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Abstract: In this paper, by using the (P, Q)-Lucas polynomials and the g-analogue of the Noor integral operator, we

aim to build a bridge between the theory of geometric functions and that of special functions.
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1. Introduction, preliminaries, and known results

In modern science there is a huge interest in the theory and application of the Fibonacci polynomials, the
Lucas polynomials, the Chebyshev polynomials, the Pell polynomials, the Pell-Lucas polynomials, the Lucas—
Lehmer polynomials, the families of orthogonal polynomials, and other special polynomials as well as their
generalizations. These polynomials play a major role in a variety of disciplines in the mathematical, physical,

statistical, and engineering sciences (see, for example, [4, 8, 11, 14, 18, 19] and references therein).

Definition 1 (See [9]) Let P(s) and Q(s) represent polynomials with real coefficients. The (P,Q)-Lucas

polynomials Lp q,;(>) are introduced by the recurrence relevance

Lp q,j(%) = P(x%)Lp q,j-1(%) + Q(»)Lp,qj-2() (i >2),

with the first few terms of the (P, Q)-Lucas polynomials as follows:

Lp qo(») =2,
Lp q,1(5) =P(x),
Lp.qa2(%) = P?(x) 4+ 2Q(x), (1)

Lp.q3(x) = P?(5) + 3P (x)Q(x),
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Table. Specific cases of Lp q.,;(5)

P(x) | Q(») | Lp.q.;(>)

» 1 Lucas polynomials L,, ()

23 1 Pell-Lucas polynomials D, ()

1 25¢ Jacobsthal-Lucas polynomials j, ()
3 -2 Fermat—Lucas polynomials f,, ()
2 -1 Chebyshev polynomials T, ()

Theorem 2 (See [9]) Let Y(r, o ()}(2) indicate the generating function of the (P,Q)-Lucas polynomial

sequence Lp q j(»). Then

> 4 2-P(x)z
T _ = L ; ) = .
{LP,Q,J(%)}(Z) Jgo P;Q;J(%)Z 1 7P(%)Z* Q(%)ZQ
Let A indicate the class of functions f normalized by
f(2) = 2 + a22® +age® + - (2)

which are analytic in the open unit disk A = {z € C: |z| < 1}. The class of this kind of functions is represented
by S.
With a view to recalling the rule of subordination for analytic functions, let f, g be analytic in A. A

function f is subordinate to g, indicated as § < g, if there exists a function 7, analytic in A, such that
7(0)=0, |7 ()] <1

and

f(z)=9(r(2) (2€4).

According to the Koebe one-quarter theorem, every univalent function f € A has an inverse f~! satisfying

(i (2) =2
and

6 ) =w (jul< 7).

where

gw) =§ ' (w) =w — asw® + (243 — az) w* — (5a3 — bazas + a4) w4 (3)

A function f € A is called bi-univalent in A if both § and §~! are univalent in A. Let denote the class
of bi-univalent functions in A given by (2). For several interesting examples in the class , see [17] (see also
[1-3, 6, 10, 12, 15)).

It may be of interest to recall that Srivastava used the basic (or ¢-)hypergeometric functions in a book
chapter (see, for details, [16]). Thus, the theory of univalent functions was characterized by the concept of
g-calculus. For simplicity, we provide some fundamental descriptions of g-calculus that are used in this paper.

Next, we recall some identities of fractional g-calculus operators of complex valued function f.
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For 0 < q < 1, the g-derivative of a function § € A is defined as follows:
f(z) —f(gz
0ufi(z) = TEL T2

Obviously, for j € N:={1,2,...} and z € A,

Zajzj = Z lj,qla;z 1,

Jj=1 =21
where
uﬂ=ﬂjﬁ, [0, 4] = 0.
Moreover, it is worth mentioning that
1, j=0

[j,ql!' =
(1,q][2,a][3,q]...[s,q], j€EN

Also, the g-generalized Pochhammer symbol for p > 0 is given by
17 ] = O
[, q]j = _ )
Very recently, Arif et al. [5] defined the function £, L 1(z) by

F o1 (2) % Fauii(2) = 204f(2)  (p> 1),

where the function f 4 ,41(z2) is given by

v+ 1,q] .
Fautr(z Z 3_1;19, S W
=2

Because the series defined in (4) is convergent absolutely in A, by making use of the description of the g-

derivative through convolution, we now define the integral operator ¢§ : A — A by
G = F () #5(z) =2+ Y0514, (z€4), ()
j=2

where
= 7, q]!
’ [/’(’—i_ 17q]j71

We note that (0f(z) = 204f(2), (if(2) = §(2), and

lim CH(z) = 27,
im (}f(2) Z M+1 —

q—1- 1
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This shows that, by taking q — 17, the operator defined in (5) reduces to the familiar Noor integral operator
introduced in [13].

We want to assert evidently that, in the paper, by using the Lp q,;(»2) functions, our methodology
constructs a bridge between the theory of geometric functions and that of special functions. Thus, we aim to
introduce a new class of bi-univalent functions introduced through the (P, Q)-Lucas polynomials. Furthermore,

we derive coeflicient inequalities and obtain the Fekete—Szegd problem for this new function class.

Definition 3 A function f € is said to be in the class
Ul(q;¢) (u>-1,0<q<1, z,weA)
if the following subordinations are fulfilled:

20q (¢3f(2))

i) " erastay(z) 1

and
204 (3 a(w))

Tiipa, -1
Gaw)  ~ TiteasG (@) =L

where the function g is given by (3).
Remark 4 Upon setting q — 17 in Definition 3, it is readily seen that a function f € is in the class
UF () (n>-1, zyw € A)

if the following conditions are fulfilled:

1 /
Z(f"ff(f))) =< Tirpq,;001(2) =1,
m ’
W < YiLpq, 60 (w) — 1,

where the function g is given by (3).

Remark 5 Upon setting p =1 in Definition 3, it is readily seen that a function §f € is in the class
S () (z,weA)

if the following conditions are fulfilled:

fo(,(z? < TLpq,603(2) =1

and

where the function g is given by (3).
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Remark 6 Upon setting p = 0 in Definition 3, it is readily seen that a function f € is in the class

Cs(s) (z,weA)

if the following conditions are fulfilled:

<1 + Z;(S)) < Tip g 6 (2) 1

and

(1 * wi(;q)u)) < YVrpq,;cop(w) — 1,

where the function g is given by (3).

2. Inequalities for the Taylor—Maclaurin coefficients

Theorem 7 Let the function f given by (2) be in the class U*(q; »). Then

[P VIP ()|

lag| < \/|(q +1)(0, — @%)PZ(%) — 2q®§Q(%)| q

and

P? () [P (5)
oYay) + .
1?07 q(q+1)02

lag| <

Proof Let f € U*(q; »). From Definition 3, for some analytic functions ®, ¥ such that
(0) =0, [®(2)] = [m1z+ma2® + mg2® + -+ | <1 (2 € A),

U(0) =0, [¥(w)| = [mw + now? + ngw® + -] <1 (w € A),

we can write

204 (CHF(2
“;(fg” Y o (B(2) — 1

and
204 (Cgg(w))

Fg(w) Y (Loq, 6 (TW) =1,

or equivalently

20q (¢q1(2))
Caf(z)

and
204 (Grg(w))
Gro(w)
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From equalities (6) and (7), we obtain that

W =14+ Lpq,i(s)miz+ [LP,Q,1(%)m2 + LP,Q,z(%)m%] 2 (8)
q
and

200 (65 00) _ 1 o1 Gomiw + [Lpqu(9n + Lo .qalend] w? + - (9)

Coo(w)

Additionally, it is well known that
mg| <1 and |ng| <1 (k€N).

By comparing the corresponding coefficients in (8) and (9), we have

q01a2 = Lp q 1(3)ma, (10)
q(q + 1)Oza3 — qO07a3 = Lp q1(>)ma + Lp q2(2)m7, (11)
—q@lag = LP’QJ(%)TLl? (12)
and
q(q+ 1)02(2a5 — as) — qO7a5 = Lp.q.1(>)n2 + Lp q2(>)n3. (13)

From equations (10) and (12), we can easily see that

my; = —nq, (14)
29°07a3 = Lp g1 (3) (m] +ni). (15)
If we add (11) to (13), we get
2 [(q+1)02 — ©F] a3 = Lp,q,1 (%) (m2 + n2) + Lp q.2() (mf +nf). (16)
By using (15) in equality (16), we have
20 {[(a+1)02 — O] Lp .1 (%) — 4O Lp,q2(x)} a3 = L q.1(%) (m2 +n2). (17)

We obtain the following inequality from (17), by using equation (1) and taking the modulus of as:

[P ()| VIP ()|

= T 0 - 6P - etQiT

Moreover, if we subtract (13) from (11), we obtain
2(q +1)O2(as — a3) = Lp,q1 (%) (m2 — n2) + Lp,qa(>) (mi — nf). (18)
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Then, in view of (14) and (15), (18) becomes

L q.1(5)
_ Q.1 2 2
as = 72(12@% (m1 + nl) +

Lp.qi(>) B
2q(q +1)© (mz = na).

Then, with the help of (1), we finally deduce

PX(x) | [P(x)

aal < .
las| < 1?07 " q(q+1)0,

Corollary 8 If f € U*(5), then

[P()| VIP ()|
~ V2[(02 — 61)P2(x) — ©7Q(x)|

lag| <

and
P2(x)  [P(x)|
‘a3‘ < @% + 20,
Corollary 9 If f € S (3¢), then
P(x)
ool < PG e
and
jas| < P?(5¢) + |P(2”)|
Corollary 10 If f € C (3), then
0] < [P ()| VI[P ()]
= V2IP(4) +1Q()
and
2
asf < & f’) + 'P(G”)|

3. Fekete—Szegb problem

The classical Fekete-Szeg6 inequality for the coefficients of § selected from S is
laz — Ya3| < 14 2exp(—29/(1 = 1)) for 9 € [0,1).
As ¥ — 17, we have the elementary inequality |a3 — a%‘ < 1. Moreover, the coefficient functional
Fo(f) = as — Ya3
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for the normalized analytic functions § in the open unit disk A revives a major role in geometric function theory.
The problem of maximizing the absolute value of the functional F y(f) presents the Fekete—Szegt problem (see,
for details, [7]).

Next, in this section, we aim to provide Fekete—Szego inequalities for functions in the class U*(q; »).

These inequalities are given in the following theorem.

Theorem 11 For ¢ € R, let the function f given by (2) be in the class U*(q;3c). Then

PG| . 2qQ(5) o2
TarDes [0 -1] < ‘1 - (1 + <q+1>P2(%>) &
|a3 - 19a§| < | |
|1-9][P* (0 , 20Q() ) o3
P =) B L ‘1 - (1 t @GP ) 6,

Proof From (17) and (18)

L q.1() (1 = 9) (ma + n2)
20 {[(a+1)0: — 63| Lk g1 () — 463 Lp.q.() |

az —Vva3 =

Lp.q,1(%) (mg — n2)
2q(q+1)04

= tpaut) | (100 + e ) e (R0 g ) )

where
LQP.,Q.;(%) (1-1)
20 {[(a+ )02 — O3] L} o, () — 403 Lp.qa() |

h(9; %) =

In view of (1), we conclude that

|P ()] 1
e R pp——
(g + 1)6, 17 (8; 2)] 2q(q + 1)0s

IN

as — 19a§|
1

2PEAIIRG; )], R (3 2) 2 50— ya,

Corollary 12 For 9 € R, let § given by (2) be in the class U*(3c). Then

P(sx > i
o o-ushi- (14 82) 8
‘ag—ﬁag‘g ’ ; ‘
L 900 ) o
26— emea - eraca 12 (1 RE) &
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Corollary 13 If f € S (), then

[P ()| 1Q(>)|
2 VS By
‘ag —19(1%’ < | , |
|1 =9 |P°(x) 3 1Q(>)]
TP 2P
Corollary 14 If f € C(»), then
[P ()| P2 () +4Q(x)|
6 W=l 3P2(5)
’ag —ﬁa%‘ <
- 3 (5 2(5 »
Lo [Pl [P <4900

2[P?(30) +4Q(»)|’

If we choose ¢ =1 in Theorem 11, we get the next corollary.

Corollary 15 If §e U¥*(q; ), then

P

e
Corollary 16 If fe€ U*(x), then

jag - o3 < B
Corollary 17 If f € S (), then

o0 = < P
Corollary 18 If f € C (), then

|a3 —a%‘ < |P(6%)|
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