
Turk J Math
(2019) 43: 1036 – 1046
© TÜBİTAK
doi:10.3906/mat-1808-50

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

On S-prime submodules

Esra ŞENGELEN SEVİM1 , Tarık ARABACI1,∗ , Ünsal TEKİR2 , Suat KOÇ2

1Department of Mathematics, Faculty of Science, İstanbul Bilgi University, İstanbul, Turkey
2Department of Mathematics, Faculty of Science, Marmara University, Ziverbey, Göztepe, İstanbul, Turkey

Received: 31.10.2018 • Accepted/Published Online: 03.01.2019 • Final Version: 27.03.2019

Abstract: In this study, we introduce the concepts of S -prime submodules and S -torsion-free modules, which are
generalizations of prime submodules and torsion-free modules. Suppose S ⊆ R is a multiplicatively closed subset of a
commutative ring R , and let M be a unital R -module. A submodule P of M with (P :R M) ∩ S = ∅ is called an
S -prime submodule if there is an s ∈ S such that am ∈ P implies sa ∈ (P :R M) or sm ∈ P. Also, an R -module
M is called S -torsion-free if ann(M) ∩ S = ∅ and there exists s ∈ S such that am = 0 implies sa = 0 or sm = 0 for
each a ∈ R and m ∈ M. In addition to giving many properties of S -prime submodules, we characterize certain prime
submodules in terms of S -prime submodules. Furthermore, using these concepts, we characterize some classical modules
such as simple modules, S -Noetherian modules, and torsion-free modules.

1. Introduction
In every part of this study, we focus on only commutative rings with 1 ̸= 0 and nonzero unital modules. Let
R always denote such a ring and M denote such an R -module. The notion of prime submodule has a significant
place in the theory of modules, and it is used to characterize certain classes of modules. For years, there have
been many studies and generalizations on this issue. See, for example, [6], [8], [14], and [18]. The aim of
this article is to introduce S -prime submodules and S -torsion-free modules and to characterize certain prime
submodules, S -Noetherian modules, simple modules, and torsion-free modules in terms of these concepts.

For the sake of completeness, we begin with some definitions and notations that will be followed in this
paper. Let P,K be two submodules of an R -module M and J an ideal of R. Then the residual P by K and
J is defined as follows:

(P :R K) = {a ∈ R : aK ⊆ P},

(P :M J) = {m ∈ M : Jm ⊆ P}.

Particularly, we use ann(M) instead of (0 :R M) , and we use (P :M s) instead of (P :M Rs), where Rs is the
principal ideal generated by an element s ∈ R. Also, for any s ∈ R and m ∈ M, we use annM (s) to denote
(0 :M Rs) and also we use annR(m) to denote (0 :R Rm) , where Rm is a cyclic submodule generated by
m ∈ M. The sets of prime ideals and maximal ideals are denoted by Spec(R) and Max(R), respectively. A
ring R is called quasilocal if |Max(R)| = 1 . Recall from [11] that a prime submodule is a proper submodule

∗Correspondence: tarik.arabaci@bilgi.edu.tr
2010 AMS Mathematics Subject Classification: 16P40, 13A15, 16D60

1036

https://orcid.org/0000-0003-1296-0845
https://orcid.org/0000-0003-0053-3213
https://orcid.org/0000-0003-0739-1449
https://orcid.org/0000-0003-1622-786X


SEVİM et al./Turk J Math

P of M having the property that am ∈ P implies a ∈ (P :R M) or m ∈ P for each a ∈ R and m ∈ M . In that
case, (P :R M) ∈ Spec(R). An R -module M is called a multiplication module if P = (P :R M)M for every
submodule P of M [9]. If the only submodules of M are 0 and M , then we call M a simple module [15].

Consider a nonempty subset S of R. We call S a multiplicatively closed subset (briefly, m.c.s.) of R if
(i) 0 /∈ S, (ii) 1 ∈ S, and (iii) ss′ ∈ S for all s, s′ ∈ S [17] . Note that SP = R − P is a m.c.s. of R for every
P ∈ Spec(R). Let S be a m.c.s. of R and P a submodule of M with (P :R M)∩ S = ∅ . Then the submodule
P is called an S -prime submodule if there exists s ∈ S, and whenever am ∈ P, then sa ∈ (P :R M) or
sm ∈ P for each a ∈ R,m ∈ M. Particularly, an ideal I of R is called an S -prime ideal if I is an S -prime
submodule of R -module R. Note that all prime submodules P whose residual by M is disjoint from S become
an S -prime submodule since 1 ∈ S. Also, if we take S ⊆ u(R), where u(R) denotes the set of units in R ,
the notions of S -prime submodules and prime submodules are equal. Here, we denote the sets of all prime
submodules and all S -prime submodules by Spec(RM) and SpecS(RM), respectively. In particular, we write
SpecS(R) to express the set of all S -prime ideals of R. Among many results in Section 2, we investigate the
properties of S -prime submodules similar to prime submodules. In particular, we investigate the behavior of
S -prime submodules under localization, under homomorphism, in factor modules, and in Cartesian products of
modules (see Proposition 2.2, Proposition 2.7, Corollary 2.8, and Theorem 2.14). We give some characterizations
of S -prime submodules in multiplication modules (see Proposition 2.9, Corollary 2.10, and Theorem 2.11). We
characterize in Theorem 2.19 certain prime submodules in terms of S -prime submodules. Using Theorem 2.19,
we determine all prime submodules of a module M over a quasilocal ring R in terms of S -prime submodules
(see Corollary 2.20).

Recall the following well-known definition: an R -module M is torsion-free if the torsion subset T (M) =

{m ∈ M : annR(m) ̸= 0} is zero. Let M be an R -module and S ⊆ R be a m.c.s. of R with ann(M)∩S = ∅. We
call M an S -torsion-free module with am = 0 implying either sa = 0 or sm = 0 for some fixed s ∈ S and for
each a ∈ R,m ∈ M. It can be easily seen that being a torsion-free module is a sufficient condition for being an
S -torsion-free module. Also, we can see that the class of S -torsion-free modules properly contains the class of
torsion-free modules (observe Example 2.3). It is known that a proper submodule P of M is a prime submodule
if and only if M/P is a torsion-free R/(P :R M) -module [12, Lemma 1.1]. We prove that in Proposition 2.24, a
sufficient and necessary condition for P being an S -prime submodule is that the factor module M/P is a π(S) -
torsion-free R/(P :R M) -module, where π : R → R/(P :R M) is the canonical homomorphism. Furthermore,
we give a characterization of torsion-free modules by using S -torsion-free modules (see Theorem 2.25). Finally,
we characterize S -Noetherian modules and simple modules in terms of S -prime submodules (see Proposition
2.22 and Theorem 2.26).

2. Characterization of S-prime submodules

Definition 2.1 Let S ⊆ R be a m.c.s. and P a submodule of M with (P :R M)∩S = ∅. Then P is said to be
an S -prime submodule if there exists s ∈ S and whenever am ∈ P then either sa ∈ (P :R M) or sm ∈ P for
each a ∈ R and m ∈ M.

Let S ⊆ R be a m.c.s. and M an R -module. The quotient module of M is thus denoted by S−1M. Note
that S−1M is both an R - and S−1R -module. Here we just consider S−1M as an S−1R -module. Recall that
the saturation S∗ of S is defined as S∗ = {x ∈ R : x

1 is a unit of S−1R}. It is obvious that S∗ is a m.c.s. of
R containing S [10] .
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Proposition 2.2 Assume that S ⊆ R is a m.c.s. and M is an R -module. Then:
(i) If P ∈ Spec(RM) provided that (P :R M) and S are disjoint, then P ∈ SpecS(RM) . In fact, if

S ⊆ u(R) and P ∈ SpecS(RM), then P ∈ Spec(RM).

(ii) If S1 ⊆ S2 are m.c.s. of R and P ∈ SpecS1
(RM) , then P ∈ SpecS2

(RM) in case (P :R M)∩S2 = ∅.
(iii) P ∈ SpecS(RM) if and only if P ∈ SpecS∗(RM) .
(iv) If P ∈ SpecS(RM) , then S−1P is a prime submodule of S−1M.

Proof (i), (ii): It is clear.
(iii): Assume that P ∈ SpecS(RM). We need to prove that (P :R M) and S∗are disjoint . Suppose there

exists x ∈ (P :R M) ∩ S∗. As x ∈ S∗, x
1 is a unit of S−1R and so x

1
a
s = 1 for some a ∈ R and s ∈ S. This

yields that us = uxa for some u ∈ S . Now put us = s′ ∈ S. Then note that s′ = us = uxa ∈ (P :R M) ∩ S, a
contradiction. Thus, (P :R M) ∩ S∗ = ∅. As S ⊆ S∗, by (ii), P ∈ SpecS∗(RM) . Conversely, assume that
P ∈ SpecS∗(RM) . Let rm ∈ P. As P ∈ SpecS∗(RM) , there is an x ∈ S∗ so that either xr ∈ (P :R M) or
xm ∈ P. As x

1 is a unit of S−1R, there exist u, s ∈ S and a ∈ R such that us = uxa. Put us = s′ ∈ S. Then
note that s′r = (us)r = uaxr ∈ (P :R M) or s′m = ua(xm) ∈ P. Therefore, P ∈ SpecS(RM) .

(iv): Assume that P ∈ SpecS(RM) . Let r
s
m
t ∈ S−1P, where r

s ∈ S−1R and m
t ∈ S−1M. Then

urm ∈ P for some u ∈ S. Since P ∈ SpecS(RM) , there is an s′ ∈ S so that s′ur ∈ (P :R M) or s′m ∈ P. This

yields r
s = s′ur

s′us ∈ S−1(P :R M) ⊆ (S−1P :S−1R S−1M) or m
t = s′m

s′t ∈ S−1P. Hence, S−1P is a prime
submodule of S−1M. 2

The converses of Proposition 2.2(i) and (iv) are not true in general. See the following two examples.

Example 2.3 Take the Z-module Z× Z2 and the zero submodule P = 0× 0. First note that (P :Z Z× Z2) =

0 and 2(0, 1) = (0, 0) ∈ P. Since 2 /∈ (P :Z Z×Z2) and (0, 1) /∈ P, P is not a prime submodule of Z×Z2. Now,
take the m.c.s. S = Z − {0} of Z and put s = 2. Let m(a, x) = (ma,mx) ∈ P. Then ma = 0 and
mx = 0. If m = 0, there is nothing to show, so assume that a = 0. Then it is clear that s(a, x) ∈ P. Therefore,
P ∈ SpecS(ZZ× Z2).

Example 2.4 Consider the Z-module Q × Q, where Q is the field of rational numbers. Take the submodule
N = Z × 0 and the m.c.s. S = Z − {0} of Z. Then it is clear that (N :Z Q × Q) = 0. Let s be an arbitrary
element of S. Choose a prime number p with gcd(p, s) = 1. Then note that p( 1p , 0) = (1, 0) ∈ N. Since

sp /∈ (N :Z Q×Q) and s( 1p , 0) = ( sp , 0) /∈ N, it follows that N is not an S -prime submodule. Since S−1Z = Q

is a field, S−1(Q×Q) is a vector space so that the proper submodule S−1N is a prime submodule of S−1(Q×Q).

Lemma 2.5 Suppose P is a submodule of M and S is a m.c.s. of R satisfying (P :R M) ∩ S = ∅. The
following are equivalent:

(i) P ∈ SpecS(RM).

(ii) There is an s ∈ S , and JN ⊆ P implies sJ ⊆ (P :R M) or sN ⊆ P for each ideal J of R and
submodule N of M.

Proof (i) ⇒ (ii) : Let P ∈ SpecS(RM). Suppose that JN ⊆ P for some ideal J of R and submodule N of
M. As P ∈ SpecS(RM), there is an s ∈ S so that rm ∈ P implies sr ∈ (P :R M) or sm ∈ P for each r ∈ R
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and m ∈ M . Assume that sN ⊈ P. Then there is an n ∈ N with sn /∈ P. Then note that for each a ∈ J, we
have an ∈ P. Since P ∈ SpecS(RM) , we can conclude that sa ∈ (P :R M) and so sJ ⊆ (P :R M).

(ii) ⇒ (i) : Take a ∈ R and m ∈ M with am ∈ P. Now, put J = Ra and N = Rm . Then we
can conclude that JN = Ram ⊆ P. By assumption, there is an s ∈ S so that sJ = Ras ⊆ (P :R M) or
sN = Rsm ⊆ P and so either sa ∈ (P :R M) or sm ∈ P. Therefore, P ∈ SpecS(RM). 2

Corollary 2.6 Suppose S is a m.c.s. of R and take any ideal P with P ∩ S = ∅. Then the following are
equivalent:

(i) P ∈ SpecS(R).

(ii) There is an s ∈ S, for each ideal I, J of R with IJ ⊆ P, so either sI ⊆ P or sJ ⊆ P.

Proposition 2.7 Suppose f : M → M ′ is an R -homomorphism. Then:
(i) If P ′ ∈ SpecS(RM

′) provided that (f−1(P ′) :R M) ∩ S = ∅, then f−1(P ′) ∈ SpecS(RM).

(ii) If f is an epimorphism and P ∈ SpecS(RM) with Ker(f) ⊆ P, then f(P ) ∈ SpecS(RM
′).

Proof (i): Let am ∈ f−1(P ′) for some a ∈ R,m ∈ M. This yields that f(am) = af(m) ∈ P ′. Since
P ′ ∈ SpecS(RM

′), there is an s ∈ S so that sa ∈ (P ′ :R M ′) or sf(m) = f(sm) ∈ P ′. Now we will show that
(P ′ :R M ′) ⊆ (f−1(P ′) :R M). Take x ∈ (P ′ :R M ′). Then we have xM ′ ⊆ P ′. Since f(M) ⊆ M ′, we conclude
that f(xM) = xf(M) ⊆ xM ′ ⊆ P ′. This implies that xM ⊆ xM + Ker(f) = f−1(f(xM)) ⊆ f−1(P ′) and
thus x ∈ (f−1(P ′) :R M). As (P ′ :R M ′) ⊆ (f−1(P ′) :R M), we can conclude either sa ∈ (f−1(P ′) :R M) or
sm ∈ f−1(P ′). Hence, f−1(P ′) ∈ SpecS(RM).

(ii): First note that (f(P ) :R M ′) ∩ S = ∅. Otherwise there would be an s ∈ (f(P ) :R M ′) ∩ S. Since
s ∈ (f(P ) :R M ′), sM ′ ⊆ f(P ) , but then f(sM) = sf(M) ⊆ sM ′ ⊆ f(P ). By taking their inverse images
under f , we have sM ⊆ sM + Ker(f) ⊆ P + Ker(f) = P. That means sM ⊆ P. Then s must be in
(P :R M) , which contradicts P ∈ SpecS(RM) . Now take a ∈ R,m′ ∈ M with am′ ∈ f(P ). As f is an
epimorphism, there is an m ∈ M such that m′ = f(m) . Then am′ = af(m) = f(am) ∈ f(P ). Since Ker(f)

is a subset of P , we get am ∈ P. As P ∈ SpecS(RM), there is an s ∈ S so that sa ∈ (P :R M) or sm ∈ P.

Since (P :R M) ⊆ (f(P ) :R M ′), we have sa ∈ (f(P ) :R M ′) or f(sm) = sf(m) = sm′ ∈ f(P ). Accordingly,
f(P ) ∈ SpecS(RM

′). 2

Corollary 2.8 Let S ⊆ R be a m.c.s. of R and take a submodule L of M.

(i) If P ′ ∈ SpecS(RM) with (P ′ :R L) ∩ S = ∅, then L ∩ P ′ ∈ SpecS(RL).

(ii) Suppose that P is a submodule of M with L ⊆ P. Then P ∈ SpecS(RM) if and only if P/L ∈
SpecS(R(M/L)) ̇

Proof (i): Consider the injection i : L → M defined by i(m) = m for all m ∈ L. Then note that
i−1(P ′) = L ∩ P ′. Now we will show that (i−1(P ′) :R L) ∩ S = ∅. Assume that s ∈ (i−1(P ′) :R L) ∩ S. Then
we have sL ⊆ i−1(P ′) = L ∩ P ′ ⊆ P ′ and thus s ∈ (P ′ :R L) ∩ S, a contradiction. The rest follows from
Proposition 2.7 (i).

(ii) Assume that P ∈ SpecS(RM) . Then consider the canonical homomorphism π : M → M/L defined
by π(m) = m + L for all m ∈ M. By Proposition 2.7 (ii), P/L ∈ SpecS(R(M/L)). Conversely, assume that
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P/L ∈ SpecS(R(M/L)). Let rm ∈ P for some r ∈ R,m ∈ M. This yields that r(m+L) = rm+L ∈ P/L. As
P/L ∈ SpecS(R(M/L)), there is an s ∈ S so that sr ∈ (P/L :R M/L) = (P :R M) or s(m+ L) = sm+ L ∈
P/L. Therefore, we have sr ∈ (P :R M) or sm ∈ P. Hence, P ∈ SpecS(RM) . 2

Proposition 2.9 Let M be an R -module and S a m.c.s. of R. The following statements hold:
(i) If P ∈ SpecS(RM), then (P :R M) ∈ SpecS(R).

(ii) If M is a multiplication module and (P :R M) ∈ SpecS(R), then P ∈ SpecS(RM).

Proof (i) Let xy ∈ (P :R M) for some x, y ∈ R. As P ∈ SpecS(RM), there is an s ∈ S so that rm ∈ P implies
sr ∈ (P :R M) or sm ∈ P. Then note that xym ∈ P for all m ∈ M. If sx ∈ (P :R M), there is nothing to prove.
Suppose that sx /∈ (P :R M). As P ∈ SpecS(RM), sym ∈ P for all m ∈ M so that sy ∈ (P :R M). Therefore,
(P :R M) ∈ SpecS(R).

(ii) Assume that M is a multiplication module and (P :R M) ∈ SpecS(R). Let J be an ideal of R and
N a submodule of M with JN ⊆ P. Then we can conclude that J(N :R M) ⊆ (JN :R M) ⊆ (P :R M). As
(P :R M) ∈ SpecS(R), by Corollary 2.6, there is an s ∈ S so that sJ ⊆ (P :R M) or s(N :R M) ⊆ (P :R

M). Thus, we can conclude that sJ ⊆ (P :R M) or sN = s(N :R M)M ⊆ (P :R M)M = P. By Lemma 2.5,
P ∈ SpecS(RM). 2

Assume that M is a multiplication module and K,L are two submodules of M. The product of K and
L is defined as KL = (K :R M)(L :R M)M [2]. As an immediate consequence of the previous proposition and
Lemma 2.5, we have the following explicit result.

Corollary 2.10 Suppose that M is a multiplication module and P is a submodule of M with (P :R M)∩S =

∅, where S is a m.c.s. of R. Then the following are equivalent:
(i) P ∈ SpecS(RM).

(ii) There is an s ∈ S, for every submodule L,N of M with LN ⊆ P, and then sL ⊆ P or sN ⊆ P.

Theorem 2.11 Let M be a finitely generated multiplication module and P a submodule of M provided that
(P :R M) ∩ S = ∅ , where S is a m.c.s. of R. Then the following are equivalent:

(i) P ∈ SpecS(RM).

(ii) (P :R M) ∈ SpecS(R).

(iii) P = IM for some I ∈ SpecS(R) with ann(M) ⊆ I.

Proof (i) ⇔ (ii) : It is clear from Proposition 2.9.
(ii) ⇒ (iii) : It is obvious.
(iii) ⇒ (i) : Suppose that P = IM for some I ∈ SpecS(R) with ann(M) ⊆ I. Assume that JN ⊆ P for

some ideal J of R and some submodule N of M. This yields J(N :R M)M ⊆ IM. As M is a finitely generated
multiplication module, by [16, Theorem 9 Corollary], J(N :R M) ⊆ I + ann(M) = I. Since I ∈ SpecS(R) ,
by Corollary 2.6, there is an s ∈ S so that sJ ⊆ I ⊆ (P :R M) or s(N :R M) ⊆ I ⊆ (P :R M) and hence
sJ ⊆ (P :R M) or sN ⊆ P. 2

Proposition 2.12 Let M be a multiplication module and P ∈ SpecS(RM) . Suppose that N ∩L ⊆ P for some
submodules N,L of M. Then sN ⊆ P or sL ⊆ P for some s ∈ S.
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Proof As P ∈ SpecS(RM), there is an s ∈ S so that rm ∈ P implies sr ∈ (P :R M) or sm ∈ P for each
r ∈ R and m ∈ M . Let sL ⊈ P. Then sm /∈ P for some m ∈ L. Take an element a ∈ (N :R M). This yields
am ∈ (N :R M)L ⊆ L ∩ N ⊆ P. As P ∈ SpecS(RM) and sm /∈ P, we can conclude that sa ∈ (P :R M) so
that s(N :R M) ⊆ (P :R M). As M is a multiplication module, sN = s(N :R M)M ⊆ (P :R M)M = P. 2

Lemma 2.13 Let R = R1 × R2 and S = S1 × S2, where Si is a m.c.s. of Ri. Suppose P = P1 × P2 is an
ideal of R. So the following are equivalent:

(i) P ∈ SpecS(R).

(ii) P1 ∈ SpecS1
(R1) and P2 ∩ S2 ̸= ∅ or P1 ∩ S1 ̸= ∅ and P2 ∈ SpecS2

(R2) .

Proof (i) ⇒ (ii) : Suppose P ∈ SpecS(R) . Since (1, 0)(0, 1) = (0, 0) ∈ P, there exists s = (s1, s2) ∈ S so
that s(1, 0) = (s1, 0) ∈ P or s(0, 1) = (0, s2) ∈ P and thus P1 ∩ S1 ̸= ∅ or P2 ∩ S2 ̸= ∅. We may assume that
P1 ∩ S1 ̸= ∅. As P ∩ S = ∅, we have P2 ∩ S2 = ∅. Let xy ∈ P2 for some x, y ∈ R2. Since (0, x)(0, y) ∈ P and
P ∈ SpecS(R) , we get either s(0, x) = (0, s2x) ∈ P or s(0, y) = (0, s2y) ∈ P and this yields s2x ∈ P2 or
s2y ∈ P2. Therefore, P2 ∈ SpecS2(R2) . In the other case, one can easily show that P1 ∈ SpecS1(R1) .

(ii) ⇒ (i) : Assume that P1 ∩ S1 ̸= ∅ and P2 ∈ SpecS2(R2) . Then there exists s1 ∈ P1 ∩ S1. Let
(a, b)(c, d) = (ac, bd) ∈ P for some a, c ∈ R1 and b, d ∈ R2. This yields that bd ∈ P2 and thus there exists
s2 ∈ S2 so that s2b ∈ P2 or s2d ∈ P2. Put s = (s1, s2) ∈ S. Then note that s(a, b) = (s1a, s2b) ∈ P or
s(c, d) = (s1c, s2d) ∈ P. Therefore, P ∈ SpecS(R). In other case, one can similarly prove that P ∈ SpecS(R).

2

Theorem 2.14 Suppose that M = M1 × M2 is an R = R1 × R2 module and S = S1 × S2 is a m.c.s. of
R, where Mi is an Ri -module and Si is a m.c.s. of Ri for each i = 1, 2. Assume P = P1 ×P2 is a submodule
of M. The following are equivalent:

(i) P ∈ SpecS(RM).

(ii) P1 ∈ SpecS1
(R1

M1) and (P2 :R2
M2) ∩ S2 ̸= ∅ or (P1 :R1

M1) ∩ S1 ̸= ∅ and P2 ∈ SpecS2
(R2

M2).

Proof (i) ⇒ (ii) : Assume that P ∈ SpecS(RM). Then by Proposition 2.9, (P :R M) = (P1 :R1
M1)×(P2 :R2

M2) ∈ SpecS(R) and so by Lemma 2.13, either (P1 :R1
M1) ∩ S1 ̸= ∅ or (P2 :R2

M2) ∩ S2 ̸= ∅. We may
assume that (P1 :R1

M1) ∩ S1 ̸= ∅ . Now we will show that P2 ∈ SpecS2
(R2

M2). Let rm ∈ P2 for some
r ∈ R2,m ∈ M2. Then (1, r)(0,m) = (0, rm) ∈ P. As P ∈ SpecS(RM), there is an s = (s1, s2) ∈ S so that
s(1, r) = (s1, s2r) ∈ (P :R M) or s(0,m) = (0, s2m) ∈ P. This implies that s2r ∈ (P2 :R2

M2) or s2m ∈ P2.

Therefore, P2 ∈ SpecS2
(R2

M2). In the other case, it can be similarly shown that P1 ∈ SpecS1
(R1

M1).

(ii) ⇒ (i) : Assume that (P1 :R1
M1) ∩ S1 ̸= ∅ and P2 ∈ SpecS2

(R2
M2). Then there exists s1 ∈ (P1 :R1

M1) ∩ S1. Let (r1, r2)(m1,m2) = (r1m1, r2m2) ∈ P for some ri ∈ Ri,mi ∈ Mi, where i = 1, 2. Then r2m2 ∈
P2. As P2 ∈ SpecS2(R2M2), there is an s2 ∈ S2 so that s2r2 ∈ (P2 :R2 M2) or s2m2 ∈ P2. Now put s =

(s1, s2) ∈ S. Then note that s(r1, r2) = (s1r1, s2r2) ∈ (P :R M) or s(m1,m2) = (s1m1, s2m2) ∈ P1 × P2 = P.

Therefore, P ∈ SpecS(RM). Similarly one can show that if P1 ∈ SpecS1(R1M1) and (P2 :R2 M2)∩S2 ̸= ∅, then
P ∈ SpecS(RM). 2

Theorem 2.15 Let M = M1 ×M2 × . . .×Mn be an R = R1 ×R2 × . . .×Rn module and S = S1 ×S2 × . . .×
Sn, where Mi is an Ri -module and Si is a m.c.s. of Ri for each i = 1, 2, . . . , n. Assume P = P1×P2×. . .×Pn is
a submodule of M. The following statements are equivalent:

1041



SEVİM et al./Turk J Math

(i) P ∈ SpecS(RM).

(ii) Pi ∈ SpecSi
(Ri

Mi) for some i ∈ {1, 2, . . . , n} and (Pj :Rj
Mj)∩Sj ̸= ∅ for all j ∈ {1, 2, . . . , n}−{i}.

Proof We apply induction on n. For n = 1, the result is true. If n = 2, then (i) ⇔ (ii) follows from Theorem
2.14. Assume that (i) and (ii) are equal when k < n. Now, we shall prove (i) ⇔ (ii) when k = n. Let
P = P1 × P2 × . . . × Pn. Put P ′ = P1 × P2 × . . . × Pn−1 and S′ = S1 × S2 × . . . × Sn−1. Then by Theorem
2.14, the necessary and sufficient condition for P = P ′ × Pn ∈ SpecS(RM) is that P ′ ∈ SpecS′(R′M ′) and
(Pn :Rn Mn)∩Sn ̸= ∅ or (P ′ :R′ M ′)∩S′ ̸= ∅ and Pn ∈ SpecSn(RnMn) , where M ′ = M1×M2×. . .×Mn−1 and
R′ = R1 ×R2 × . . .×Rn−1. The rest follows from the induction hypothesis. 2

Lemma 2.16 Suppose that P ∈ SpecS(RM). The following statements hold for some s ∈ S :

(i) (P :M s′) ⊆ (P :M s) for all s′ ∈ S.

(ii) ((P :R M) :R s′) ⊆ ((P :R M) :R s) for all s′ ∈ S.

Proof (i): Suppose that P ∈ SpecS(RM). Then there is an s ∈ S so that rm ∈ P implies sr ∈ (P :R M)

or sm ∈ P. Take an element m′ ∈ (P :M s′), where s′ ∈ S. Then s′m′ ∈ P. Since P ∈ SpecS(RM), either
ss′ ∈ (P :R M) or sm′ ∈ P. As (P :R M) ∩ S = ∅, we get sm′ ∈ P , namely m′ ∈ (P :M s).

(ii): Follows from (i). 2

Proposition 2.17 Suppose that M is a finitely generated R -module, S ⊆ R is a m.c.s. of R, and P is a
submodule of M satisfying (P :R M) ∩ S = ∅. The following are equivalent:

(i) P ∈ SpecS(RM).

(ii) S−1P is a prime submodule of S−1M and there is an s ∈ S satisfying (P :M s′) ⊆ (P :M s) for all
s′ ∈ S.

Proof (i) ⇒ (ii) : It is clear from Proposition 2.2 and Lemma 2.16.
(ii) ⇒ (i) : Take a ∈ R,m ∈ M with am ∈ P. Then a

1
m
1 ∈ S−1P. Since S−1P is a prime submodule

of S−1M and M is finitely generated, we can conclude that a
1 ∈ (S−1P :S−1R S−1M) = S−1(P :R M) or

m
1 ∈ S−1P. Then ua ∈ (P :R M) or u′m ∈ P for some u, u′ ∈ S. By assumption, there is an s ∈ S so
that (P :M s′) ⊆ (P :M s) for all s′ ∈ S. If ua ∈ (P :R M), then aM ⊆ (P :M u) ⊆ (P :M s) and thus
sa ∈ (P :R M). If u′m ∈ P , a similar argument shows that sm ∈ P. Therefore, P ∈ SpecS(RM). 2

Theorem 2.18 Suppose that P is a submodule of M provided (P :R M) ∩ S = ∅. Then P ∈ SpecS(RM) if
and only if (P :M s) ∈ Spec(RM) for some s ∈ S.

Proof Assume (P :M s) ∈ Spec(RM) for some s ∈ S. Let am ∈ P for some a ∈ R,m ∈ M. As
am ∈ (P :M s) and (P :M s) ∈ Spec(RM) , we get a ∈ ((P :M s) :R M) or m ∈ (P :M s). This yields
that as ∈ (P :R M) or sm ∈ P. Conversely, assume that P ∈ SpecS(RM) . Then there is an s ∈ S so
that am ∈ P implies sa ∈ (P :R M) or sm ∈ P. Now we prove that (P :M s) ∈ Spec(RM) . Take
r ∈ R,m ∈ M with rm ∈ (P :M s). Then (sr)m ∈ P. As P ∈ SpecS(RM) , we get s2r ∈ (P :R M) or
sm ∈ P. If sm ∈ P, then there is nothing to show. Assume that sm /∈ P. Then s2r ∈ (P :R M) and so
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r ∈ ((P :R M) :R s2) = ((P :R M) :R s)) by Lemma 2.16. Thus, we can conclude that r ∈ ((P :M s) :R M)

and hence (P :M s) ∈ Spec(RM) . 2

Consider an R -module M with a submodule P. It is known that if P ∈ Spec(RM) , then (P :R M) ∈
Spec(R), but the converse is not true in general. Now we characterize certain prime submodules in terms of
S -prime submodules.

Theorem 2.19 Suppose that P is a submodule of M provided (P :R M) ⊆ Jac(R), where Jac(R) is the
Jacobson radical of R. The following statements are equivalent:

(i) P ∈ Spec(RM).

(ii) (P :R M) ∈ Spec(R) and P ∈ SpecR−M(RM) for each M ∈ Max(R).

Proof (i) ⇒ (ii) : Assume that P ∈ Spec(RM). Since (P :R M) ⊆ Jac(R), (P :R M) ⊆ M for each
M ∈ Max(R) and hence (P :R M) ∩ (R−M) = ∅. The rest follows from Proposition 2.2(i).

(ii) ⇒ (i) : Suppose (P :R M) ∈ Spec(R) and P ∈ SpecR−M(RM) for each M ∈ Max(R). Let
am ∈ P with a /∈ (P :R M) for some a ∈ R,m ∈ M. Let M ∈ Max(R). As P ∈ SpecR−M(RM) , we can
guarantee the existence of an sM /∈ M so that asM ∈ (P :R M) or sMm ∈ P. As (P :R M) ∈ Spec(R) and
sM /∈ (P :R M), we have asM /∈ (P :R M) and so sMm ∈ P. Now consider the set Ω = {sM : ∃ M ∈
Max(R), sM /∈ M and sMm ∈ P}. Then note that (Ω) = R. To see this, take any maximal ideal M′ containing
Ω. Then the definition of Ω requires that there exists sM′ ∈ Ω and sM′ /∈ M′. As Ω ⊆ M′, we have
sM′ ∈ Ω ⊆ M′, a contradiction. Thus, (Ω) = R , and this yields 1 = r1sM1

+ r2sM2
+ . . . + rnsMn

for
some ri ∈ R and sMi

/∈ Mi with sMi
m ∈ P, where Mi ∈ Max(R) for each i = 1, 2, . . . , n. This yields that

m = r1sM1
m+ r2sM2

m+ . . .+ rnsMn
m ∈ P. Therefore, P ∈ Spec(RM) . 2

Now we determine all prime submodules of a module over a quasilocal ring in terms of S -prime submod-
ules.

Corollary 2.20 Suppose M is a module over a quasilocal ring (R,M). The following are equivalent:
(i) P ∈ Spec(RM).

(ii) (P :R M) ∈ Spec(R) and P ∈ SpecR−M(RM).

Proof It is clear from Theorem 2.19. 2

Suppose that M is an R -module. The idealization R(+)M = {(a,m) : a ∈ R,m ∈ M} of M is
a commutative ring whose addition is componentwise and whose multiplication is defined as (a,m)(b,m′) =

(ab, am′ + bm) for each a, b ∈ R; m,m′ ∈ M [13] . If S is a m.c.s. of R and P is a submodule of M, then
S(+)P = {(s, p) : s ∈ S, p ∈ P} is a m.c.s. of R(+)M [4].

Proposition 2.21 Suppose that S is a m.c.s. of R and P is an ideal of R provided P ∩S = ∅. The following
are equivalent:

(i) P ∈ SpecS(R).

(ii) P (+)M ∈ SpecS(+)0(R(+)M).

(iii) P (+)M ∈ SpecS(+)M (R(+)M).

Proof (i) ⇒ (ii) : Suppose P ∈ SpecS(R). Let (x,m)(y,m′) = (xy, xm′ + ym) ∈ P (+)M for some
x, y ∈ R; m,m′ ∈ M. Then we get xy ∈ P. As P ∈ SpecS(R), we can find s ∈ S so that sx ∈ P or sy ∈ P.
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Now put s′ = (s, 0) ∈ S(+)0. Then we have s′(x,m) = (sx, sm) ∈ P (+)M or s′(y,m′) = (sy, sm′) ∈ P (+)M .

Therefore, P (+)M ∈ SpecS(+)0(R(+)M).

(ii) ⇒ (iii) : It is clear from Proposition 2.2.
(iii) ⇒ (i) : Suppose P (+)M ∈ SpecS(+)M (R(+)M). Let xy ∈ P for some x, y ∈ R. Then (x, 0)(y, 0) ∈

P (+)M. Since P (+)M ∈ SpecS(+)M (R(+)M), there is an s = (s1,m1) ∈ S(+)M so that s(x, 0) =

(s1x, xm1) ∈ P (+)M or s(y, 0) = (s1y, ym1) ∈ P (+)M and hence we get s1x ∈ P or s1y ∈ P. Therefore,
P ∈ SpecS(R). 2

Let M be an R -module and S a m.c.s. of R . The concept of S -Noetherian modules, a generalization
of Noetherian modules, was first studied by Anderson and Dumitrescu in [3]. Recently it has drawn attention
and there have been many studies on this issue. See, for example, [1] and [7]. Suppose P is a submodule of
M. We can call P an S -finite submodule if there is an s ∈ S and a finitely generated submodule K of M so
that sP ⊆ K ⊆ P. If all submodules of M are S -finite, M is called an S -Noetherian module. Note that
if S ⊆ u(R), then the concepts of S -Noetherian modules and Noetherian modules coincide. Also, if R is an
S -Noetherian R -module, then we call R an S -Noetherian ring. The authors in [3] extended many properties
of Noetherian rings and modules to S -Noetherian rings and S -Noetherian modules. In particular, they proved
the S -version of Cohen’s theorem: let M be an S -finite R -module. Then M is an S -Noetherian R -module
if and only if PM is S -finite for every prime ideal P of R (disjoint from S). As every prime ideal P disjoint
from S is an S -prime ideal, we give the following explicit result.

Proposition 2.22 Assume M is an S -finite R -module, where S is a m.c.s. of R. Then M is an S -Noetherian
module if and only if PM is an S -finite submodule for every P ∈ SpecS(R).

Proof It is clear from Proposition 2.2 and [3, Proposition 4]. 2

Definition 2.23 Suppose M is an R -module and S ⊆ R is a m.c.s. of Rand none of the elements of S is an
annihilator of M. M is said to be an S -torsion-free module in the case that we can find s ∈ S and whenever
rm = 0, so sr = 0 or sm = 0 for each r ∈ R and m ∈ M.

Consider an ideal J of R. The canonical homomorphism that maps the ring R to the factor ring R/J is
denoted by π(a) = a+ J for each a ∈ R.

Proposition 2.24 Let M be an R -module. Assume that S ⊆ R is a m.c.s. of R and P is a submodule of
M. Then P ∈ SpecS(RM) if and only if the factor module M/P is a π(S)-torsion-free R/(P :R M)-module,
where π : R → R/(P :R M) is the canonical homomorphism.

Proof Suppose P ∈ SpecS(RM). Let am = 0M/P , where a = a + (P :R M) and m = m + P for some
a ∈ R,m ∈ M. This yields that am ∈ P. As P ∈ SpecS(RM), there is an s ∈ S so that sa ∈ (P :R M) or
sm ∈ P. Then we can conclude that π(s)a = 0R/(P :RM) or π(s)m = 0M/P . Therefore, M/P is a π(S) -
torsion-free R/(P :R M) -module. For the other direction, we will suppose that M/P is a π(S) -torsion-free
R/(P :R M) -module. Take a ∈ R and m ∈ M with am ∈ P. Put a = a + (P :R M) and m = m + P. Then
note that am = 0M/P . As M/P is a π(S) -torsion-free R/(P :R M) -module, we can find s ∈ S, which
satisfies π(s)a = 0R/(P :RM) or π(s)m = 0M/P . This yields that sa ∈ (P :R M) or sm ∈ P. Accordingly,
P ∈ SpecS(RM). 2
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It is known that if M is a torsion-free module, then R is an integral domain and M is a faithful module.

However, sometimes the reverse of this statement may not be true. Consider the Z -module
∞∏
i=1

Zpi , where

p is a prime number. Then it is easy to see that Z -module
∞∏
i=1

Zpi is a faithful module. Take a = p and

m = (1, 0, 0, . . .). It is clear that am = 0 but a ̸= 0 and m ̸= 0, and so Z -module
∞∏
i=1

Zpi is not a torsion-free

module. Now, for the next step, we characterize torsion-free modules in terms of S -torsion-free modules.

Theorem 2.25 Let M be a module over an integral domain R . The following are equivalent:
(i) M is a torsion-free module.
(ii) M is an (R− P )-torsion-free for each P ∈ Spec(R).

(iii) M is an (R−M)-torsion-free for each M ∈ Max(R).

Proof (i) ⇒ (ii) : It is clear.
(ii) ⇒ (iii) : It is obvious.
(iii) ⇒ (i) : Suppose M is (R − M) -torsion-free for each M ∈ Max(R). Let am = 0 for some

a ∈ R,m ∈ M. Assume that a ̸= 0. Take M ∈ Max(R). As M is (R − M) -torsion-free, there exists
sm /∈ M so that sma = 0 or smm = 0. As R is an integral domain, sma ̸= 0 and thus smm = 0. Now,
put Ω = {sm : ∃M ∈ Max(R), sm /∈ M and smm = 0} . A similar argument in the proof of Theorem 2.19
shows that (Ω) = R. Then we have (sm1

) + (sm2
) + . . . + (smn

) = R for some smi
∈ Ω. This yields that

Rm =
n∑

i=1

(smi)m = 0 and hence m = 0. This means M is a torsion-free module. 2

Let M be an R -module. The set of zero divisors Z(M) on M is defined as Z(M) = {a ∈ R : annM (a) ̸=
0}. Now we characterize simple modules in terms of S -prime submodules.

Theorem 2.26 Suppose M is a finitely generated multiplication module and S is a m.c.s. of R provided
ann(M) ∩ S = ∅ . The following are equivalent:

(i) Each proper submodule is an S -prime.
(ii) M is a simple module.

Proof (i) ⇒ (ii) : Suppose every proper submodule is an S -prime. First we will show that Z(M) =

ann(M). Let a ∈ Z(M). Then there is a 0 ̸= m′ ∈ M with am′ = 0. Since the zero submodule is S -prime
and am′ = 0 , there is an s ∈ S so that sa ∈ ann(M) or sm′ = 0. If sm′ = 0, we have s ∈ annR(m

′). Now
put P ′ = annR(m

′)M and note that S ∩ (P ′ :R M) ̸= ∅. Thus, we have P ′ = annR(m
′)M = M. By [5,

Corollary 2.5], 1 − x ∈ ann(M) ⊆ annR(m
′) for some x ∈ annR(m

′). This yields that annR(m
′) = R and so

m′ = 0, which is a contradiction. We have sa ∈ ann(M). Then we can conclude that s ∈ (annM (a) :R M)

and hence by assumption annM (a) = M. Thus, we get a ∈ ann(M). Therefore, Z(M) = ann(M). Let
a /∈ Z(M). Now we will show that aM = M. If a2M = M, then aM = M. Suppose a2M ̸= M . Since a2M is
an S -prime submodule and (a)(aM) ⊆ a2M, by Lemma 2.5, there is an s ∈ S so that saM ⊆ a2M. Then
for all m ∈ M, sam = a2m′ for some m′ ∈ M. Since a /∈ Z(M), we get sm − am′ ∈ annM (a) =

0 and hence sm = am′. This yields that sM ⊆ aM and thus s ∈ (aM :R M). By assumption, we have
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aM = M. Now take a submodule P of M. If (P :R M) = ann(M), then P = ann(M)M = 0. Take
an element a ∈ (P :R M) − ann(M). As Z(M) = ann(M), a /∈ Z(M) and so aM = M. Then we get
M = aM ⊆ (P :R M)M = P. Therefore, M is a simple module.

(ii) ⇒ (i) : Note that the zero submodule is a prime submodule in a simple module. Since ann(M)∩S =

∅, by Proposition 2.2, the zero submodule is S -prime . 2

Corollary 2.27 For any ring R and a m.c.s. S of R , R is a field if and only if each proper ideal is S -prime.
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