.
Then the following statements are equivalent:
(i) S is a disjointness preserving operator.
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(ii) S is a band operator.
(iii) S is a principal band operator.

If we do not assume injectivity of S in the Proposition 7 (i), then S may not be disjointness preserving
operator.

Example 11 Let S : R2 → R2 be defined by S(x, y) = (0, x+ y) . Then, S is a band operator. However, S is
not a disjointness preserving operator as S(1, 0) ⊥ S(0, 1) is not true whenever (1, 0) ⊥ (0, 1).

If we do not assume surjectivity of S in the Corollary 8, then for a band B in G its image S(B) may
fail to be a band in H.

Example 12 Let G = c0 be the Riesz space of all real sequences that converge to zero and H = l∞ be the
Riesz space of all bounded real sequences. Since G is a Dedekind complete Riesz space, G has the projection
property.The natural embedding operator j : G → H, j(x) = x is a disjointness preserving operator but it is
not a band operator as j(G) = c0 is not a band in l∞.

Example 13 Not every ideal operator is a band operator. Let G and H be Riesz spaces in the Example 12.
Since c0 is an ideal in l∞ , j : G → H, j(x) = x is an ideal operator but it is not a band operator.

Since any orthomorphism is disjointness preserving operator, we get the following corollary.

Corollary 14 If G has the projection property, then each surjective orthomorphism π : G → G is a band
operator.

Corollary 15 If S is a bijective band operator from a relatively uniformly complete vector lattice G into a
normed lattice H then S−1 : H → G is a band operator.

Proof Let S be a bijective band operator. According to the Proposition 7 (i), S is a disjointness preserving
operator. By the Corollary 2.2 in [5] , S−1 is a disjointness preserving operator . Considering the Corollary 8,
we have S−1 is a band operator. 2

We now give some properties of order bounded band operators and order bounded inverse band operators.

Theorem 16 Let G and H be Riesz spaces, S : G → H be an order bounded injective principal band operator.
Then, S is order continuous.

Proof Let u0 ≥ uα ↓ 0 in G. There exists y ∈ H+ satisfying |Sx| ≤ y for all 0 ≤ x ≤ u0. Let 0 < ϵ < 1,

then if 0 ≤ x ≤ ϵu0 we have |Sx| ≤ ϵy. Let z be such that 0 ≤ z ≤ |Suα| for all α. Then

0 ≤ z ≤ |Suα| =
∣∣S [

(uα − ϵu0)
+ + (uα ∧ ϵu0)

]∣∣
≤

∣∣S(uα − ϵu0)
+
∣∣+ |S(uα ∧ ϵu0)|

≤
∣∣S(uα − ϵu0)

+
∣∣+ ϵy

Thus, (z − ϵy)+ ≤ |S(uα − ϵu0)
+| holds for each α. Consequently, the hypothesis on S implies that

(z − ϵy)+ ∈ ∩BS[(uα−ϵu0)+] ⊆ ∩S(B(uα−ϵu0)+) = S(∩B(uα−ϵu0)+)

980



TURAN and ÖZCAN/Turk J Math

By the Lemma 139.3 in [15] , ∩B(uα−ϵu0)+ = {0} , this yields (z− ϵy)+ = 0 for each 0 < ϵ < 1. Thus, z = 0 as
G is Archimedean. 2

Corollary 17 Let G and H be Riesz spaces and S : G → H be an order bounded injective band operator.
Then, S is an order continuous operator.

Proof From the Corollary 5 (i), the proof is clear. 2

Theorem 18 Let G and H be Riesz spaces and S : G → H be an order bounded disjointness preserving
operator. If S is an order continuous operator, then S is an inverse band operator. If additionally S is
surjective, then the converse is true.

Proof Let S be an order continuous operator and let B be an arbitrary band in H. Let z, y ∈ G be such
that |y| ≤ |z| and z ∈ S−1(B). From the Proposition 1.2 in [5] , |Sy| ≤ |Sz| holds. As Sz ∈ B and B is
a band, we get Sy ∈ B which yields y ∈ S−1(B). Thus S−1(B) is an ideal in G. Let (xα) ⊆ S−1(B) and
xα

o→ x in G. Since S is order continuous and B is order closed we have Sx ∈ B . So S−1(B) is an order
closed ideal showing that S−1(B) is a band. Conversely, let S be a surjective inverse band operator. Then,
S−1({0}) is a band in G. From the Theorem 8.6 in [3] , modulus of S exists and |S| is a Riesz homomorphism
with |Sx| = |S |x|| = |S| |x| . It is clear that |S| is surjective and Ker |S| = KerS is a band in G. From the
Theorem 7.9 in [3] , |S| is order continuous which yields that S is order continuous. 2

Corollary 19 Let G and H be Riesz spaces and S : G → H be a bijective order bounded operator. If S is a
band operator then S−1 is a band operator.

Proof Let S be a band operator. From the Corollary 17 and the Theorem 18, S is an inverse band operator.
So S−1 is a band operator. 2

Since any orthomorphism π : G → G is an order bounded disjointness preserving and order continuous
operator, we have the following corollary.

Corollary 20 Each orthomorphism is an inverse band operator.

The converse of the Corollary 20 may not be true.

Example 21 Let S : R2 → R2 be defined by S(x, y) = (0, x) . S is an inverse band operator. Since
S(1, 0) ⊥ (0, 1) is not true whenever (1, 0) ⊥ (0, 1), so S is not an orthomorphism.

Example 22 There is an operator π such that π is an orthomorphism but not a band operator. Let G = C[0, 1],

q : [0, 1] → R , q(x) = x . The operator πq : G → G defined by πq(f) = qf is an orthomorphism. However, πq

is not band operator. To see this, define the function w : [0, 1] → R by

w(x) =

{ ∣∣x sin 1
x

∣∣ : x ∈ (0, 1]
0 : x = 0

Then w ∈ G, q ∈ πq(G) and 0 ≤ w ≤ q. On the other hand, observe that w /∈ πq(G) . This shows that πq(G)

is not an order ideal in G. Thus, πq(G) is not a band in G.
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Example 23 Not every band operator is an orthomorphism. Let S be the operator in the Example 11 defined
by S(x, y) = (0, x+ y) . Then, S is a band operator but S is not an orthomorphism as S(1, 0) ⊥ (0, 1) is not
true whenever (1, 0) ⊥ (0, 1).

In general band operator is not order bounded. Now, we will get the necessary conditions for the band
operator to be order bounded.

Example 24 Let G = L0 [a, b] be the Riesz space of all (equivalence classes of) measurable functions on [a, b] .
We know that G is a Dedekind complete Riesz space. From the Corollary 13.9 in [1] , there exists a bijective
disjointness preserving operator R : L0 [a, b] → L0 [a, b] such that R−1 is not disjointness preserving operator.
Since G has the projection property and R is onto, R is a band operator. Assume now that R is order bounded.
From the Corollary 19, R−1 is band operator. Thus, we have R−1 is disjointness preserving operator from the
Proposition 7. This is a contradiction.

We recall some definitions that we will use later on.

Definition 25 A Riesz space G has rich center if for each x, y ∈ G satisfying |x| ≤ |y| there exists a central
operator s ∈ Z(G) such that s(y) = x and |s| ≤ I.

Every Dedekind σ -complete Riesz space has rich center.

Definition 26 Let G be a Riesz space. If each band preserving operator on G is order bounded, G is said to
have bounded band preserving property.

Every Banach lattices and every Dedekind σ -complete normed vector lattices have bounded band pre-
serving property [1, Theorem 2.6] , [8,Corollary 9.10] . If G is a uniformly complete vector lattice on which
there is defined a locally convex locally solid Hausdorff topology, then G has bounded band preserving property
[10,Corollary 2.3] . There exists a Riesz space such that it does not have the bounded band preserving property
[3,Example 8.4] .

Lemma 27 [14,Proposition 2] Let G,H be Riesz spaces, and R : G → H be a bijective operator. Then the
following statements hold:
(i) If R is a band operator then R−1sR is a band preserving operator for each s ∈ Orth(H) .
(ii) If R−1 is a band operator then RsR−1 is a band preserving operator for each s ∈ Orth(G) .

Proof (i) Let B be a band in G . Since R is a band operator, R(B) is a band in H. Therefore, sR(B) ⊆ R(B)

for each s ∈ Orth(H). It follows that R−1sR(B) ⊆ R−1R(B) = B . (ii) The proof is similar to (i). 2

Using the Lemma 27, we can give the following lemma.

Lemma 28 Let G,H be Riesz spaces with G having bounded band preserving property, and R : G → H be a
bijective band operator. Then the mapping

Φ : Orth(H) → Orth(G), s → Φ(s) = R−1sR

is an algebraic one to one homomorphism. If H is ru-complete, then Φ is a Riesz homomorphism.
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Proof For two arbitrary elements s, t from Orth(H) , we obviously have

Φ(s)Φ(t) = (R−1sR)(R−1tR) = R−1stR = Φ(st).

Let s ∈ Orth(H) and Φ(s) = 0 hold. For arbitrary element y from H, there is an element u in G such that
R(u) = y. This implies that

R−1s(y) = R−1sRu = Φ(s)(u) = 0.

As R−1 is one to one, we have s = 0. Since H is ru -complete, Orth(H) is ru -complete [15] . As Φ is an algebra
homomorphism from ru -complete f -algebra Orth(H) into f -algebra Orth(G) , Φ is a lattice homomorphism
from the Theorem 5.1 in [4] . 2

Theorem 29 Let H be an ru-complete Riesz space and has rich center and G be a Riesz space has bounded
band preserving property, and R : G → H be a bijective band operator. Then R−1 is an order bounded
disjointness preserving operator.

Proof From the Proposition 1.2 in [5] , it is enough to show that if |z| ≤ |w| in H , then
∣∣R−1z

∣∣ ≤ ∣∣R−1w
∣∣ .

Let x = R−1z and y = R−1w . Since H has rich center there exists s ∈ Z(H) such that s(w) = z and |s| ≤ I .
We have

s(w) = s(Ry) = Rx and R−1s(Ry) = x.

On the other hand, since Φ is a Riesz homomorphism,
∣∣R−1sR

∣∣ = |Φ(s)| ≤ Φ(I) = I. Thus, we obtain
∣∣R−1z

∣∣ =
|x| =

∣∣R−1s(Ry)
∣∣ ≤ |y| =

∣∣R−1w
∣∣ . 2

Corollary 30 Let H be an ru-complete Riesz space and has rich center and G be a Riesz space has bounded
band preserving property, and R : G → H be a bijective band operator. Then R is order bounded operator.

Proof From the Theorem 29, R−1 is an order bounded disjointness preserving operator. Hence, we obtain
that (R−1)−1 = R is order bounded from the Theorem 4.12 in [1] . 2

Example 31 There exists a Dedekind complete Riesz space without the bounded band preserving property.

Proof We will use G and R defined in the Example 24. Thus, we know that G is a Dedekind complete
Riesz space, R is a bijective disjointness preserving operator and R−1 is not disjointness preserving operator.
Assume now that G has bounded band preserving property. Since G has projection property and R is onto, R
is a band operator. If we take H = G in the Theorem 29, we have that R−1 is an order bounded disjointness
preserving operator. This is a contradiction. 2
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