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Abstract: In this paper, by using the (P,Q) -Lucas polynomials and the q -analogue of the Noor integral operator, we
aim to build a bridge between the theory of geometric functions and that of special functions.
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1. Introduction, preliminaries, and known results
In modern science there is a huge interest in the theory and application of the Fibonacci polynomials, the
Lucas polynomials, the Chebyshev polynomials, the Pell polynomials, the Pell–Lucas polynomials, the Lucas–
Lehmer polynomials, the families of orthogonal polynomials, and other special polynomials as well as their
generalizations. These polynomials play a major role in a variety of disciplines in the mathematical, physical,
statistical, and engineering sciences (see, for example, [4, 8, 11, 14, 18, 19] and references therein).

Definition 1 (See [9]) Let P(κ) and Q(κ) represent polynomials with real coefficients. The (P,Q)-Lucas
polynomials LP,Q,j(κ) are introduced by the recurrence relevance

LP,Q,j(κ) = P(κ)LP,Q,j−1(κ) + Q(κ)LP,Q,j−2(κ) (j ≥ 2),

with the first few terms of the (P,Q)-Lucas polynomials as follows:

LP,Q,0(κ) = 2,

LP,Q,1(κ) = P(κ),

LP,Q,2(κ) = P2(κ) + 2Q(κ),

LP,Q,3(κ) = P3(κ) + 3P(κ)Q(κ),
...

(1)
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Table. Specific cases of LP,Q.,j(κ)

P(κ) Q(κ) LP,Q,j(κ)
κ 1 Lucas polynomials Ln(κ)
2κ 1 Pell–Lucas polynomials Dn(κ)
1 2κ Jacobsthal–Lucas polynomials jn(κ)
3κ -2 Fermat–Lucas polynomials fn(κ)
2κ -1 Chebyshev polynomials Tn(κ)

Theorem 2 (See [9]) Let Υ{LP,Q,j(κ)}(z) indicate the generating function of the (P,Q)-Lucas polynomial
sequence LP,Q,j(κ) . Then

Υ{LP,Q,j(κ)}(z) =

∞∑
j≥0

LP,Q,j(κ)zj =
2− P(κ)z

1− P(κ)z − Q(κ)z2
.

Let A indicate the class of functions f normalized by

f(z) = z + a2z
2 + a3z

3 + · · · , (2)

which are analytic in the open unit disk ∆ = {z ∈ C : |z| < 1} . The class of this kind of functions is represented
by S .

With a view to recalling the rule of subordination for analytic functions, let f , g be analytic in ∆ . A
function f is subordinate to g, indicated as f ≺ g, if there exists a function τ , analytic in ∆, such that

τ (0) = 0, |τ (z)| < 1

and
f (z) = g (τ (z)) (z ∈ ∆) .

According to the Koebe one-quarter theorem, every univalent function f ∈ A has an inverse f−1 satisfying

f−1 (f (z)) = z

and

f
(
f−1 (w)

)
= w

(
|w| < 1

4

)
,

where
g(w) = f

−1
(w) = w − a2w

2 +
(
2a22 − a3

)
w3 −

(
5a32 − 5a2a3 + a4

)
w4 + · · · . (3)

A function f ∈ A is called bi-univalent in ∆ if both f and f−1 are univalent in ∆. Let � denote the class
of bi-univalent functions in ∆ given by (2). For several interesting examples in the class � , see [17] (see also
[1–3, 6, 10, 12, 15]).

It may be of interest to recall that Srivastava used the basic (or q -)hypergeometric functions in a book
chapter (see, for details, [16]). Thus, the theory of univalent functions was characterized by the concept of
q -calculus. For simplicity, we provide some fundamental descriptions of q -calculus that are used in this paper.
Next, we recall some identities of fractional q -calculus operators of complex valued function f.
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For 0 < q < 1 , the q -derivative of a function f ∈ A is defined as follows:

∂qf (z) =
f (z)− f (qz)

z (1− q)
, (z ∈ ∆) .

Obviously, for j ∈ N := {1, 2, . . .} and z ∈ ∆ ,

∂q

 ∞∑
j≥1

ajz
j

 =

∞∑
j≥1

[j, q] ajz
j−1,

where

[j, q] =
1− qj

1− q
, [0, q] = 0.

Moreover, it is worth mentioning that

[j, q]! =

 1, j = 0

[1, q] [2, q] [3, q] . . . [j, q] , j ∈ N
.

Also, the q -generalized Pochhammer symbol for ℘ > 0 is given by

[℘, q]j =

 1, j = 0

[℘, q] [℘+ 1, q] . . . [℘+ j − 1, q] , j ∈ N
.

Very recently, Arif et al. [5] defined the function 𝟋−1
q,µ+1(z) by

𝟋−1
q,µ+1(z) ∗𝟋q,µ+1(z) = z∂qf(z) (µ > −1),

where the function 𝟋q,µ+1(z) is given by

𝟋q,µ+1(z) = z +

∞∑
j=2

[µ+ 1, q]j−1

[j − 1, q]!
zj , (z ∈ ∆) . (4)

Because the series defined in (4) is convergent absolutely in ∆ , by making use of the description of the q -
derivative through convolution, we now define the integral operator ζµq : ∆ → ∆ by

ζµq f(z) = 𝟋−1
q,µ+1(z) ∗ f(z) = z +

∞∑
j=2

Θj−1ajz
j , (z ∈ ∆) , (5)

where

Θj−1 =
[j, q]!

[µ+ 1, q]j−1

.

We note that ζ0q f(z) = z∂qf(z), ζ1q f(z) = f(z) , and

lim
q→1−

ζµq f(z) = z +

∞∑
j=2

j!

(µ+ 1)j−1

ajz
j .
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This shows that, by taking q → 1− , the operator defined in (5) reduces to the familiar Noor integral operator
introduced in [13].

We want to assert evidently that, in the paper, by using the LP,Q,j(κ) functions, our methodology
constructs a bridge between the theory of geometric functions and that of special functions. Thus, we aim to
introduce a new class of bi-univalent functions introduced through the (P,Q) -Lucas polynomials. Furthermore,
we derive coefficient inequalities and obtain the Fekete–Szegö problem for this new function class.

Definition 3 A function f ∈ � is said to be in the class

Uµ
� (q;κ) (µ > −1, 0 < q < 1, z, w ∈ ∆)

if the following subordinations are fulfilled:

z∂q (ζ
µ
q f(z))

ζµq f(z)
≺ Υ{LP,Q,j(κ)}(z)− 1

and
z∂q (ζ

µ
q g(w))

ζµq g(w)
≺ Υ{LP,Q,j(κ)}(w)− 1,

where the function g is given by (3).

Remark 4 Upon setting q → 1− in Definition 3, it is readily seen that a function f ∈ � is in the class

Uµ
� (κ) (µ > −1, z, w ∈ ∆)

if the following conditions are fulfilled:

z (ζµf(z))
′

ζµf(z)
≺ Υ{LP,Q,j(κ)}(z)− 1,

z (ζµg(w))
′

ζµg(w)
≺ Υ{LP,Q,j(κ)}(w)− 1,

where the function g is given by (3).

Remark 5 Upon setting µ = 1 in Definition 3, it is readily seen that a function f ∈ � is in the class

S�(κ) (z, w ∈ ∆)

if the following conditions are fulfilled:

zf′(z)

f(z)
≺ Υ{LP,Q,j(κ)}(z)− 1

and
wg′(w)

g(w)
≺ Υ{LP,Q,j(κ)}(w)− 1,

where the function g is given by (3).
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Remark 6 Upon setting µ = 0 in Definition 3, it is readily seen that a function f ∈ � is in the class

CΣ(κ) (z, w ∈ ∆)

if the following conditions are fulfilled:

(
1 +

zf′′(z)

f(z)

)
≺ Υ{LP,Q,j(κ)}(z)− 1

and (
1 +

wg′′(w)

g(w)

)
≺ Υ{LP,Q,j(κ)}(w)− 1,

where the function g is given by (3).

2. Inequalities for the Taylor–Maclaurin coefficients

Theorem 7 Let the function f given by (2) be in the class Uµ
� (q;κ). Then

|a2| ≤
|P(κ)|

√
|P(κ)|√

|(q+ 1)(Θ2 −Θ2
1)P2(κ)− 2qΘ2

1Q(κ)| q

and

|a3| ≤
P2(κ)
q2Θ2

1

+
|P(κ)|

q(q+ 1)Θ2
.

Proof Let f ∈ Uµ
� (q;κ). From Definition 3, for some analytic functions Φ,Ψ such that

Φ(0) = 0, |Φ(z)| =
∣∣m1z +m2z

2 +m3z
3 + · · ·

∣∣ < 1 (z ∈ ∆),

Ψ(0) = 0, |Ψ(w)| =
∣∣n1w + n2w

2 + n3w
3 + · · ·

∣∣ < 1 (w ∈ ∆),

we can write
z∂q (ζ

µ
q f(z))

ζµq f(z)
= Υ{LP,Q,j(κ)}(Φ(z))− 1

and
z∂q (ζ

µ
q g(w))

ζµq g(w)
= Υ{LP,Q,j(κ)}(Ψ(w))− 1,

or equivalently

z∂q (ζ
µ
q f(z))

ζµq f(z)
= −1 + LP,Q,0(κ) + LP,Q,1(κ)Φ(z) + LP,Q,2(κ)Φ2(z) + · · · (6)

and
z∂q (ζ

µ
q g(w))

ζµq g(w)
= −1 + LP,Q,0(κ) + LP,Q,1(κ)Ψ(w) + LP,Q,2(κ)Ψ2(w) + · · · . (7)
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From equalities (6) and (7), we obtain that

z∂q (ζ
µ
q f(z))

ζµq f(z)
= 1 + LP,Q,1(κ)m1z +

[
LP,Q,1(κ)m2 + LP,Q,2(κ)m2

1

]
z2 + · · · (8)

and
z∂q (ζ

µ
q g(w))

ζµq g(w)
= 1 + LP,Q,1(κ)n1w +

[
LP,Q,1(κ)n2 + LP,Q,2(κ)n2

1

]
w2 + · · · . (9)

Additionally, it is well known that

|mk| ≤ 1 and |nk| ≤ 1 (k ∈ N).

By comparing the corresponding coefficients in (8) and (9), we have

qΘ1a2 = LP,Q,1(κ)m1, (10)

q(q+ 1)Θ2a3 − qΘ2
1a

2
2 = LP,Q,1(κ)m2 + LP,Q,2(κ)m2

1, (11)

−qΘ1a2 = LP,Q,1(κ)n1, (12)

and
q(q+ 1)Θ2(2a

2
2 − a3)− qΘ2

1a
2
2 = LP,Q,1(κ)n2 + LP,Q,2(κ)n2

1. (13)

From equations (10) and (12), we can easily see that

m1 = −n1, (14)

2q2Θ2
1a

2
2 = L2

P,Q,1(κ)
(
m2

1 + n2
1

)
. (15)

If we add (11) to (13), we get

2q
[
(q+ 1)Θ2 −Θ2

1

]
a22 = LP,Q,1(κ) (m2 + n2) + LP,Q,2(κ)

(
m2

1 + n2
1

)
. (16)

By using (15) in equality (16), we have

2q
{[
(q+ 1)Θ2 −Θ2

1

]
L2

P,Q,1(κ)− qΘ2
1LP,Q,2(κ)

}
a22 = L3

P,Q,1(κ) (m2 + n2) . (17)

We obtain the following inequality from (17), by using equation (1) and taking the modulus of a2 :

|a2| ≤
|P(κ)|

√
|P(κ)|√

|(q+ 1)(Θ2 −Θ2
1)P2(κ)− 2qΘ2

1Q(κ)| q
.

Moreover, if we subtract (13) from (11), we obtain

2q(q+ 1)Θ2(a3 − a22) = LP,Q,1(κ) (m2 − n2) + LP,Q,2(κ)
(
m2

1 − n2
1

)
. (18)
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Then, in view of (14) and (15), (18) becomes

a3 =
L2

P,Q,1(κ)
2q2Θ2

1

(
m2

1 + n2
1

)
+

LP,Q,1(κ)
2q(q+ 1)Θ2

(m2 − n2) .

Then, with the help of (1), we finally deduce

|a3| ≤
P2(κ)
q2Θ2

1

+
|P(κ)|

q(q+ 1)Θ2
.

2

Corollary 8 If f ∈ Uµ
� (κ), then

|a2| ≤
|P(κ)|

√
|P(κ)|√

2 |(Θ2 −Θ2
1)P2(κ)−Θ2

1Q(κ)|

and

|a3| ≤
P2(κ)
Θ2

1

+
|P(κ)|
2Θ2

.

Corollary 9 If f ∈ S�(κ), then

|a2| ≤ |P(κ)|

√∣∣∣∣ P(κ)
2Q(κ)

∣∣∣∣
and

|a3| ≤ P2(κ) +
|P(κ)|

2
.

Corollary 10 If f ∈ C�(κ), then

|a2| ≤
|P(κ)|

√
|P(κ)|√

2 |P2(κ) + 4Q(κ)|

and

|a3| ≤
P2(κ)

4
+

|P(κ)|
6

.

3. Fekete–Szegö problem

The classical Fekete–Szegö inequality for the coefficients of f selected from S is∣∣a3 − ϑa22
∣∣ ≤ 1 + 2 exp(−2ϑ/(1− ϑ)) for ϑ ∈ [0, 1) .

As ϑ → 1− , we have the elementary inequality
∣∣a3 − a22

∣∣ ≤ 1 . Moreover, the coefficient functional

𝟋ϑ(f) = a3 − ϑa22
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for the normalized analytic functions f in the open unit disk ∆ revives a major role in geometric function theory.
The problem of maximizing the absolute value of the functional 𝟋ϑ(f) presents the Fekete–Szegö problem (see,
for details, [7]).

Next, in this section, we aim to provide Fekete–Szegö inequalities for functions in the class Uµ
� (q;κ) .

These inequalities are given in the following theorem.

Theorem 11 For ϑ ∈ R, let the function f given by (2) be in the class Uµ
� (q;κ). Then

∣∣a3 − ϑa22
∣∣ ≤


|P(κ)|

q(q+1)Θ2
; |ϑ− 1| ≤

∣∣∣1− (
1 + 2qQ(κ)

(q+1)P2(κ)

)
Θ2

1

Θ2

∣∣∣
|1−ϑ||P3(κ)|

q|(q+1)(Θ2−Θ2
1)P2(κ)−2qΘ2

1Q(κ)| ; |ϑ− 1| ≥
∣∣∣1− (

1 + 2qQ(κ)
(q+1)P2(κ)

)
Θ2

1

Θ2

∣∣∣ .

Proof From (17) and (18)

a3 − ϑa22 =
L3

P,Q,1(κ) (1− ϑ) (m2 + n2)

2q
{
[(q+ 1)Θ2 −Θ2

1]L
2
P,Q,1(κ)− qΘ2

1LP,Q,2(κ)
}

+
LP,Q,1(κ) (m2 − n2)

2q(q+ 1)Θ2

= LP,Q,1(κ)
[(

ℏ (ϑ;κ) +
1

2q(q+ 1)Θ2

)
m2 +

(
ℏ (ϑ;κ)− 1

2q(q+ 1)Θ2

)
n2

]
,

where

ℏ (ϑ;κ) =
L2

P,Q,1(κ) (1− ϑ)

2q
{
[(q+ 1)Θ2 −Θ2

1]L
2
P,Q,1(κ)− qΘ2

1LP,Q,2(κ)
} .

In view of (1), we conclude that

∣∣a3 − ϑa22
∣∣ ≤


|P(κ)|

q(q+ 1)Θ2
, 0 ≤ |ℏ (ϑ;κ)| ≤ 1

2q(q+ 1)Θ2

2 |P(κ)| |ℏ (ϑ;κ)| , |ℏ (ϑ;κ)| ≥ 1

2q(q+ 1)Θ2

.

2

Corollary 12 For ϑ ∈ R, let f given by (2) be in the class Uµ
� (κ). Then

∣∣a3 − ϑa22
∣∣ ≤


|P(κ)|
2Θ2

; |ϑ− 1| ≤
∣∣∣1− (

1 + Q(κ)
P2(κ)

)
Θ2

1

Θ2

∣∣∣
|1− ϑ|

∣∣P3(κ)
∣∣

2 |(Θ2 −Θ2
1)P2(κ)−Θ2

1Q(κ)|
; |ϑ− 1| ≥

∣∣∣1− (
1 + Q(κ)

P2(κ)

)
Θ2

1

Θ2

∣∣∣ .
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Corollary 13 If f ∈ S�(κ), then

∣∣a3 − ϑa22
∣∣ ≤


|P(κ)|

2
, |ϑ− 1| ≤ |Q(κ)|

P2(κ)

|1− ϑ|
∣∣P3(κ)

∣∣
2 |Q(κ)|

, |ϑ− 1| ≥ |Q(κ)|
P2(κ)

.

Corollary 14 If f ∈ C�(κ), then

∣∣a3 − ϑa22
∣∣ ≤


|P(κ)|

6
, |ϑ− 1| ≤

∣∣P2(κ) + 4Q(κ)
∣∣

3P2(κ)

|1− ϑ|
∣∣P3(κ)

∣∣
2 |P2(κ) + 4Q(κ)|

, |ϑ− 1| ≥
∣∣P2(κ) + 4Q(κ)

∣∣
3P2(κ)

.

If we choose ϑ = 1 in Theorem 11, we get the next corollary.

Corollary 15 If f ∈ Uµ
� (q;κ), then ∣∣a3 − a22

∣∣ ≤ |P(κ)|
q(q+ 1)Θ2

.

Corollary 16 If f ∈ Uµ
� (κ), then ∣∣a3 − a22

∣∣ ≤ |P(κ)|
2Θ2

.

Corollary 17 If f ∈ S�(κ), then ∣∣a3 − a22
∣∣ ≤ |P(κ)|

2
.

Corollary 18 If f ∈ C�(κ), then ∣∣a3 − a22
∣∣ ≤ |P(κ)|

6
.
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