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Abstract: In this work, spectra and asymptotics of eigenfunctions of a generalized class of boundary value problems
with constant retarded argument are obtained. Contrary to previous works in the literature, the problem has nonclassical
transmission conditions.
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1. Formulation of the problem
Delay differential equations provide a mathematical model for physical and biological systems in which the
rate of change of the system depends upon its past history. Differential equations with retarded arguments are
an active research area of delay differential equations. Each year there is an increase in the number of articles
devoted to the study of various applied problems formulated with the use of delays. However, in an overwhelming
majority of applied articles, constant delays are considered. Such a consideration is an improvement compared
with the model of an “ideal” process, which is obtained if it is assumed that there are no delays at all and that
the “functioning” takes place instantly [11].

In this study, we shall investigate the eigenvalue problem L := L (q; a, λ, r;h,H, dj) (j = 1, 2, 3) , which
consists of Sturm–Liouville equation

−y′′(x) + q(x)y(x− a) = λ2r(x)y(x) (1)

on Λ = ∪Λ± with boundary conditions
y′(0)− hy(0) = 0, (2)

y′(T ) +Hy(T ) = 0 (3)

and nonclassical transmission conditions

y(c+ 0) = d1y(c− 0), (4)

y′(c+ 0) = d2y
′(c− 0) + d3y(c− 0) (5)
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where r(x) = 1
r21

for x ∈ Λ− = [0, c) and r(x) = 1
r22

for x ∈ Λ+ = (c, T ] ; the real-valued function q(x) is

continuous in Λ and has a finite limit q(c± 0) = limx→c±0 q(x) , x− a ≥ 0, if x ∈ Λ−;x− a ≥ c, if x ∈ Λ+; λ

is a real spectral parameter; and a, ri (i = 1, 2) , h, H, dj (j = 1, 2, 3) are arbitrary real numbers such that
r1r2d1d2 ̸= 0 and d1r2 = d2r1 .

The main goal of this paper is to study the spectrum and asymptotics of eigenfunctions of the problem L .
Spectral properties of differential equations with retarded arguments that contain such generalized transmission
conditions (d3 ̸= 0) have not been studied yet. Thus, the results obtained in this work are an extension and
generalization of previous works in the literature. For example, if we take a = 0 and/or d3 = 0 and/or
r(x) ≡ 1 then the asymptotic formulas for eigenvalues and eigenfunctions correspond to those for the classical
Sturm–Liouville problem [1–19]. Moreover, results and methods of these kinds of problems can be useful for
investigating the inverse problems for ordinary and partial differential equations (see, e.g., [19]).

We want to also note that for linear equations with constant delay, very effective operational methods
are available (e.g., first of all the Laplace transform) [11].

Let ϑ−(x, λ) be a solution of Eq. (1) on Λ− = Λ− ∪ {c} , satisfying the initial conditions

ϑ− (0, λ) = 1,
∂ϑ− (0, λ)

∂x
= h. (6)

The conditions of (6) define a unique solution of Eq. (1) on Λ− .

After defining the above solution we shall define the solution ϑ+ (x, λ) of Eq. (1) on Λ+ = Λ+ ∪ {c} by
means of the solution ϑ− (x, λ) using the initial conditions

ϑ+ (c+, λ) = d1ϑ
− (c−, λ) , (7)

∂ϑ+ (c+, λ)

∂x
= d2

∂ϑ− (c−, λ)

∂x
+ d3ϑ

− (c−, λ) . (8)

Conditions (7)–(8) are defined as a unique solution of Eq. (1) on Λ+.

Consequently, the function ϑ (x, λ) is defined on Λ by the equality

ϑ(x, λ) =

{
ϑ−(x, λ), x ∈ Λ−,
ϑ+(x, λ), x ∈ Λ+

which is a solution of Eq. (1) on Λ, which satisfies one of the boundary conditions and both transmission
conditions.

2. Asymptotics of eigenvalues and eigenfunctions of the problem L

We begin by writing the problem L in terms of the following equivalent integral equations.

Lemma 1 Let ϑ (x, λ) be a solution of Eq.(1) and λ > 0. Then the following integral equations hold:

ϑ−(x, λ) = cosλr1x+
h

r1λ
sinλr1x+

r1
λ

x∫
0

q (τ) sinλr1 (x− τ)ϑ− (τ − a, λ) dτ, (9)
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ϑ+(x, λ) = d1ϑ
−(c−, λ) cosλr2 (x− c) +

1

λr2

[
d2

∂ϑ−(c−, λ)

∂x
+ d3ϑ

− (c−, λ)

]

× sinλr2 (x− c) +
r2
λ

x∫
c+

q (τ) sinλr2 (x− τ)ϑ+ (τ − a, λ) dτ. (10)

Proof To prove this, it is enough to substitute λ2ϑ±(τ, λ) + ∂2ϑ±(τ,λ)
∂τ2 instead of q(τ)ϑ±(τ − a, λ) in (9) and

(10) respectively and integrate by parts twice. 2

Theorem 1 Problem L can have only simple eigenvalues.

Proof Let λ̃ be an eigenvalue of problem L and

ỹ(x, λ̃) =

{
ỹ1(x, λ̃), x ∈ Λ−,

ỹ2(x, λ̃), x ∈ Λ+

be a corresponding eigenfunction. Then from (2) and (6) it follows that

W
[
ỹ1(0, λ̃), ϑ

−(0, λ̃)
]
=

∣∣∣∣∣ ỹ1(0, λ̃) 1

ỹ′1(0, λ̃) h

∣∣∣∣∣ = 0,

and the functions ỹ1(x, λ̃) and ϑ−(x, λ̃) are linearly dependent on Λ− . Here W [f, g] denotes the Wronskian

of the functions f and g . We can also prove that the functions ỹ2(x, λ̃) and ϑ+(x, λ̃) are linearly dependent
on Λ+ . Hence,

ỹj(x, λ̃) = Rjϑ
∓(x, λ̃) (j = 1, 2) (11)

for some R1 ̸= 0 and R2 ̸= 0 . We must show that R1 = R2 . Suppose that R1 ̸= R2 . From equalities (4) and
(11), we have

ỹ(c+ 0, λ̃)− d1ỹ(c− 0, λ̃) = ỹ2(c+ 0, λ̃)− d1ỹ1(c− 0, λ̃)

= R2ϑ
+(c, λ̃)−R1ϑ

+(c, λ̃)

= (R2 −R1)ϑ
+(c, λ̃) = 0.

Since (R2 −R1) ̸= 0 it follows that

ϑ+
(
c, λ̃

)
= 0 (12)

and since ϑ+
(
c, λ̃

)
= d1ϑ

−
(
c, λ̃

)
and ϑ−

(
c, λ̃

)
= ỹ(c− 0, λ̃) we have

ỹ(c− 0, λ̃) = 0. (13)
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By the same procedure, from equality (5) and (13) we can derive that

ỹ′(c+ 0, λ̃)− d2ỹ
′(c− 0, λ̃)− d3ỹ(c− 0, λ̃)

= R2
∂ϑ+(c, λ̃)

∂x
−R1d2

∂ϑ−(c, λ̃)

∂x

= R2
∂ϑ+(c, λ̃)

∂x
−R1

∂ϑ+(c, λ̃)

∂x

= (R2 −R1)
∂ϑ+(c, λ̃)

∂x
= 0.

Since (R2 −R1) ̸= 0 it follows that

∂ϑ+(c, λ̃)

∂x
= 0. (14)

From the fact that ϑ+(x, λ̃) is a solution of Eq. (1) on Λ+ and satisfies the initial conditions (12) and (14), it

follows that ϑ−(x, λ̃) = 0 identically on Λ+ (see [11, p. 12, Theorem 1.2.1]).
By using this method we may also find

ϑ−
(
c, λ̃

)
=

∂ϑ−(c, λ̃)

∂x
= 0.

From the latter discussions of ϑ+(x, λ̃) , it follows that ϑ−(x, λ̃) = 0 identically on Λ , but this contradicts (6),
thus completing the proof. 2

Let q1 =
∫
Λ−

q (τ) dτ and q2 =
∫
Λ+

q (τ) dτ .

Lemma 2 (1) Let λ ≥ 2q1 . Then for the solution ϑ−(x, λ) of Eq. (8), the following inequality holds :

∣∣ϑ−(x, λ)
∣∣ ≤ 2

2− r1

√
1 +

h2

4r21q
2
1

, x ∈ Λ−. (15)

(2) Let λ ≥ max {2q1, 2q2} . Then for the solution ϑ+(x, λ) of Eq. (9), the following inequality holds :

∣∣ϑ+(x, λ)
∣∣ ≤ √

4q21r
2
1 + h2

(2− r2) q1

[
2d1

(2− r1) r1
+

d2
r2

(
1 +

2r21q
2
1

2− r1

)
+

d3
2 (2− r1) r1r2q1

]
, x ∈ Λ+. (16)

Proof Let B1λ = sup
Λ− |ϑ−(x, λ)| . Then from (9), it follows that, for every λ > 0 , the following inequality

holds:

B1λ ≤

√
1 +

h2

r21λ
2
+

r1
λ
q1B1λ.

Thus, if λ ≥ 2q1 we get (15).
Differentiating (9) with respect to x , we have

∂ϑ−(x, λ)

∂x
= −λr1 sinλr1x+ h cosλr1x+ r21

x∫
0

q(τ) cosλr1 (x− τ)ϑ−(τ − a, λ)dτ. (17)
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From (15) and (17), it follows that, for λ ≥ 2q1 , the following inequality holds:

∣∣∣∣λ−1 ∂ϑ
−(x, λ)

∂x

∣∣∣∣ ≤
√
r21 +

h2

4q21

(
1 +

2r21q
2
1

2− r1

)
. (18)

Let B2λ = sup
Λ+ |ϑ+(x, λ)| . Then from (10), (15), and (18) it follows that, for λ ≥ 2q1 and λ ≥ 2q2 , the

following inequality holds:

B2λ ≤ d1
2

2− r1

√
1 +

h2

4r21q
2
1

+
d2
r2

√
r21 +

h2

4q21

(
1 +

2r21q
2
1

2− r1

)

+
d3
λr2

2

2− r1

√
1 +

h2

4r21q
2
1

B2λ.

Hence, if λ ≥ max {2q1, 2q2} , we get (16). 2

From Lemma 1, using the well-known successive approximation method, it is easy to obtain the following
asymptotic expressions of fundamental solutions.

Lemma 3 The following asymptotic estimates are valid as λ → ∞ :

ϑ− (x, λ) = cosλr1x+O

(
1

λ

)
, (19)

∂ϑ− (x, λ)

∂x
= −λr1 sinλr1x+O (1) , (20)

ϑ+ (x, λ) = d1 cosλ (r2x+ c (r1 − r2)) +O

(
1

λ

)
, (21)

∂ϑ+ (x, λ)

∂x
= −d1r2λ sinλ (r2x+ c (r1 − r2)) +O (1) . (22)

The function ϑ(x, λ) defined in the introduction is a nontrivial solution of Eq. (1) satisfying conditions
(2), (4), and (5). Putting ϑ(x, λ) into (3), we get the characteristic equation

Ξ(λ) ≡ ∂ϑ+ (T, λ)

∂x
+Hϑ+(T, λ) = 0. (23)

Thus, the set of eigenvalues of boundary-value problem L coincides with the set of real roots of Eq. (23).
From now on, without loss of generality, we shall consider only the case hH ̸= 0 . The other cases may be
considered analogically.

Theorem 2 The problem L has an infinite set of positive eigenvalues.

Proof Putting the expressions (19)–(22) into (23), we get

Ξ(λ) ≡ −d1r2λ sinλ (r2T + c (r1 − r2)) +O (1)
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+H

(
d1 cosλ (r2T + c (r1 − r2)) +O

(
1

λ

))
= −d1r2λ sinλ (r2T + c (r1 − r2)) +O (1) = 0. (24)

Let λ be sufficiently large. Obviously, for large λ , Eq. (24) has, evidently, an infinite set of roots. The
proof is complete. 2

By Theorem 2 we conclude that problem L has infinitely many nontrivial solutions. Let n be a natural

number. We shall say that the number λ is situated near the number nπ
(r2T+c(r1−r2))

if
∣∣∣ nπ
(r2T+c(r1−r2))

− λ
∣∣∣ < 1

2 .

Theorem 3 Let n be a natural number. For each sufficiently large n, there is exactly one eigenvalue of the
problem L near nπ

(r2T+c(r1−r2))
.

Proof We consider the expression denoted by O(1) in Eq. (24):

((d1 + d2) cosλr2 (T − c) + d3 sinλr2 (T − c))

×

h cosλr1c+ r21

c∫
0

q (τ) cosλr1 (c− τ)ϑ− (τ − a, λ) dτ


+ (−d1r2λ sinλr2 (T − c) + d3r2λ cosλr2 (T − c))

×

 h

r1λ
sinλr1c+

r1
λ

c∫
0

q (τ) sinλr1 (c− τ)ϑ− (τ − a, λ) dτ



+
d2
r2

sinλr2 (T − c)

−r1h sinλr1c− r31

c∫
0

q (τ) sinλr1 (c− τ)ϑ− (τ − a, λ) dτ



+ r22

T∫
c+

q (τ) cosλr2 (T − τ)ϑ+ (τ − a, λ) dτ.

If inequalities (15)–(16) are taken into consideration, it can be shown by differentiation with respect toλ that for
large λ this expression has a bounded derivative. It is obvious that for large λ the roots of Eq. (24) are situated
close to entire numbers. We shall show that, for large n , only one root of (24) lies near each nπ

(r2T+c(r1−r2))
. We

consider the function J(λ) = λ sinλ (r2T + c (r1 − r2)) +O(1) . Its derivative, which has the form

J ′(λ) = sinλ (r2T + c (r1 − r2)) + λ (r2T + c (r1 − r2)) cosλ (r2T + c (r1 − r2)) +O(1),

does not vanish for λ close to nπ
(r2T+c(r1−r2))

for sufficiently large n . Thus, our assertion follows by Rolle’s
theorem. 2

Let n be sufficiently large. The eigenvalue of problem L is situated near nπ
(r2T+c(r1−r2))

. We set

λn = nπ
(r2T+c(r1−r2))

+ δn . Then from (24) it follows that δn = O
(
1
n

)
. Consequently,

λn =
nπ

(r2T + c (r1 − r2))
+O

(
1

n

)
. (25)
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Formula (25) make it possible to obtain asymptotic expressions for the eigenfunction of problem L . Now we
are ready to present asymptotic expressions of eigenfunctions. By putting (25) in (19) and (21), we have the
next theorem.

Theorem 4 The following asymptotic formulas hold for eigenfunctions of boundary-value-transmission problem
L for each x ∈ Λ :

ϑ− (x, λn) = cos nπr1x

r2T + c (r1 − r2)
+O(

1

n
),

ϑ+ (x, λn) = d1 cos nπ (r2x+ c (r1 − r2))

r2T + c (r1 − r2)
+O(

1

n
).
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