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Abstract: Let τ(n) stand for the number of positive divisors of n . Given an additive function f and a real number

α ∈ [0, 1) , let hn(α) :=
1

τ(n)

∑
d|n

{f(d)}<α

1 , where {y} stands for the fractional part of y , and consider the discrepancy

∆(n) := sup0≤α<β<1 |hn(β) − hn(α) − (β − α)| . We show that ∆(p + 1) → 0 for almost all primes p if and only if∑
q∈℘

∥mf(q)∥2

q
= ∞ for every positive integer m , where ∥x∥ stands for the distance between x and its nearest integer

and where the sum runs over all primes q .
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1. Introduction and notation
Let τ(n) stand for the number of positive divisors of n . Given an additive function f and a real number

α ∈ [0, 1) , let hn(α) :=
1

τ(n)

∑
d|n

{f(d)}<α

1 , where {y} stands for the fractional part of y , and consider the

discrepancy ∆(n) := sup0≤α<β<1 |hn(β) − hn(α) − (β − α)| . It is well known that hn(α) → α as n → ∞
uniformly for α ∈ [0, 1) if and only if limn→∞ ∆(n) = 0 .

Let ∥x∥ stand for the distance between x and its nearest integer and let ℘ stand for the set of all primes.
From here on, the letters p and q will be used exclusively to denote primes. In 1976, the second author [6]

proved that ∆(n) → 0 for almost all n if and only if
∑
q∈℘

∥mf(q)∥2

q
= ∞ for every positive integer m (see

Theorem A below). Observe that there is a small error in the original paper of Kátai [6]: in relation (5), the
number 2 should be removed.

Here, we consider the case of shifted primes p+ 1 and show that ∆(p+ 1) → 0 for almost all primes p

if and only if
∑
q∈℘

∥mf(q)∥2

q
= ∞ for every positive integer m .

Finally, we examine an interesting outcome in the particular case f(n) = logn .
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2. Main result

Theorem 1 Let f be an additive function and α ∈ [0, 1) . Set hn(α) :=
1

τ(n)

∑
d|n

{f(d)}<α

1 and ∆(n) :=

sup0≤α<β<1 |hn(β) − hn(α) − (β − α)| . Then ∆(p + 1) → 0 for almost all primes p if and only if∑
q∈℘

∥mf(q)∥2

q
= ∞ for every positive integer m .

3. Preliminary results

Let P (n) stand for the largest prime factor of n and π(x) for the number of primes not exceeding x .

Lemma 1 Given δ ∈ (0, 1/2) and a large number x , set ℘x,δ := {p ≤ x : P (p + 1) ̸∈ [xδ, x1−δ]} . Then, for
some absolute constant C1 > 0 ,

#℘x,δ < C1 δ π(x).

Proof The fact that there exists an absolute constant c1 > 0 such that

#{p ≤ x : P (p+ 1) > x1−δ} < c1 δ π(x)

is essentially a direct application of Theorem 3.8 in the book of Halberstam and Richert [2]. Therefore, it
remains to prove that there exists an absolute constant c2 > 0 such that

#{p ≤ x : P (p+ 1) < xδ} < c2 δ π(x). (3.1)

To do so, we shall first obtain an upper bound for the sum Tδ(x) :=
∑
p≤x

P (p+1)<xδ

log(p+ 1) . Letting as usual

π(x; a, b) stand for #{p ≤ x : p ≡ b (mod a)} , then, for some absolute constants c3 > 0 , c4 > 0 , and c5 > 0 ,
we have that

Tδ(x) =
∑

qk≤x, k≥1

q<xδ

(log q)π(x; qk, 1)

≤ c3
x

logx
∑
q<xδ

(log q)
(

1

q − 1
+

1

q(q − 1)
+ · · ·

)
+O

x
∑

√
x<qk<x, k≥1

q<xδ

1

qk


≤ c4

x

logx
∑
q<xδ

log q
q

≤ c5
x

logxδ logx = c5 δ x.

It follows from this last estimate that, provided x > x0(δ) , we have

#{p ∈ [x/2, x] : P (p+ 1) < xδ} <
c5 δ x

log
√
x
+
√
x ≤ 3c5 δ x

logx .
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Replacing successively in the above the value of x by x/2, x/4, x/8, . . . , we obtain that, for some absolute
constant c6 > 0 ,

#{p ≤ x : P (p+ 1) < xδ} =
∑

1≤j≤log x/ log 2

∑
x
2j

<p≤ x
2j−1

P (p+1)<xδ

1 ≤ c6 δ x

logx ,

thus proving (3.1) and thereby completing the proof of Lemma 1. 2

Now assume that 0 < δ < 1/2 and set

℘∗
x := {p ∈ [x/2, x] : xδ ≤ P (p+ 1) ≤ x1−δ}.

Given a prime p ∈ ℘∗
x with P (p+ 1) = q , then

p+ 1 = mq for some positive integer m. (3.2)

Let Rm(x) be the number of solutions of (3.2) with p ∈ ℘∗
x . Then, if we let ϕ stand for the Euler totient

function, we have the following result.

Lemma 2 There exists an absolute constant C2 > 0 such that

Rm(x) < C2
x

log2(x/m) ϕ(m)
< C2

x

δ2 (logx)2 ϕ(m)
.

Proof For a proof, see Theorem 4.6 in the book of Prachar [7]. 2

Lemma 3 Given any real number κ ∈ (0, 1) , there exists an absolute constant C3 > 0 such that, for all integers
u ≥ 1 ,

Su :=
∑

u≤m≤2u
ϕ(m)/m<κ

1

ϕ(m)
< C3 κ. (3.3)

Moreover, there exists an absolute constant C4 > 0 such that∑
m≤x

ϕ(m)/m<κ

1

ϕ(m)
< C4 κ logx. (3.4)

Proof Clearly,

Su ≤
∑

u≤m≤2u

κm

ϕ(m)
· m
u

· 1

ϕ(m)
=

κ

u

∑
u≤m≤2u

(
m

ϕ(m)

)2

. (3.5)

Since one can easily establish that there exists a computable constant c7 > 0 such that

∑
m≤x

(
m

ϕ(m)

)2

= (1 + o(1))c7 x (x → ∞),

it follows from (3.5) that, for some absolute constant c8 , we have

Su ≤ κ

u
· c8 u (u ≥ 1),

thus proving (3.3). Estimate (3.4) is a direct consequence of (3.3). 2
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Given real numbers z1, . . . , zM ∈ [0, 1) , let

D(z1, . . . , zM ) :=
1

M
sup

0≤α<β<1

∣∣∣∣∣∣
∑

zν∈[α,β)

1−M(β − α)

∣∣∣∣∣∣
stand for the discrepancy of the sequence of numbers z1, . . . , zM . We have the following result.

Lemma 4 Let x1, . . . , xM ∈ [0, 1) and, for ℓ = 1, . . . ,M , let xM+ℓ = xℓ + a , where a ∈ [0, 1) . Then

D(x1, . . . , x2M ) ≤ D(x1, . . . , xM ).

Proof The proof follows easily from the definition of the discrepancy and will therefore be omitted. 2

Lemma 5 Let x1, . . . , xM ∈ [0, 1) and let m be an arbitrary integer. Then,

1

M

∣∣∣∣∣∣
M∑
j=1

e(mxj)

∣∣∣∣∣∣ ≤ 2πmD(x1, . . . , xM ).

Proof Even though this is a well-known inequality, let us only mention that it can be obtained by the relation

1

M

M∑
j=1

e(mxj) = −
∫ 1

0

((
1

M

∑
xν<u

1

)
− u

)
2πime(mu) du

and partial integration. 2

Theorem A (Kátai [6]) Let f be an additive function and α ∈ [0, 1) . Further set hn(α) :=
1

τ(n)

∑
d|n

{f(d)}<α

1 and

∆(n) := sup0≤α<β<1 |hn(β)−hn(α)−(β−α)| . Then ∆(n) → 0 for almost all n if and only if
∑
q∈℘

∥mf(q)∥2

q
= ∞

for every positive integer m .

4. Proof of the main result
Let κ , δ , and ε be arbitrarily small positive numbers. We shall find an upper bound for the number of primes
p ∈ [x/2, x] for which ∆(p+ 1) ≥ ε .

First of all, we know from Lemma 1 that

#{p ∈ [x/2, x] : p ̸∈ ℘∗
x} < C1 δ π(x). (4.1)

On the other hand, it is clear that

#{p ∈ [x/2, x] : P 2(p+ 1) | p+ 1} < c9 δ π(x) (4.2)

for some constant c9 > 0 . Hence, we are left to consider the contribution of the other primes.
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It follows from Lemma 4 that if (3.2) holds, then ∆(p + 1) > ε only if ∆(m) > ε . Now, according to
Lemma 2, we may write that

#{p ∈ [x/2, x] : ∆(p+ 1) > ε} ≤ C2
x

log2 x
∑

xδ
2

≤m<x1−δ

∆(m)>ε

1

ϕ(m)
= C2

x

log2 x
S(x). (4.3)

Let us write S(x) = S1(x)+S2(x) , where the sum in S1(x) runs over those m for which ϕ(m)/m ≥ κ , whereas
in S2(x) it runs over those m for which ϕ(m)/m < κ . As an easy consequence of Theorem A, we have that

S1(x) = o(logx) (x → ∞). (4.4)

On the other hand, it follows from inequality (3.4) in Lemma 3 that

S2(x) ≤ C4κ logx. (4.5)

Therefore, gathering (4.1), (4.2), (4.4), and (4.5), it follows from (4.3) that, for some absolute constant c10 > 0 ,

#{p ∈ [x/2, x] : ∆(p+ 1) > ε} ≤ c10δπ(x) + C4κπ(x) + o(π(x)) (x → ∞). (4.6)

Applying this very same inequality with x replaced by x/2j as j = 0, 1, . . . , ⌊logx/ log 2⌋ , we easily obtain that

1

π(x)
#{p ≤ x : ∆(p+ 1) > ε} ≤ c10δ + C4κ+ o(1) (x → ∞),

from which it follows that

lim sup
x→∞

1

π(x)
#{p ≤ x : ∆(p+ 1) > ε} ≤ c10δ + C4κ.

Since κ and δ can be chosen arbitrarily small, this completes the proof of the sufficient part of Theorem 1.

We will now show the necessity of the divergence of the series
∑
q∈℘

∥mf(q)∥2

q
. To do so, let us assume

the contrary, i.e. that there exists some positive integer m such that

∑
q∈℘

∥mf(q)∥2

q
< ∞. (4.7)

Now consider the multiplicative function gm defined by

gm(n) =
1

τ(n)

∣∣∣∣∣∣
∏
pa∥n

(
1 + e2πimf(p) + e2πimf(p2) + · · ·+ e2πimf(pa)

)∣∣∣∣∣∣ .
Observe that 0 ≤ gm(n) ≤ 1 for all integers n ≥ 1 and that, at primes p ,

gm(p) =
|1 + e2πimf(p)|

2
,
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so that

|gm(p)|2 =
2 + 2 cos 2πmf(p)

4
= cos2 πmf(p),

which implies that
gm(p) = | cosπmf(p)|.

From this it follows that there exists an absolute constant c6 > 0 such that, for all primes p , 0 ≤ 1− gm(p) ≤
1− g2m(p) = sin2 πmf(p) ≤ c6∥mf(p)∥2 . Hence, (4.7) implies that

∑
p∈℘

1− gm(p)

p
< ∞. (4.8)

On the other hand, recall that the second author [4] proved the analogue of the famous Delange result [1] for
shifted primes, namely the following.

Theorem B Let g(n) be a complex-valued multiplicative function such that |g(n)| ≤ 1 for all n ∈ N and such
that the series ∑

p∈℘

g(p)− 1

p

converges. Let N(g) be the product

N(g) =
∏
p∈℘

1− 1

p− 1
+

∞∑
j=1

g(pj)

pj

 .

Then,

lim
x→∞

1

π(x)

∑
p≤x

g(p+ 1) = N(g).

In light of (4.8), we may apply Theorem B to the function gm and get that

lim
x→∞

1

π(x)

∑
p≤x

gm(p+ 1) = N(gm). (4.9)

Now we may assume that N(gm) ̸= 0 , except in the case where gm(2ℓ) = 0 for ℓ = 1, 2, . . . . However, if
gm(2) = 0 , then it is easily seen that g2m(2) ̸= 0 , which implies that N(g2m) ̸= 0 . This is why we can make
the assumption that N(gm) ̸= 0 .

On the other hand, since 0 ≤ gm(n) ≤ 1 for all integers n ≥ 1 , it follows from (4.9) that for a suitable
constant λ > 0 there exists a real number x0 > 0 such that

1

π(x)
#{p ≤ x : gm(p+ 1) > λ} > λ

for all x > x0 . Therefore, since gm(n) < c7∆(n) for a suitable constant c7 > 0 (which follows from Lemma 5),
we obtain that there exists a constant λ1 > 0 such that

1

π(x)
#{p ≤ x : ∆(p+ 1) > λ1} > λ (x > x0),
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thereby contradicting our assumption that ∆(p+ 1) → 0 for almost all primes p , thus completing the proof of
Theorem 1.

5. The special case f(n) = logn

Consider the functions

h∗
n(α) :=

1

τ(n)

∑
d|n

{log d}<α

1 and ∆∗(n) := sup
0≤α<β<1

|h∗
n(β)− h∗

n(α)− (β − α)|.

Hall [3] proved that, given any positive number λ < 1/2 ,

∆∗(n) ≤ 1

τ(n)λ
for almost all n. (5.1)

The second author [5] improved Hall’s result by showing the following.

Theorem C Inequality (5.1) holds for any positive number λ <
logπ
log 2 − 1 ≈ 0.651 .

Interestingly, we can prove that the analogue of Theorem B also holds for shifted primes. Indeed, using
Theorem B and Lemma 4, similarly as Theorem 1 was deduced from Theorem A, one can easily show the
following.

Theorem 2 Given any positive number λ <
logπ
log 2 − 1 ,

∆∗(p+ 1) ≤ 1

τ(p+ 1)λ
for almost all primes p.
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