Inclusion properties of Lucas polynomials for bi-univalent functions introduced through the \mathfrak{q}-analogue of the Noor integral operator

Şahsene ALTINKAYA* ${ }^{\text {(}}$

Department of Mathematics, Faculty of Arts and Science, Bursa Uludağ University, Bursa, Turkey

| Received: 14.10 .2018 | • | Accepted/Published Online: 10.01 .2019 | - Final Version: 27.03 .2019 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Abstract

In this paper, by using the (\mathbf{P}, \mathbf{Q})-Lucas polynomials and the \mathfrak{q}-analogue of the Noor integral operator, we aim to build a bridge between the theory of geometric functions and that of special functions.

Key words: (P, Q)-Lucas polynomials, coefficient bounds, bi-univalent functions

1. Introduction, preliminaries, and known results

In modern science there is a huge interest in the theory and application of the Fibonacci polynomials, the Lucas polynomials, the Chebyshev polynomials, the Pell polynomials, the Pell-Lucas polynomials, the LucasLehmer polynomials, the families of orthogonal polynomials, and other special polynomials as well as their generalizations. These polynomials play a major role in a variety of disciplines in the mathematical, physical, statistical, and engineering sciences (see, for example, $[4,8,11,14,18,19]$ and references therein).

Definition 1 (See [9]) Let $\mathbf{P}(\varkappa)$ and $\mathbf{Q}(\varkappa)$ represent polynomials with real coefficients. The ($\mathbf{P}, \mathbf{Q})$-Lucas polynomials $L_{\mathbf{P}, \mathbf{Q}, j}(\varkappa)$ are introduced by the recurrence relevance

$$
L_{\mathbf{P}, \mathbf{Q}, j}(\varkappa)=\mathbf{P}(\varkappa) L_{\mathbf{P}, \mathbf{Q}, j-1}(\varkappa)+\mathbf{Q}(\varkappa) L_{\mathbf{P}, \mathbf{Q}, j-2}(\varkappa) \quad(j \geq 2)
$$

with the first few terms of the (\mathbf{P}, \mathbf{Q})-Lucas polynomials as follows:

$$
\begin{align*}
& L_{\mathbf{P}, \mathbf{Q}, 0}(\varkappa)=2 \\
& L_{\mathbf{P}, \mathbf{Q}, 1}(\varkappa)=\mathbf{P}(\varkappa) \\
& L_{\mathbf{P}, \mathbf{Q}, 2}(\varkappa)=\mathbf{P}^{2}(\varkappa)+2 \mathbf{Q}(\varkappa) \tag{1}\\
& L_{\mathbf{P}, \mathbf{Q}, 3}(\varkappa)=\mathbf{P}^{3}(\varkappa)+3 \mathbf{P}(\varkappa) \mathbf{Q}(\varkappa), \\
& \vdots
\end{align*}
$$

[^0]Table. Specific cases of $L_{\mathbf{P}, \mathbf{Q} ., j}(\varkappa)$

$\mathbf{P}(\varkappa)$	$\mathbf{Q}(\varkappa)$	$L_{\mathbf{P}, \mathbf{Q}, j}(\varkappa)$
\varkappa	1	Lucas polynomials $L_{n}(\varkappa)$
$2 \varkappa$	1	Pell-Lucas polynomials $D_{n}(\varkappa)$
1	$2 \varkappa$	Jacobsthal-Lucas polynomials $j_{n}(\varkappa)$
$3 \varkappa$	-2	Fermat-Lucas polynomials $f_{n}(\varkappa)$
$2 \varkappa$	-1	Chebyshev polynomials $T_{n}(\varkappa)$

Theorem 2 (See [9]) Let $\Upsilon_{\left\{L_{\mathbf{P}, \mathbf{Q}, j}(\varkappa)\right\}}(z)$ indicate the generating function of the (\mathbf{P}, \mathbf{Q})-Lucas polynomial sequence $L_{\mathbf{P}, \mathbf{Q}, j}(\varkappa)$. Then

$$
\Upsilon_{\left\{L_{\mathbf{P}, \mathbf{Q}, j}(\varkappa)\right\}}(z)=\sum_{j \geq 0}^{\infty} L_{\mathbf{P}, \mathbf{Q}, j}(\varkappa) z^{j}=\frac{2-\mathbf{P}(\varkappa) z}{1-\mathbf{P}(\varkappa) z-\mathbf{Q}(\varkappa) z^{2}}
$$

Let \mathcal{A} indicate the class of functions \mathfrak{f} normalized by

$$
\begin{equation*}
\mathfrak{f}(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots, \tag{2}
\end{equation*}
$$

which are analytic in the open unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$. The class of this kind of functions is represented by S.

With a view to recalling the rule of subordination for analytic functions, let $\mathfrak{f}, \mathfrak{g}$ be analytic in Δ. A function \mathfrak{f} is subordinate to \mathfrak{g}, indicated as $\mathfrak{f} \prec \mathfrak{g}$, if there exists a function τ, analytic in Δ, such that

$$
\tau(0)=0,|\tau(z)|<1
$$

and

$$
\mathfrak{f}(z)=\mathfrak{g}(\tau(z)) \quad(z \in \Delta)
$$

According to the Koebe one-quarter theorem, every univalent function $\mathfrak{f} \in \mathcal{A}$ has an inverse \mathfrak{f}^{-1} satisfying

$$
\mathfrak{f}^{-1}(\mathfrak{f}(z))=z
$$

and

$$
\mathfrak{f}\left(\mathfrak{f}^{-1}(w)\right)=w \quad\left(|w|<\frac{1}{4}\right),
$$

where

$$
\begin{equation*}
\mathfrak{g}(\mathfrak{w})=\mathfrak{f}^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{3}
\end{equation*}
$$

A function $\mathfrak{f} \in \mathcal{A}$ is called bi-univalent in Δ if both \mathfrak{f} and \mathfrak{f}^{-1} are univalent in Δ. Let denote the class of bi-univalent functions in Δ given by (2). For several interesting examples in the class , see [17] (see also $[1-3,6,10,12,15])$.

It may be of interest to recall that Srivastava used the basic (or \mathfrak{q}-)hypergeometric functions in a book chapter (see, for details, [16]). Thus, the theory of univalent functions was characterized by the concept of \mathfrak{q}-calculus. For simplicity, we provide some fundamental descriptions of \mathfrak{q}-calculus that are used in this paper. Next, we recall some identities of fractional \mathfrak{q}-calculus operators of complex valued function \mathfrak{f}.

ALTINKAYA/Turk J Math

For $0<\mathfrak{q}<1$, the \mathfrak{q}-derivative of a function $\mathfrak{f} \in \mathcal{A}$ is defined as follows:

$$
\partial_{\mathfrak{q}} \mathfrak{f}(z)=\frac{\mathfrak{f}(z)-\mathfrak{f}(\mathfrak{q} z)}{z(1-\mathfrak{q})}, \quad(z \in \Delta)
$$

Obviously, for $j \in \mathbb{N}:=\{1,2, \ldots\}$ and $z \in \Delta$,

$$
\partial_{\mathfrak{q}}\left(\sum_{j \geq 1}^{\infty} a_{j} z^{j}\right)=\sum_{j \geq 1}^{\infty}[j, \mathfrak{q}] a_{j} z^{j-1}
$$

where

$$
[j, \mathfrak{q}]=\frac{1-\mathfrak{q}^{j}}{1-\mathfrak{q}}, \quad[0, \mathfrak{q}]=0
$$

Moreover, it is worth mentioning that

$$
[j, \mathfrak{q}]!= \begin{cases}1, & j=0 \\ {[1, \mathfrak{q}][2, \mathfrak{q}][3, \mathfrak{q}] \ldots[j, \mathfrak{q}],} & j \in \mathbb{N}\end{cases}
$$

Also, the \mathfrak{q}-generalized Pochhammer symbol for $\wp>0$ is given by

$$
[\wp, \mathfrak{q}]_{j}=\left\{\begin{array}{ll}
1, & j=0 \\
{[\wp, \mathfrak{q}][\wp+1, \mathfrak{q}] \ldots[\wp+j-1, \mathfrak{q}],} & j \in \mathbb{N}
\end{array} .\right.
$$

Very recently, Arif et al. [5] defined the function $\digamma_{\mathfrak{q}, \mu+1}^{-1}(z)$ by

$$
\digamma_{\mathfrak{q}, \mu+1}^{-1}(z) * \digamma_{\mathfrak{q}, \mu+1}(z)=z \partial_{\mathfrak{q}} \mathfrak{f}(z) \quad(\mu>-1)
$$

where the function $\digamma_{\mathfrak{q}, \mu+1}(z)$ is given by

$$
\begin{equation*}
\digamma_{\mathfrak{q}, \mu+1}(z)=z+\sum_{j=2}^{\infty} \frac{[\mu+1, \mathfrak{q}]_{j-1}}{[j-1, \mathfrak{q}]!} z^{j}, \quad(z \in \Delta) \tag{4}
\end{equation*}
$$

Because the series defined in (4) is convergent absolutely in Δ, by making use of the description of the \mathfrak{q} derivative through convolution, we now define the integral operator $\zeta_{\mathfrak{q}}^{\mu}: \Delta \rightarrow \Delta$ by

$$
\begin{equation*}
\zeta_{\mathfrak{q}}^{\mu} \mathfrak{f}(z)=\digamma_{\mathfrak{q}, \mu+1}^{-1}(z) * \mathfrak{f}(z)=z+\sum_{j=2}^{\infty} \Theta_{j-1} a_{j} z^{j}, \quad(z \in \Delta) \tag{5}
\end{equation*}
$$

where

$$
\Theta_{j-1}=\frac{[j, \mathfrak{q}]!}{[\mu+1, \mathfrak{q}]_{j-1}}
$$

We note that $\zeta_{\mathfrak{q}}^{0} \mathfrak{f}(z)=z \partial_{\mathfrak{q}} \mathfrak{f}(z), \zeta_{\mathfrak{q}}^{1} \mathfrak{f}(z)=\mathfrak{f}(z)$, and

$$
\lim _{\mathfrak{q} \rightarrow 1^{-}} \zeta_{\mathfrak{q}}^{\mu} \mathfrak{f}(z)=z+\sum_{j=2}^{\infty} \frac{j!}{(\mu+1)_{j-1}} a_{j} z^{j}
$$

ALTINKAYA/Turk J Math

This shows that, by taking $\mathfrak{q} \rightarrow 1^{-}$, the operator defined in (5) reduces to the familiar Noor integral operator introduced in [13].

We want to assert evidently that, in the paper, by using the $L_{\mathbf{P}, \mathbf{Q}, j}(\varkappa)$ functions, our methodology constructs a bridge between the theory of geometric functions and that of special functions. Thus, we aim to introduce a new class of bi-univalent functions introduced through the (\mathbf{P}, \mathbf{Q})-Lucas polynomials. Furthermore, we derive coefficient inequalities and obtain the Fekete-Szegö problem for this new function class.

Definition 3 A function $\mathfrak{f} \in$ is said to be in the class

$$
U^{\mu}(\mathfrak{q} ; \varkappa) \quad(\mu>-1,0<\mathfrak{q}<1, z, w \in \Delta)
$$

if the following subordinations are fulfilled:

$$
\frac{z \partial_{\mathfrak{q}}\left(\zeta_{\mathfrak{q}}^{\mu} \mathfrak{f}(z)\right)}{\zeta_{\mathfrak{q}}^{\mu} \mathfrak{f}(z)} \prec \Upsilon_{\left\{L_{\mathbf{P}, \mathbf{Q}, j}(\varkappa)\right\}}(z)-1
$$

and

$$
\frac{z \partial_{\mathfrak{q}}\left(\zeta_{\mathfrak{q}}^{\mu} \mathfrak{g}(w)\right)}{\zeta_{\mathfrak{q}}^{\mu} \mathfrak{g}(w)} \prec \Upsilon_{\left\{L_{\mathbf{P}, \mathbf{Q}, j}(\varkappa)\right\}}(w)-1
$$

where the function \mathfrak{g} is given by (3).

Remark 4 Upon setting $\mathfrak{q} \rightarrow 1^{-}$in Definition 3, it is readily seen that a function $\mathfrak{f} \in$ is in the class

$$
U^{\mu}(\varkappa) \quad(\mu>-1, \quad z, w \in \Delta)
$$

if the following conditions are fulfilled:

$$
\begin{aligned}
& \frac{z\left(\zeta^{\mu} \mathfrak{f}(z)\right)^{\prime}}{\zeta^{\mu} \mathfrak{f}(z)} \prec \Upsilon_{\left\{L_{\mathbf{P}, \mathbf{Q}, j}(\varkappa)\right\}}(z)-1 \\
& \frac{z\left(\zeta^{\mu} \mathfrak{g}(w)\right)^{\prime}}{\zeta^{\mu} \mathfrak{g}(w)} \prec \Upsilon_{\left\{L_{\mathbf{P}, \mathbf{Q}, j}(\varkappa)\right\}}(w)-1
\end{aligned}
$$

where the function \mathfrak{g} is given by (3).
Remark 5 Upon setting $\mu=1$ in Definition 3, it is readily seen that a function $\mathfrak{f} \in$ is in the class

$$
S(\varkappa) \quad(z, w \in \Delta)
$$

if the following conditions are fulfilled:

$$
\frac{z \mathfrak{f}^{\prime}(z)}{\mathfrak{f}(z)} \prec \Upsilon_{\left\{L_{\mathbf{P}, \mathbf{Q}, j}(\varkappa)\right\}}(z)-1
$$

and

$$
\frac{w \mathfrak{g}^{\prime}(w)}{\mathfrak{g}(w)} \prec \Upsilon_{\left\{L_{\mathbf{P}, \mathbf{Q}, j}(\varkappa)\right\}}(w)-1
$$

where the function \mathfrak{g} is given by (3).

ALTINKAYA/Turk J Math

Remark 6 Upon setting $\mu=0$ in Definition 3, it is readily seen that a function $\mathfrak{f} \in$ is in the class

$$
C_{\Sigma}(\varkappa) \quad(z, w \in \Delta)
$$

if the following conditions are fulfilled:

$$
\left(1+\frac{z \mathfrak{f}^{\prime \prime}(z)}{\mathfrak{f}(z)}\right) \prec \Upsilon_{\left\{L_{\mathbf{P}, \mathbf{Q}, j}(\varkappa)\right\}}(z)-1
$$

and

$$
\left(1+\frac{w \mathfrak{g}^{\prime \prime}(w)}{\mathfrak{g}(w)}\right) \prec \Upsilon_{\left\{L_{\mathbf{P}, \mathbf{Q}, j}(\varkappa)\right\}}(w)-1
$$

where the function \mathfrak{g} is given by (3).

2. Inequalities for the Taylor-Maclaurin coefficients

Theorem 7 Let the function \mathfrak{f} given by (2) be in the class $U^{\mu}(\mathfrak{q} ; \varkappa)$. Then

$$
\left|a_{2}\right| \leq \frac{|\mathbf{P}(\varkappa)| \sqrt{|\mathbf{P}(\varkappa)|}}{\sqrt{\left|(\mathfrak{q}+1)\left(\Theta_{2}-\Theta_{1}^{2}\right) \mathbf{P}^{2}(\varkappa)-2 \mathfrak{q} \Theta_{1}^{2} \mathbf{Q}(\varkappa)\right| \mathfrak{q}}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\mathbf{P}^{2}(\varkappa)}{\mathfrak{q}^{2} \Theta_{1}^{2}}+\frac{|\mathbf{P}(\varkappa)|}{\mathfrak{q}(\mathfrak{q}+1) \Theta_{2}}
$$

Proof Let $\mathfrak{f} \in U^{\mu}(\mathfrak{q} ; \varkappa)$. From Definition 3, for some analytic functions Φ, Ψ such that

$$
\begin{aligned}
& \Phi(0)=0,|\Phi(z)|=\left|m_{1} z+m_{2} z^{2}+m_{3} z^{3}+\cdots\right|<1 \quad(z \in \Delta) \\
& \Psi(0)=0,|\Psi(w)|=\left|n_{1} w+n_{2} w^{2}+n_{3} w^{3}+\cdots\right|<1 \quad(w \in \Delta)
\end{aligned}
$$

we can write

$$
\frac{z \partial_{\mathfrak{q}}\left(\zeta_{\mathfrak{q}}^{\mu} \mathfrak{f}(z)\right)}{\zeta_{\mathfrak{q}}^{\mu} \mathfrak{f}(z)}=\Upsilon_{\left\{L_{\mathbf{P}, \mathbf{Q}, j}(\varkappa)\right\}}(\Phi(z))-1
$$

and

$$
\frac{z \partial_{\mathfrak{q}}\left(\zeta_{\mathfrak{q}}^{\mu} \mathfrak{g}(w)\right)}{\zeta_{\mathfrak{q}}^{\mu} \mathfrak{g}(w)}=\Upsilon_{\left\{L_{\mathbf{P}, \mathbf{Q}, j}(\varkappa)\right\}}(\Psi(w))-1
$$

or equivalently

$$
\begin{equation*}
\frac{z \partial_{\mathfrak{q}}\left(\zeta_{\mathfrak{q}}^{\mu} \mathfrak{f}(z)\right)}{\zeta_{\mathfrak{q}}^{\mu} \mathfrak{f}(z)}=-1+L_{\mathbf{P}, \mathbf{Q}, 0}(\varkappa)+L_{\mathbf{P}, \mathbf{Q}, 1}(\varkappa) \Phi(z)+L_{\mathbf{P}, \mathbf{Q}, 2}(\varkappa) \Phi^{2}(z)+\cdots \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{z \partial_{\mathfrak{q}}\left(\zeta_{\mathfrak{q}}^{\mu} \mathfrak{g}(w)\right)}{\zeta_{\mathfrak{q}}^{\mu} \mathfrak{g}(w)}=-1+L_{\mathbf{P}, \mathbf{Q}, 0}(\varkappa)+L_{\mathbf{P}, \mathbf{Q}, 1}(\varkappa) \Psi(w)+L_{\mathbf{P}, \mathbf{Q}, 2}(\varkappa) \Psi^{2}(w)+\cdots \tag{7}
\end{equation*}
$$

ALTINKAYA/Turk J Math

From equalities (6) and (7), we obtain that

$$
\begin{equation*}
\frac{z \partial_{\mathfrak{q}}\left(\zeta_{\mathfrak{q}}^{\mu} \mathfrak{f}(z)\right)}{\zeta_{\mathfrak{q}}^{\mu} \mathfrak{f}(z)}=1+L_{\mathbf{P}, \mathbf{Q}, 1}(\varkappa) m_{1} z+\left[L_{\mathbf{P}, \mathbf{Q}, 1}(\varkappa) m_{2}+L_{\mathbf{P}, \mathbf{Q}, 2}(\varkappa) m_{1}^{2}\right] z^{2}+\cdots \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{z \partial_{\mathfrak{q}}\left(\zeta_{\mathfrak{q}}^{\mu} \mathfrak{g}(w)\right)}{\zeta_{\mathfrak{q}}^{\mu} \mathfrak{g}(w)}=1+L_{\mathbf{P}, \mathbf{Q}, 1}(\varkappa) n_{1} w+\left[L_{\mathbf{P}, \mathbf{Q}, 1}(\varkappa) n_{2}+L_{\mathbf{P}, \mathbf{Q}, 2}(\varkappa) n_{1}^{2}\right] w^{2}+\cdots \tag{9}
\end{equation*}
$$

Additionally, it is well known that

$$
\left|m_{k}\right| \leq 1 \quad \text { and } \quad\left|n_{k}\right| \leq 1 \quad(k \in \mathbb{N})
$$

By comparing the corresponding coefficients in (8) and (9), we have

$$
\begin{gather*}
\mathfrak{q} \Theta_{1} a_{2}=L_{\mathbf{P}, \mathbf{Q}, 1}(\varkappa) m_{1} \tag{10}\\
\mathfrak{q}(\mathfrak{q}+1) \Theta_{2} a_{3}-\mathfrak{q} \Theta_{1}^{2} a_{2}^{2}=L_{\mathbf{P}, \mathbf{Q}, 1}(\varkappa) m_{2}+L_{\mathbf{P}, \mathbf{Q}, 2}(\varkappa) m_{1}^{2} \tag{11}\\
-\mathfrak{q} \Theta_{1} a_{2}=L_{\mathbf{P}, \mathbf{Q}, 1}(\varkappa) n_{1} \tag{12}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathfrak{q}(\mathfrak{q}+1) \Theta_{2}\left(2 a_{2}^{2}-a_{3}\right)-\mathfrak{q} \Theta_{1}^{2} a_{2}^{2}=L_{\mathbf{P}, \mathbf{Q}, 1}(\varkappa) n_{2}+L_{\mathbf{P}, \mathbf{Q}, 2}(\varkappa) n_{1}^{2} \tag{13}
\end{equation*}
$$

From equations (10) and (12), we can easily see that

$$
\begin{gather*}
m_{1}=-n_{1} \tag{14}\\
2 \mathfrak{q}^{2} \Theta_{1}^{2} a_{2}^{2}=L_{\mathbf{P}, \mathbf{Q}, 1}^{2}(\varkappa)\left(m_{1}^{2}+n_{1}^{2}\right) \tag{15}
\end{gather*}
$$

If we add (11) to (13), we get

$$
\begin{equation*}
2 \mathfrak{q}\left[(\mathfrak{q}+1) \Theta_{2}-\Theta_{1}^{2}\right] a_{2}^{2}=L_{\mathbf{P}, \mathbf{Q}, 1}(\varkappa)\left(m_{2}+n_{2}\right)+L_{\mathbf{P}, \mathbf{Q}, 2}(\varkappa)\left(m_{1}^{2}+n_{1}^{2}\right) \tag{16}
\end{equation*}
$$

By using (15) in equality (16), we have

$$
\begin{equation*}
2 \mathfrak{q}\left\{\left[(\mathfrak{q}+1) \Theta_{2}-\Theta_{1}^{2}\right] L_{\mathbf{P}, \mathbf{Q}, 1}^{2}(\varkappa)-\mathfrak{q} \Theta_{1}^{2} L_{\mathbf{P}, \mathbf{Q}, 2}(\varkappa)\right\} a_{2}^{2}=L_{\mathbf{P}, \mathbf{Q}, 1}^{3}(\varkappa)\left(m_{2}+n_{2}\right) . \tag{17}
\end{equation*}
$$

We obtain the following inequality from (17), by using equation (1) and taking the modulus of a_{2} :

$$
\left|a_{2}\right| \leq \frac{|\mathbf{P}(\varkappa)| \sqrt{|\mathbf{P}(\varkappa)|}}{\sqrt{\left|(\mathfrak{q}+1)\left(\Theta_{2}-\Theta_{1}^{2}\right) \mathbf{P}^{2}(\varkappa)-2 \mathfrak{q} \Theta_{1}^{2} \mathbf{Q}(\varkappa)\right| \mathfrak{q}}}
$$

Moreover, if we subtract (13) from (11), we obtain

$$
\begin{equation*}
2 \mathfrak{q}(\mathfrak{q}+1) \Theta_{2}\left(a_{3}-a_{2}^{2}\right)=L_{\mathbf{P}, \mathbf{Q}, 1}(\varkappa)\left(m_{2}-n_{2}\right)+L_{\mathbf{P}, \mathbf{Q}, 2}(\varkappa)\left(m_{1}^{2}-n_{1}^{2}\right) \tag{18}
\end{equation*}
$$

Then, in view of (14) and (15), (18) becomes

$$
a_{3}=\frac{L_{\mathbf{P}, \mathbf{Q}, 1}^{2}(\varkappa)}{2 \mathfrak{q}^{2} \Theta_{1}^{2}}\left(m_{1}^{2}+n_{1}^{2}\right)+\frac{L_{\mathbf{P}, \mathbf{Q}, 1}(\varkappa)}{2 \mathfrak{q}(\mathfrak{q}+1) \Theta_{2}}\left(m_{2}-n_{2}\right)
$$

Then, with the help of (1), we finally deduce

$$
\left|a_{3}\right| \leq \frac{\mathbf{P}^{2}(\varkappa)}{\mathfrak{q}^{2} \Theta_{1}^{2}}+\frac{|\mathbf{P}(\varkappa)|}{\mathfrak{q}(\mathfrak{q}+1) \Theta_{2}}
$$

Corollary 8 If $\mathfrak{f} \in U^{\mu}(\varkappa)$, then

$$
\left|a_{2}\right| \leq \frac{|\mathbf{P}(\varkappa)| \sqrt{|\mathbf{P}(\varkappa)|}}{\sqrt{2\left|\left(\Theta_{2}-\Theta_{1}^{2}\right) \mathbf{P}^{2}(\varkappa)-\Theta_{1}^{2} \mathbf{Q}(\varkappa)\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\mathbf{P}^{2}(\varkappa)}{\Theta_{1}^{2}}+\frac{|\mathbf{P}(\varkappa)|}{2 \Theta_{2}}
$$

Corollary 9 If $\mathfrak{f} \in S(\varkappa)$, then

$$
\left|a_{2}\right| \leq|\mathbf{P}(\varkappa)| \sqrt{\left|\frac{\mathbf{P}(\varkappa)}{2 \mathbf{Q}(\varkappa)}\right|}
$$

and

$$
\left|a_{3}\right| \leq \mathbf{P}^{2}(\varkappa)+\frac{|\mathbf{P}(\varkappa)|}{2}
$$

Corollary 10 If $\mathfrak{f} \in C(\varkappa)$, then

$$
\left|a_{2}\right| \leq \frac{|\mathbf{P}(\varkappa)| \sqrt{|\mathbf{P}(\varkappa)|}}{\sqrt{2\left|\mathbf{P}^{2}(\varkappa)+4 \mathbf{Q}(\varkappa)\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\mathbf{P}^{2}(\varkappa)}{4}+\frac{|\mathbf{P}(\varkappa)|}{6}
$$

3. Fekete-Szegö problem

The classical Fekete-Szegö inequality for the coefficients of \mathfrak{f} selected from S is

$$
\left|a_{3}-\vartheta a_{2}^{2}\right| \leq 1+2 \exp (-2 \vartheta /(1-\vartheta)) \text { for } \vartheta \in[0,1)
$$

As $\vartheta \rightarrow 1^{-}$, we have the elementary inequality $\left|a_{3}-a_{2}^{2}\right| \leq 1$. Moreover, the coefficient functional

$$
\digamma_{\vartheta}(\mathfrak{f})=a_{3}-\vartheta a_{2}^{2}
$$

for the normalized analytic functions \mathfrak{f} in the open unit disk Δ revives a major role in geometric function theory. The problem of maximizing the absolute value of the functional $\digamma_{\vartheta}(\mathfrak{f})$ presents the Fekete-Szegö problem (see, for details, [7]).

Next, in this section, we aim to provide Fekete-Szegö inequalities for functions in the class $U^{\mu}(\mathfrak{q} ; \varkappa)$. These inequalities are given in the following theorem.

Theorem 11 For $\vartheta \in \mathbb{R}$, let the function f given by (2) be in the class $U^{\mu}(\mathfrak{q} ; \varkappa)$. Then

$$
\left|a_{3}-\vartheta a_{2}^{2}\right| \leq \begin{cases}\frac{|\mathbf{P}(\varkappa)|}{\mathfrak{q}(\mathfrak{q}+1) \Theta_{2}} ; & |\vartheta-1| \leq\left|1-\left(1+\frac{2 \mathfrak{q} \mathbf{Q}(\varkappa)}{(\mathfrak{q}+1) \mathbf{P}^{2}(\varkappa)}\right) \frac{\Theta_{1}^{2}}{\Theta_{2}}\right| \\ \frac{|1-\vartheta|\left|\mathbf{P}^{3}(\varkappa)\right|}{\frac{q}{q}\left|(\mathfrak{q}+1)\left(\Theta_{2}-\Theta_{1}^{2}\right) \mathbf{P}^{2}(\varkappa)-2 \mathfrak{q} \Theta_{1}^{2} \mathbf{Q}(\varkappa)\right|} ; & |\vartheta-1| \geq\left|1-\left(1+\frac{2 \mathfrak{q} \mathbf{Q}(\varkappa)}{(\mathfrak{q}+1) \mathbf{P}^{2}(\varkappa)}\right) \frac{\Theta_{1}^{2}}{\Theta_{2}}\right|\end{cases}
$$

Proof From (17) and (18)

$$
\begin{aligned}
a_{3}-\vartheta a_{2}^{2} & =\frac{L_{\mathbf{P}, \mathbf{Q}, 1}^{3}(\varkappa)(1-\vartheta)\left(m_{2}+n_{2}\right)}{2 \mathfrak{q}\left\{\left[(\mathfrak{q}+1) \Theta_{2}-\Theta_{1}^{2}\right] L_{\mathbf{P}, \mathbf{Q}, 1}^{2}(\varkappa)-\mathfrak{q} \Theta_{1}^{2} L_{\mathbf{P}, \mathbf{Q}, 2}(\varkappa)\right\}} \\
& +\frac{L_{\mathbf{P}, \mathbf{Q}, 1}(\varkappa)\left(m_{2}-n_{2}\right)}{2 \mathfrak{q}(\mathfrak{q}+1) \Theta_{2}} \\
& =L_{\mathbf{P}, \mathbf{Q}, 1}(\varkappa)\left[\left(\hbar(\vartheta ; \varkappa)+\frac{1}{2 \mathfrak{q}(\mathfrak{q}+1) \Theta_{2}}\right) m_{2}+\left(\hbar(\vartheta ; \varkappa)-\frac{1}{2 \mathfrak{q}(\mathfrak{q}+1) \Theta_{2}}\right) n_{2}\right],
\end{aligned}
$$

where

$$
\hbar(\vartheta ; \varkappa)=\frac{L_{\mathbf{P}, \mathbf{Q}, 1}^{2}(\varkappa)(1-\vartheta)}{2 \mathfrak{q}\left\{\left[(\mathfrak{q}+1) \Theta_{2}-\Theta_{1}^{2}\right] L_{\mathbf{P}, \mathbf{Q}, 1}^{2}(\varkappa)-\mathfrak{q} \Theta_{1}^{2} L_{\mathbf{P}, \mathbf{Q}, 2}(\varkappa)\right\}}
$$

In view of (1), we conclude that

$$
\left|a_{3}-\vartheta a_{2}^{2}\right| \leq \begin{cases}\frac{|\mathbf{P}(\varkappa)|}{\mathfrak{q}(\mathfrak{q}+1) \Theta_{2}}, & 0 \leq|\hbar(\vartheta ; \varkappa)| \leq \frac{1}{2 \mathfrak{q}(\mathfrak{q}+1) \Theta_{2}} \\ 2|\mathbf{P}(\varkappa)||\hbar(\vartheta ; \varkappa)|, & |\hbar(\vartheta ; \varkappa)| \geq \frac{1}{2 \mathfrak{q}(\mathfrak{q}+1) \Theta_{2}}\end{cases}
$$

Corollary 12 For $\vartheta \in \mathbb{R}$, let \mathfrak{f} given by (2) be in the class $U^{\mu}(\varkappa)$. Then

$$
\left|a_{3}-\vartheta a_{2}^{2}\right| \leq \begin{cases}\frac{|\mathbf{P}(\varkappa)|}{2 \Theta_{2}} ; & |\vartheta-1| \leq\left|1-\left(1+\frac{\mathbf{Q}(\varkappa)}{\mathbf{P}^{2}(\varkappa)}\right) \frac{\Theta_{1}^{2}}{\Theta_{2}}\right| \\ \frac{|1-\vartheta|\left|\mathbf{P}^{3}(\varkappa)\right|}{2\left|\left(\Theta_{2}-\Theta_{1}^{2}\right) \mathbf{P}^{2}(\varkappa)-\Theta_{1}^{2} \mathbf{Q}(\varkappa)\right|} ; & |\vartheta-1| \geq\left|1-\left(1+\frac{\mathbf{Q}(\varkappa)}{\mathbf{P}^{2}(\varkappa)}\right) \frac{\Theta_{1}^{2}}{\Theta_{2}}\right|\end{cases}
$$

Corollary 13 If $\mathfrak{f} \in S(\varkappa)$, then

$$
\left|a_{3}-\vartheta a_{2}^{2}\right| \leq\left\{\begin{array}{ll}
\frac{|\mathbf{P}(\varkappa)|}{2}, & |\vartheta-1| \leq \frac{|\mathbf{Q}(\varkappa)|}{\mathbf{P}^{2}(\varkappa)} \\
\frac{|1-\vartheta|\left|\mathbf{P}^{3}(\varkappa)\right|}{2|\mathbf{Q}(\varkappa)|}, & |\vartheta-1| \geq \frac{|\mathbf{Q}(\varkappa)|}{\mathbf{P}^{2}(\varkappa)}
\end{array} .\right.
$$

Corollary 14 If $f \in C(\varkappa)$, then

$$
\left|a_{3}-\vartheta a_{2}^{2}\right| \leq\left\{\begin{array}{ll}
\frac{|\mathbf{P}(\varkappa)|}{6}, & |\vartheta-1| \leq \frac{\left|\mathbf{P}^{2}(\varkappa)+4 \mathbf{Q}(\varkappa)\right|}{3 \mathbf{P}^{2}(\varkappa)} \\
\frac{|1-\vartheta|\left|\mathbf{P}^{3}(\varkappa)\right|}{2\left|\mathbf{P}^{2}(\varkappa)+4 \mathbf{Q}(\varkappa)\right|}, & |\vartheta-1| \geq \frac{\left|\mathbf{P}^{2}(\varkappa)+4 \mathbf{Q}(\varkappa)\right|}{3 \mathbf{P}^{2}(\varkappa)}
\end{array} .\right.
$$

If we choose $\vartheta=1$ in Theorem 11 , we get the next corollary.

Corollary 15 If $\mathfrak{f} \in U^{\mu}(\mathfrak{q} ; \varkappa)$, then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{|\mathbf{P}(\varkappa)|}{\mathfrak{q}(\mathfrak{q}+1) \Theta_{2}}
$$

Corollary 16 If $\mathfrak{f} \in U^{\mu}(\varkappa)$, then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{|\mathbf{P}(\varkappa)|}{2 \Theta_{2}}
$$

Corollary 17 If $\mathfrak{f} \in S(\varkappa)$, then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{|\mathbf{P}(\varkappa)|}{2}
$$

Corollary 18 If $\mathfrak{f} \in C(\varkappa)$, then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{|\mathbf{P}(\varkappa)|}{6}
$$

References

[1] Akgül A. Coefficient estimates for certain subclass of bi-univalent functions obtained with polylogarithms. Mathematical Sciences and Applications E-Notes 2018; 6: 70-76.
[2] Akgül A, Altınkaya Ş. Coefficient estimates associated with a new subclass of bi-univalent functions. Acta Universitatis Apulensis 2017; 52: 121-128.
[3] Altınkaya Ş, Yalçın S. Faber polynomial coefficient bounds for a subclass of bi-univalent functions. C R Acad Sci Paris Ser I 2015; 353: 1075-1080.
[4] Altınkaya Ş, Yalçın S. On the certain subclasses of univalent functions associated with the Tschebyscheff polynomials. Transylvanian Journal of Mathematics and Mechanics 2016; 8: 105-113.
[5] Arif M, Ul Haq M, Liu J-L. Subfamily of univalent functions associated with q-analogue of Noor integral operator. J Funct Spaces 2018; 2018: 3818915.
[6] Brannan DA, Taha TS. On some classes of bi-univalent functions. Stud Univ Babeş-Bolyai Math 1986; 31: 70-77.
[7] Fekete M, Szegö G. Eine Bemerkung über ungerade schlichte Funktionen. J London Math Soc 1933; 2: 85-89 (in German).
[8] Filipponi P, Horadam AF. Derivative sequences of Fibonacci and Lucas polynomials. Applications of Fibonacci Numbers,1991; 4: 99-108.
[9] Lee GY, Aşcı M. Some properties of the (p, q)-Fibonacci and (p, q)-Lucas polynomials. J Appl Math 2012; 2012: 1-18.
[10] Lewin M. On a coefficient problem for bi-univalent functions. P Am Math Soc 1967; 18: 63-68.
[11] Lupas A. A guide of Fibonacci and Lucas polynomials. Octagon Math Mag 1999; 7: 2-12.
[12] Netanyahu E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$. Arch Ration Mech Anal 1969; 32: 100-112.
[13] Noor KI. On new classes of integral operators. J Natur Geom 1999; 16: 71-80.
[14] Sakar FM. Estimate for initial Tschebyscheff polynomials coefficients on a certain subclass of bi-univalent functions defined by Salagean differential operator. Acta Universitatis Apulensis 2018; 54: 45-54.
[15] Sakar FM. Estimating coefficients for certain subclasses of meromorphic and bi-univalent functions, Journal of Inequalities and Applications 2018; 283: 1-8.
[16] Srivastava HM. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In: Srivastava HM, Owa S, editors. Univalent Functions, Fractional Calculus, and Their Applications. New York, NY, USA: John Wiley and Sons, 1989.
[17] Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Appl Math Lett 2010; 23: 1188-1192.
[18] Vellucci P, Bersani AM. The class of Lucas-Lehmer polynomials. Rend Math Appl 2016; 37: 43-62.
[19] Wang T, Zhang W. Some identities involving Fibonacci, Lucas polynomials and their applications. Bull Math Soc Sci Math Roum 2012; 55: 95-103.

[^0]: *Correspondence: sahsenealtinkaya@gmail.com
 2010 AMS Mathematics Subject Classification: 05A15, 33D15, 30C45

