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Abstract: A Timoshenko type beam subject to a viscoelastic damping in the rotational displacement component is
considered. Taking into account a neutral type delay, we prove a fast stability result despite the previously observed
destabilizing effect due to delays in such systems. The proof relies on the introduction of nine different functionals with
which we modify the energy of the system. These functionals are carefully selected and adapted to cope with both the

viscoelasticity and the neutral delay.
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1. Introduction
The scientific community is witnessing a considerable growth of interest in problems involving time delays. This
is due mainly to the widespread appearances of such phenomena. Time delays are peculiar to the dependence
of the rate of change on the past history of the system. This is the case, for instance, whenever there is a
displacement of material or transmission of information. The class of differential equations treating delays is
known as functional differential equations (FDEs) [5, 10, 14]. Models that necessitate the incorporation of the
history of the (highest) derivative are commonly known as neutral delay differential equations (NDDEs).
NDDESs have been shown to be very useful in describing complicated phenomena in many fields including
control theory, mechanical systems, chemical processes, oscillation theory, and biosciences [5, 10, 14, 33, 34].
It was established that differential equations are sensitive to the presence of delays. Many researchers
have demonstrated that even initially stable systems may be destabilized when taking into account delays
[1, 3, 4, 21]. This has forced scientists to find appropriate ways to fix this matter. The literature has been
enriched by many results in this respect. Nevertheless, this class of NDDEs remains not well explored so far.
We note here that delays may play a positive role in many cases. It has been well established that, in contrast
to the sensitivity issue raised above, large neutral delays may stabilize systems. As a matter of fact, for better
achievements, engineers have been adding neutral delays premeditatedly in the models.

We consider the neutrally retarded viscoelastic Timoshenko system

01t = (Pz + V),
[0+ Ji 1t = 9)u()ds| = s — Ji 9t = 5) ()5 — (00 + ),
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for ¢ > 0, 0 < x < 1 with initial and boundary conditions
S0($70) = SDO(.Z'), L)0t<x70) = Sol(w)a 0<z <], (2)
(z,0

where po(z), w1(x), ¥o(x), and ¥;1(x) are given initial data. Here ¢ is the transversal displacement of the
beam from its equilibrium and ) is the rotational displacement of the beam.

As its name indicates, the model is based on the standard Timoshenko beam model [27, 33]. One of its
components (the rotational displacement) is viscoelastic (described by the convolution involving the relaxation
function g). The convolution term involving the kernel k describes the neutral delay.

This type of delay appears in the study of vibrating masses attached to an elastic bar and also (as the
Euler equation) in some variational problems [11, 13, 16]. It appears also in the study of wave propagation in

viscoelastic media [11, 16, 32]:

gy + K x ug = v2V2u 4 6()6(x).
Moreover, it is used as a poroacoustic model in acoustic waves propagation:
p*uy = V.[K % Vu]

(see [12, 13]).
In this work we shall prove that the neutral delay in (1) does not prevent the system from being stabilized

by the viscoelastic term. In fact, we show that the system is exponentially stable under certain conditions on
k. We refer the reader to other kinds of stabilization in [2, 15, 22, 23, 29-31].

The existence and uniqueness of a solution in [H?(0,1) x H{(0,1)] 2 (weak solution in [H{(0,1) x L2(0,1)] 2)
may be proved by combining the results in [6, 7, 19, 34] and [8, 18, 24]. We shall assume therefore that the
solution and the initial data are regular enough to justify our computation.

In the next section we present some preliminaries and introduce the different functionals that will be used
in the sequel. Section 3 contains some useful lemmas that will help in proving our theorem. The last section is

devoted to the statement and proof of our results.

2. Preliminaries
In this section we present our assumptions on both kernels and introduce the energy functional and some other
functionals.

(K) The kernel k is a nonnegative continuously differentiable and summable function satisfying
“+oo
V(O < akle), [ R E)lds <0, 20
0

for some positive constants 1 and 7.
The second condition is fulfilled if &'(t) > —7 k(t) with 7 > n and v <.
(G) The relaxation function ¢ is a nonnegative continuously differentiable and summable function

satisfying g := fooo g(t) dt < 1 and there exists a constant & > 0 such that

g'(t) < —Eg(t), t > 0.
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For t, > 0, we denote

g*zﬁmm@w,@:Amm@@,kzjfk@Mak*=A“M@w.

We caution the reader here that these assumptions are not the weakest ones possible. They are considered here
only for simplicity. They may be weakened as in the case of Timoshenko systems without neutral delays (see
[9, 17, 20, 25-28] for more general kernels).

We define the ‘modified’ energy (taking into account the viscoelasticity and the neutral delay) by

B(t) = ${llill? + [0l 2+ (1= fy 9(s)ds ) 1[0l 12 + llps + w1
+HgOwa) + Jy k(t = s)l[wi(s)|[Pds}, ¢ >0,

where ||.|| denotes the L?-norm and
¢
(hOv)(t) = / h(t — s)||v(t) — v(s)||*ds, t > 0.
0

Proposition 1 The modified energy E(t) is nonincreasing and uniformly bounded. More precisely, we have

(1) = 2000 + 5(6T0) — D~ g <002 0
To prove the proposition we need to establish a useful identity.
Lemma 1 We have the following identity:
f fo f(t = s)v(s)dsdz = —3(f'Ov)(t) + 3% fo ft—s)||v(s)||?ds
+10 ||v||2 (t) [y v(t)o(0)da, t >0,

for all v € C([0,00); L*(0,1)) and f € C1[0,00).

Proof The identity is a direct consequence of

(f'Ov)(t) = fFO)lu(t) = v(0)]* ~ 2/0 f(s) /O vi(t = 8)(v(t) — v(t = s))dwds, t > 0

and
o Jo FE=9)|[v(s)|Pds = & [3 £(s) ot — 5)|| [2ds
= f(t)||v(0) ||2—|—2fO fo s)ve(t — s)v(t — s)dsdz, t > 0.

O
Proof (of the Proposition)
A straightforward differentiation of E(t), along solutions of (1)—(2), yields
E/(t) = ~k(t) Jy (0)trda — hwh (t = 8)ee(s)dsd — 22 [[oh ||
%(9 Dq/)z 2dt fo ‘Wt( )H2d5, t>0.
Then, applying Lemma 1, we find the relation in the statement of the proposition. O
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Next, we proceed with the introduction of several functionals and estimate their derivatives.

functionals are carefully selected and adapted to both the viscoelastic damping and the neutral delay.

A (t) = /01 P |:1/}t + /Ot k(t — s)qpt(s)ds} dx, As(t) == — /01 prede,

= Jo a0 [+ [y Rt = 5)u(s)ds] d
+fos0t[ — Iy ot = 5) vu(s)ds] da
t } ) too
Aat) = e—W/O R — 5) [ (s)]| ds, K (1) ::/t 15[k (s)|ds,

for some vy > 0,

wo(0:= [ 9to) o= [ o=y iatsris] [on+ [ s = puntonss| a

and

1
Ag(t) == / p(z)prprdr, p(z) =—4x+2, 0<x <1, t>0.
0

In addition to these functionals, we consider

1
A7 (t) :z/ pexdx, t >0,
0
where x is the solution of

{ oz = {p ( fo )ds)} 0<z<l,

x(0) = x(1) =0,

1
As(t) :z/ peqdr, t >0,
0

where ¢ is the solution of

{ _qmz:wxu 0<£E<1,
q(0) = ¢(1) =0,

and
1 t t
rolt)i= - | [wt + [ hie- s>w<s>ds] [ [ ot = s)wte)  vis)ds | do, 20,
0 0 0
The usefulness of these functionals will be clear in the next section.
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3. Some lemmas
In this section, we prepare several lemmas containing useful estimations of the derivatives of the functionals

introduced above in the second section.
Lemma 2 The derivative of Ai(t), along solutions of (1)-(2), is estimated as follows:
AL() < = (1 =G = 00) [[all® + (1 +E +00) [[0e? = [y ©(a + $)da + £ (k) + 4% (90s), > 0, dy > 0.
Proof Using the system (1)—(2) we find
6= Jy v [(1+ Jy K ds) Go+ fy (= 8) (uls) = () ds] da
t Jo Wlbas = Jo 9(t = $Vaa(s)ds — (s + )] da

(1+fo $)s) [9ell? + Jy o fi bt = ) (G(s) = u(t)) dsdl
—Nall® + fiy ¥ fy gt — 8) u(s)dsda — [ (s + ¥)dz, t > 0.

The estimations (using the Young inequality)
1 t i ,
/ 7th/ k(t—s) (Pe(s) — ¥u(t)) dsdx < 4750(/451/%) + 0o [[ve]”, 60 >0
0 0

and

Jo e Ji o (s)dsda = [y b [ 9(t = 5) [ (s) - <>1dsdx+(fo )ds ) [
< 80 Iall” + 5 (900) + (fo 9(s)ds ) lall* 6 > 0

conclude. 0

Lemma 3 The derivative of Aa(t) is equal to

1
AL(E) = — ol + e + ¥I1° — / Pl +Vldz, t > 0.
0
Proof Clearly
5 1 9 1
AL (E) = — ] ‘/0 R +/O polion +ldz, £ >0
and therefore
AL () = — @il + e + ¥ —/ Blipw + ¥ldz, t> 0.

Lemma 4 The derivative of the functional As(t) is evaluated by

(0 < 22| (4~ ot = 90ae)as) (0 + (v, = [ ate = 90u)s) " 0)
o5 [0 + @20)] = llew + 01+ (1+ 80 + B lnll® + 2 (kOw)
+ [i+—”+5o+g< )] lleel® + 3 (8k2(0) + 9(0) 1w
A o 1* + 28(0) Jy IK(t = )| 162 () |1* ds + 42 (1g'| D) , £ > 0.
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Proof It is easy to see that from the equations in (1) that

fO sz"_'l/} 11/}1@ fo t_Swmc( )ds_(SDz+7/) dx+f01 (px+¢)
[¢t+f0 (t—s)(s )ds]d$+f090tt{wm fo (t — ) (s)d ]

+Jo e [tar— g — Jy 9/t = $)u(s)ds| da, > 0.
Therefore,
8500) = [ (Ve — Lot = 9)0(s)ds) ]|~ ' vl + )ed
+f0 Som"‘dj fo t_s wx( )dex_ ”Spr"_'l/}” +fo 1/)15 @x+¢) dz (4)
+f0 Oz + V)t fo (t — s)e(s )dsd:g+f01 [7/11 fo (t — 8)Y(s)ds| (@x + ) edx
+f0 Pt |:th - fo t - S 1/}:8( )d5:| dx
and

Jy @at fo k(= $)u(s)dsdz = [ pur [k(t—sw(sné+f5k'<t—s>w<s>dsdx]
= f; Pt [K(O)P() = k(#)P(0)] dx — [ ot o B (t = 8)iP(s)dsda
— o 0t R(0)a(t) = k(D)ea(0)] dz = [y @1 fy K (t = 5)ibu(s)dsdw  (5)
< lell® +262(0) 1o l* + EL2 (el + 142 (0)]1%)
+2k(0) [y 1K' (t — 5)| [¢a(s)|I* ds, ¢ > 0.

On the other hand,

Jy o1 [900)0s = fy g/t — $)ta(s)ds] dxzf;sot{ 9(0)s + 9(0)s — g(£)0
— Jy 9/t = 5) [Wals) = (D] ds | do (6)
< (g(0) + d0) llpell” + 22 19 |* + G52 ('] D)

415 (¢m _ fotg(t - s)z/;%(s)ds)2 ( fo )d8>2 (0)] ’
(7)

and
Jo o Jo bt = s)u(s)dsda = [ b [y (e = 5) [9a(s) = wa(t)) dsda+ ( fy (s)ds) ([0l
= (5o+f0 ) [0el* + 785 (kD) £ > 0.
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Taking (5)—(8) into account in (4), we obtain

M50 < 38 | (v = Ji = 0(0as) (0 + (w2 = fialt = s)a(e)as) (0]
T [0 + G20)] — llw + I+ (1 4+ 8o + F) e + m(kmwa
+ M2 4+ 60+ 9(0) + 1}\|¢t||2+(2k2<>+9<t)uwzn+ o

+2k(0) fy [/ (t = 8)| o (s)]1* ds + 553 (19| D)

for t >0 and dg > 0. O

Lemma 5 The following identity holds:

A4(t) = —7Aa(t) + K (0) [l —/O K/ (t = )| [tz (5)]* ds, ¢ = 0.

Lemma 6 The derivative of As, along solutions of (1)—(2), satisfies

M) < [( ot = s0e(sds) (1) + (i — i gt~ s (s)d )70)}
— Jo p@)(pa+ ) [t = fy 9t = 5)0a(s)ds] dz + 2k(8)d0 |10
+ [4(3 + 80) + 6k(0)0 + 2(1 + K)oog(t) + g(1)] x> +25 (1 + 25 ) (90%.)
2 [1 4 AEOERGEDLRIO 4 55 (14 8)°] lon]* + 42 (1| Ovr)
680k (0) [} k'] (t — ) [0 ()| ds + K (g(t) + 280) (sz/Jt), t>0, § > 0.

Proof From the second equation in (1) we see that

= Iy 2l [t = Jy 9l = 5)bua(s)ds — (2 + )]

x i = fy g(t = 5)a(s)d ]

+ Jy pl@) [+ fi kit = $)n(s)d ][wm— — Jy 9/t = )ta(s)ds) da
=5l (@) [%*fo )ds} de — [y p(z)(0 + )

x[a = Jy o )ds} do + 1 [} p(a) Lt da

+f0 wwt fO t— S wt( )dsdm
_fol Kl+f0 ds) ¢t+f0 (t—s) (Ve(s) —ve(t)) ds
{ YWu + fy 9 (t = 5) [Vals) — a(t)] s}dxytzo.
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By integration by parts, we may write for ¢ > 0

(1+250) QD% — Jo p(@)(¢0 +¥) [ — gt —s)y )ds} dx
+1 [p(@)?]y — & Jy o/ (@) dm+f0 D)t [ (= 5)pu(s)dsdx
—g(t) (1+ Ik ds) o playnpeda
—g() fy p(2)s [y k(t = 5) (¥1(s) — i (1)) dsda
(1 S K ds)fo wt[fo (t = 5) [0(s) = (D)) ds ] d
= Jy pl) [Ji bt = 5) (inls) = vut)) ds] [ [ 9/ (¢ = 5) [als) = v (8)) ds dor

450 < 4 [pto) (v = Jy gt = (o) )L+4( +30)
+2g

and applying the Young inequality, we get

Ab(H) < [( o )ds) 1) ( - fyatt = 90u3)is) " 0)]
~ Jo ol sﬂzﬂb[ ~ Iy o >ds}dx+4( + do) [l
+2g (1+f) (9030 +2 el +f0 )t fy Kt = 5)tu(s)dsde
F0 (14 [LK(s)ds) [0l +2800(e) (1+ f; K()ds) [l + g(0) [
+Rg(t) (KDwe) + 250 (1+E)” [[6]* + 452 (9’| D)
+2dpk (kD?/Jt)+925 (I¢'| Otz), t > 0.

The sixth term in the right-hand side of the previous relation is handled in the following way:

I p@)ar [L Rt — s)y(s)dsdz = [} p(x)tbm [k (t — ) |0 + fo K (t — s)w(s)ds] dz
_ fol [ +f0 K(t— )p(s)ds| da
fo Yripyda — ( ) p'(x)heipdr + k(1) fo )y, (0)da
() fy /(@) (0)dz — [y p(x)ibe Jo ' (t — 8)ibu(s)dsdz
- fol p’(m)¢t fg k’(t — 8)(s)dsdx, t > 0.

Passing to the estimations, we find

Jo p(@)bar [y k(t — 5)tby(s)dsda < EEOEEOED 1 12 4 65(0)60 (|| + 2k(t)d0 (|0 |
600k (0) [ [K'] (t — ) [ (s)|* ds, t >0, & > 0.
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Hence,

A1) < [( gt = sbals)d ) ( gt = s)ba(s)d )(oﬂ
— Jo Pl@)(oa ) [t = [ 9(t = spiu(s)ds| da + 2h(1)50 o |

+ [4(3 + do0) + 6k(0)0 +2 (1 + k) 809(t) + 9(8)] 1 I® + 29 (1+ 55 ) (900)

3(k(0)+k(t)+1)+(1+k -
2 1 MO0 g, (14 By s+ 521 )

+600k(0) [y [K'] (t = 5) [[voa(s)|* ds + k (g(t) + 280) (kD) ¢ > 0.

Lemma 7 It holds, for the derivative of Ag(t), that

A() < 3lgn + DI = [92(1) + @2(0)] + [[al®
—4 [N (@ + V)dz + 2||g]|*, t > 0.

Proof A simple differentiation gives

= [ p(a)(ps +¥)aps dz + [ p( %tpmdx
— [ p(@) (0 + V)apadz + 1 [ pla) 2 de
= Jy P(@) (@0 + ¥)apudr + Sp(z w — 1 Jy P (@)ptda
= [} p(@)(pz +¥)a (00 +¥) dz — [} p( som+¢) Yda
[w?(l)ﬂot( )+ 2l

= %f d(‘pIer) da:—|—f0 Y@z + Y)de
4f0 o+ V)dz + 2 e, ¢ > 0.

Then, using integration by parts and the Young inequality, we arrive at
Ag(t) < =[02(1) + @2(0)] + 2w + 9117 + el + llpn + ¥
1
+2[lerll* 4 [y (po + ¥)0oda

or
A1) < 3le + 0l = [92(1) + @2(0)] + ||t |”
—4 [N (g + V)da + 2|g]|*, > 0.

Lemma 8 We evaluate the derivative of Az(t) as follows:

AL() < 2 10el® + 380 leel® + 252 (19| Do) + £ (90w)
+2g(t) (llel® + 62 ?) + 10 [all® + (F5 +00) s + w11

+ o @)+ 0) (Yo = Jy 9t = 5) Vuls)ds) da, £ 20, 6o > 0.
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Proof Differentiating A7(¢), and taking into account (1), we get for ¢ > 0

AL(t) = [ [pe + Ploxde + [y gixeds = — [ (¢x +¥)Xadz + [ ooxeda
- fo 41015>(1‘/ahj + fo (pa: + ’(/} ( fO t — S ’(/};1; ) ) dx (9)
_fo Pz + ) fopz ( fo (t—s)Ya(s)d )dzdm.

For the first term in (9), we have

1

1 1 x x 1 x
d
/cptxtdx:/ (/ @tdy> xtda:[xt/ sotdx} 7/ th/ prdydx
0 o \dz Jo 0 0 0 0

—xthp()(%t— fo (t — 8)u(s)d )
= Jo n (¢wt— —Jo g/t =) ¥u(s)d )dz,tzo.

and

Therefore,

Iy eexede = [ p@) (f; erdy) (20— 9(0) v - o1t =95 ) da
— Jo (J3 eedy) J p( (%t —9(0 )wm g (t — 5)(s)d )dzdm
= Jo Uy erdy) {2 p(@)e] + 40, — ()[ (O + [y 9'(t = 5) a(s)ds] | do

— LT pudy) ( %tdz) da

+f0 (fowtdy)f ( ¢x+f0 (t — 5) Y. (s)d )dzdx,tZO

I onada = — fo p)uprdz +4 [ (7 pidy) yda
0) fy (Jy eedy) pl@yudz — [) p(x) (f3 pedy) Jy o'(t = ) a(s)dsda

—4 fol (Jo wedy) (fo wtdy) dz + g(0) [y ([ edy) [ p(2)0ude
+Jo o erdy) Jy p(2) Jy 9/ (t = 5) Yals)dsde, t > 0.

This identity may also be written as

fol pexede = fo 1/’t90tdx+4f0 (fo #rdy) 1/’tdx+fo (Jo @rdy) p()
X fo o't = 8) [u(t) = $u(s)] dsdz — g(t) [y (fy rdy) p(a)uda
4 Jy (Jy eedy) (f; ndy) da + gt fo (Ji edy) fo p(2)ada
+ Jo (s o) fy p(2) fy o' (t = 5) [ta(s) — va(t)] dsdzda, t >0

and estimated as follows:

1
Jo pexedz < 3 el® + 300 [l + 222 (|g/) D)

(10)
+29() (el + 1) , £ 2 0, 8 > 0.
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Substituting estimation (10) in (9) leads to

AL (1) = [y e + Ploxdz + [, poxede = — [y (pr + ) xadz + [ orxeda
< 2 10l + 30 lenl® + 252 (11 O + 29(8) (lloel* + e )
+ Jo p@) (o + ) (v — fy gt = 5) v (s)ds) dz — [ (pe +0)
% Jy () [ (1= Jo g(s)ds) o+ Jo gt = 8) [alt) — u(s)] ds| dzda.

The rest of the terms are evaluated in the following manner:

N () < 3 [l + 300 llerll” + 252 (1| Ows) + 29(8) (lloel® + e )
5 (900e) + 10 [[¢al® + (55 + 60) llpw + ¥

+ o @)+ 0) (Yo = Jy 9t = 5) Vuls)ds) da, £ 20, 6o > 0.

O
Lemma 9 The derivative of Ag, along solutions of (1)-(2), satisfies
1
2400) < [ oo+ e+ rl® + £ Wl > 0. 6 > 0.
Proof A differentiation of Ag(t) gives
1 1 1 1
Ag(t) :/ @ttqdﬂH/ sotqtdx:/ (¢z+¢)quw+/ prqrdr, t > 0.
0 0 0 0
Next, we have
1 1 d T T 1 1 T
/ gatqtdx:/ (d/ @tdy) qrdr = [(Jt/ @tdx] —/ qm/ pedydx
0 0 T Jo 0 0 0 0
and
1 1 x 1 x 1
/ prqrdr = —/ Qm/ @tdydac:/ (/ @tdy> (1/)1:—/ ¢td2> dx
0 0 0 0 0 0
Therefore,
N () = = Jy (o + V)auda + fy (J5 eedy) (Y0 = fy vudz) da
= fol(w + ) (1/} _ fol quz) dx + fol (fox (Ptdy) (wt _ fol Wdz) dr, t >0
and
! 2 1 2
0= [ oot wide+ 3ol + 5l 020, 6 >0,
0
O
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Lemma 10 The derivative of Ag(t) satisfies

)@%H(sl s+l + C2 1g7) O

Ny () < 81 [l +g(%+
[(1 + fo ) ds) + 519] ||1/)tH +k (51 + 451> (kD)
for t >0 and 61 > 0.
Proof We have
No(®) = = o [t = fi 90t = ) Yua()ds = (0 + )]

% [ alt = 5)((t) ~ (s))ds] d
= Jo (U Sy B3)ds) g+ Jy (e = 5) (9a(s) —u(t)) ds]
[fo (t = s)(¥(t) — ¥(s))ds + P (t fo ds}dx

M) = (1= [y g()ds) fo [y 9t = 5)(alt) = a(s))ds] da
L[t = )W) — a(s))ds] da
+ Iy o+ 0) [fy 9t = 5) () — 6())ds| di — (14 [ k(s)ds)
% Jy i [fo 9/t = 9)@(0) = (s))ds| do — (14 [y k(s)ds) (Jy g(s)ds ) ]
—Jo (Jo k(= 9) (0als) = wut)) ds) Jy (= 5)(0(8) = (s))dsde
(s o ds)fowtfo (1 — 5) (Yi(s) — (1)) dsdz, ¢ > 0.

This may be estimated as follows:

No(t) < 01 (1= fy g(s)ds ) all® + (1= fy 9(s)ds) 7 (900) + g(9T00)
+31 [ln + +451<gm¢x>+51 (14 Jy #C ds) ool
40 (14 Jy k()ds) (/| D) — (14 Jy k(s)ds ) (Jfy g(s)ds) ool
o Rk + 42 (1| Opa) + 61 (Jy g(s)ds) o]
5 (s 9(s)ds) (kD) 8 >0,

or, for ¢t > 0,
2+%)g(0)

N5(6) < o el +3 (5 +1) (000a) + o llpe + 1> + B (197 D)
[(Hfo ) 5o — Ji g ds)+5og] e +k<5o+45 )(k-Dwt).
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4. Stability of the system

In this section, with the help of the previous lemmas, we prove that the energy is exponentially decaying to

zero. We define the functional

9
t) + Z )\iAi(t), t >0,

where A;, i =1,...,9 are positive constants to be determined later. It is easy to see that L(t) is equivalent to
E(t) + )\4A4(t); that is,
A1E(t) < L(t) < AE(t) + AA4(t), £ >0, (11)

for some positive constants A; and As.
Theorem 1 Under the above assumptions (G) and (K) on the kernels, we have

E(t) < Me=Ct, t >0, (12)
for some positive constants M and C.

Proof Thanks to Proposition 1 (on the derivative of E(¢)) and Lemmas 2 to 10 (on the derivatives of the
functional Ay to Ag), we find

L'(t) < By(kOvy) + Ba(lg'| Oy) + Bs |92 ||* + By l|wbe]|” + Bs |l el
+Bg [|pw + ¥II° — $(90%s) + BrAy(t) + Bsk(t) oz + Bo [, (s + ¢)da

+B1o Jy K| (¢ = 8) [ (s)[1” ds + Bur [92(1) + ¢2(0)] (13)
4By {( — L gt — s)u(s)d ) ( — Jig( )ds) (0)]
+Bi3 fo ) (@2 + ) [ fo )ds] dz
where
B = —g +k [A14;0)‘3 + X5 (g(t) + 280) + Ao (51 + 451)]

A3 +4(Xs+4N7) 2+ g\ 1 A7 1 1
By = Tl 2 (1 — |+ = )| —=
2=9(0) 45, T M| e F2hs (T4 g )5 Tl T 4

By = —)\ (1—9 50 gT Ts(SkZ )+>\4K( )
+2X7 (5+g(t) + A5 [4 (3 + )+6k )60+[ (1+&)do + 1] g(t)] + X6 + Agd1,

By= (M +A3) (1+ 60+ &) + 2)s [ + QORI | 4, (1 4+ 12:)2}

5258 4 {(1 + fot k(s)ds) (01 —g*)+0 g} k(t),

k(t 1
Bs = —Xa+ A3 [(2) + 60+ 9g(t) + 4} + 2X6 + (300 + 29(t)) A7 + Asdo,

1 A
= X3 — A3+ 3+ A7 < + 50) + X901, By = —)\4’7, Bg = 2605 + ?3,
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By = Xg — A1 — A2 — 4Xs, Bio = 2k(0) (A3 + 30A5) — A4,

Let us take Ay = A5 = %, e = %’ Ao = %)\37 As = A1 + Ao + 4)g and use the assumption on g to find

L'(t) < Bi(kOuy) + Ba(|g'| Obs) + Bs |0all® + Ba |[6e]1* + Bs |||
—£(g0%2) + Be |0 + ¥||* + BrAa(t) + Bsk(t) |[os | (14)
+Bio fy K] (t — s) [ (s)||” ds.

Let us focus first on B;, i = 3,...,6,10. We need these coefficients to be negative, i.e.
22 (8k2(0) + g(1)) + AaK(0) + 2X7(5 + g(t)) + As + Ao
s [4 (3 4 80) + 6K(0)80 + [2(1 + k)do + 1] g()] < A1 (1 — g —6o) + L2,

(A1 + As) (1+ b + F) + 22 |1+ SHOHROEDEOERI . 6, (1 4 )?]
2 A [(14 k) (01 — g%) + 019] < 52, (15)

)\3 [@ + (50 + g(t) + i} + 2>\6 + (350 + 2g(t)) )\7 + )\850 < )\27
A2+ 3 + A7 (% + 50) + Agd1 < Az,
2/41(0) ()\3 + 3(50/\5) < Mg

We ignore dg, ¢(t), k(t), and the second condition for a moment. Using the above choices, we obtain (the

fourth condition is trivially satisfied)

A3 (2k2(0) + 46) + A K (0) < A1 (1 - g), (16)
2]€(0)>\3 < Mg
This is possible (and therefore A4 exists) if
A3 (2k2(0) +2k(0)K(0) + 46) <M(1-7). (17)

First, we select the following:
- A1 large enough so that the condition in (17) is satisfied, then
- A4 so that both conditions in (16) are valid.

- Select dp so small and ¢ large so that the 1st, 3rd, 4th, and 5th conditions in (15) (without the terms in d;)
hold.

- Next, we pass to choosing \g large enough so that the second condition in (15) holds.
- Then select 7 so small that the 1st, 2nd, and 4th conditions (this time including the terms in d; ) are satisfied.

- Finally, A5 is selected so small that the first 2 coefficients in (14) are negative.
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Therefore, we are left with

L/(t) < —ClE(t) — CQA4(t) + Cgki(t), t>t,

with Cj := (2005 + %) llthoz||, and by the equivalence (11)

L'(t) < —C4L(t) + Csk(t), t > t.

for positive constants C;, i =1,...,4.

Hence, for smaller Cy, Cy < 7, if necessary, we see that

E(t) < Me= ! t > t,

for some positive constants M and Cj, and thereafter this estimation holds for all ¢ > 0 (with a different
constant M ). O
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