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Abstract: In this paper, we investigate Mannheim pairs, Frenet—Mannheim curves, and weakened Mannheim curves
with respect to the modified orthogonal frame in Euclidean 3-space (E®). We derive some characterization results of

these curves.
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1. Introduction

In the study of the classical differential geometry of space curves, finding the corresponding relations between
different space curves has been an important and interesting characterization problem of space curves. For
example, if the normal vector of one space curve ¢ is normal to another curve ¢, then 9 is called the Bertrand
mate of ¢. Liu [4] characterized a similar type of curves, weakened Bertrand curves and Frenet—Bertrand
curves under weakened conditions. There is another important class of space curves called Mannheim curves,
where the normal vector of one curve is the binormal vector to some other curve, and such a pair of curves
is called as Mannheim pair. Liu and Wang [5] derived the necessary and sufficient conditions for a curve to
possess a Mannheim partner curve in Euclidean and Minkowski spaces. Oztekin and Ergiit [9] studied the null
Mannheim curves in Minkowski space and derived some necessary and sufficient conditions. Recently, Tunger
et al. [11] obtained some characterization results of the nonnull weakened Mannheim curves in Minkowski
3-space. Moreover, Karacan [3] characterized the weakened Mannheim curves in Euclidean 3-space. Mostly,
researchers have studied Mannheim curves with respect to the classical Frenet—Serret frame of a curve, where
we are supposed to consider that the curvature x(s) # 0. In this paper, we shall drop the condition of k(s) # 0
and consider a general set of curves with a discrete set of zeros of k(s) to characterize the Mannheim curves
according to the modified orthogonal frame in Euclidean 3-space. Bukcu and Karacan studied space curves
[2] and spherical curves [1] with respect to the modified orthogonal frame in Minkowski and Euclidean space,
respectively. Recently, Lone et al. [6] obtained some characterization results for helices and Bertrand curves

with respect to the modified orthogonal frame.
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2. Preliminaries

Let ¢(s) be a C® space curve in Euclidean 3-space E?, parametrized by arc length s. We also assume that its

curvature k(s) # 0 anywhere. Then an orthonormal frame {¢,n,b} exists satisfying the Frenet—Serret equations

t'(s) 0 s 0 t(s)
n'(s) | = - 0 7 n(s) |, (2.1)
b (s) 0 —7 0 b(s)

where ¢ is the unit tangent, n is the unit principal normal, b is the unit binormal, and 7(s) is the torsion. For
a given C' function r(s) and a continuous function 7(s), there exists a C3 curve ¢ that has an orthonormal
frame {t,n,b} satisfying the Frenet—Serret frame (2.1). Moreover, any other curve ¢ satisfying the same
conditions differs from ¢ only by a rigid motion.

Now let ¢(t) be a general analytic curve, which can be reparametrized by its arc length. Assuming that
the curvature function has discrete zero points or k(s) is not identically zero, we have an orthogonal frame
{T, N, B} defined as follows:

dy dT
ds’ ds ’
where T X N is the vector product of T and N. The relations between {T', N, B} and previous Frenet frame

vectors at nonzero points of k are

T =1t,N = kn,B = kb. (2.2)

Thus, we see that N(sg) = B(sg) =0 when £(sg) = 0 and squares of the length of N and B vary analytically

in s. From Eq. (2.2), it is easy to calculate

T'(s) 0 10 T(s)
N(s) | =] —r* =& T N(s) |, (2.3)
B'(s) 0 -7 = B(s)

and
det( /7 //7 ///)
T = 7.(3) — ' K’ '

2

is the torsion of ¢. From Frenet—Serret equations, we know that any point where x* = 0 is a removable

singularity of 7. Let (,) be the standard inner product of E3, and then {T, N, B} satisfies
(T, T) = 1,(N,N) = (B, B) = k%, (T, N) = (T, B) = (N, B) = 0. (2.4)

The orthogonal frame defined in Eq. (2.3) satisfying Eq. (2.4) is called the modified orthogonal frame [10]. We

see that for k = 1, the Frenet—Serret frame coincides with the modified orthogonal frame.

Definition 2.1 Let ¢ and 1 be two space curves in Euclidean 3-space such that, at the corresponding points
of the curve, the principal normal vectors of ¢ coincide with the binormal vectors of 1 at the corresponding
points. Then 1 is called a Mannheim partner curve of Mannheim curve ¢ and the pair {p,v} is called a

Mannheim pair [5].
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Definition 2.2 A Mannheim curve ¥(s*) is a C reqular curve with nonzero curvature for which there exists
another C*° regular curve p(s) with ¢©'(s) # 0 and parameterized by arc length and it also has nonvanishing
curvature, in bijection with it in such a way that the principal normal to ¥ (s*) and the binormal to ¢(s) at
each pair of corresponding points coincide with the line joining the corresponding points. The curve ¢(s) is said

to be a Mannheim conjugate of ¥ (s*) [3, 8].

Definition 2.3 A Frenet-Mannheim (FM) curve (s*) is a C* Frenet curve for which there exists another
C® Frenet curve o(s) and ¢'(s) # 0, in bijection with it so that, by suitable choice of the Frenet frames, the
principal normal vector Ny(s*) and the binormal vector By (s) at corresponding points on ) (s*), ¢(s), both

lie on the line joining the corresponding points. The curve ¢(s) is called the FM conjugate of ¥(s*) [3, 8].

Definition 2.4 A weakened Mannheim (WM) curve ¥(s*), s* € I*, is a C* regular curve for which there

exists another C* regular curve ¢(s), s € I, and a homeomorphism p: I — I*, such that:

(i) There exist two disjoint closed subsets M, N of I with void interiors such that p € C* on I\N, dds; =0

on M, p=t € C™ on p(I\M), and J5 =0 on p(N).

(i) The line joining the corresponding points s, s* of ¢(s) and ¥(s*) is orthogonal to v(s) and ¥(s*) at
the points s, s*, respectively, and is along the principal normal to o(s) or ¥(s*) at the points s, s*

whenever it is well defined.

The curve ¢(s) is called a WM conjugate of ¥(s*)[3, 8].

From classical differential geometry, we find that there is a rich literature available on the Bertrand pairs in
comparison to Mannheim curves. Thus, in this paper, we study the Mannheim curves according to the modified

orthogonal frame in Euclidean 3-space and obtain several conditions for Mannheim partner FM and WM
curves.

3. Mannheim partner curves according to modified orthogonal frame in E3

Theorem 3.1 Let C : p(s) be a Mannheim curve in E® parameterized by its arc length s and let C* : (s*)
be the Mannheim partner curve of C with an arc length parameter s*. The distance between corresponding
points of the Mannheim partner curves in E® is |c| Ky, where ¢ is a nonzero constant and Kk, is the curvature

of curve .
Proof From the definition of Mannheim pair {C,C*}, we can write go(s)w(s*) = p(s)Ny(s), or
P(s") = p(s) + p(s)Ny(s) (3.1)

for some function pu (s). Taking the derivative with respect to s and using Eq. (2.3), we get

’
/

! H
Y (s*) =T, +u Ny + ,u(f/iiTw + F;P N, + 71,By,)
©

or
ds* ) Ry

Ty i (1- ;u%) To+ |+ o= N, + prpBy,. (3.2)
©

650



LONE et al./Turk J Math

Taking the inner product of Eq. (3.2) with By, and considering % = ef—f (e ==£1), we get
P »
, ! c
pw+p—~=0o0rp=—. (3.3)
Ky Ky

This means that p is not constant except ¢ = 0. On the other hand, from the distance function between the

points of ¢(s) and ¥(s*), we have
d(p(s),¥(s")) = le| Kp(s).

O

Theorem 3.2 A space curve ¢(s) in E3 with respect to the modified orthogonal frame is a Mannheim curve

if and only if its curvature ko, and torsion T, satisfy
Ky =C (Hi + 7'3,) , (3.4)
where ¢ is a monzero constant.

Proof Let C: p(s) be a Mannheim curve in E3 with arc length parameter s and C* : 9(s*) the Mannheim
partner curve of C' with arc length parameter s*. Inserting Eq. (3.3) into Eq. (3.1), we get

N (s) (3.5)

for some nonzero constant c. Differentiating Eq. (3.5) with respect to s and applying the modified orthogonal
frame formulas, we obtain
ds* CTy

Td} dS = (]‘ 7CKZ<F)TS@+

B (3.6)

Ko

Again differentiating Eq. (3.6) with respect to s and applying the modified orthogonal frame formulas, we get

ds*\? d?s* T, Ky — KTy
Ny ( = ) + Ty ol —cr, Ty + (1 = chy) Ny + —F = £ 2B,
K/
+52 (_Tchp + wa)
Ky Ky
or
ds*\* d?s* 1
Ny (ds) + T¢W = —cr, T + E (Ko — k% — c72) Ny + 7/ kiy By (3.7)
Taking the inner product of Eq. (3.7) with By, we get
Ky — cmi - CT; =0o0r K, =c (/ﬁi + Tf,) . (3.8)

This completes the proof.

Conversely, if the curvature k., and the torsion 7, of curve C satisfy Eq. (3.4) for some nonzero constant
¢, then define a curve C by Eq. (3.5), and we will prove that C' is Mannheim and C* is the partner curve of
C. We have already found the equality below:

ds* CT,
=1 —chy) T, + wa-

Ty
ds ©
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Differentiating the last equality with respect to s and with the help of Eq. (3.8), we get

ds*\ 2 d?s* CTZP

Taking the cross product of Eq. (3.6) with Eq. (3.9), we obtain

ds ds*\? d?s*? cT, et
o Tv x| Ny <ds> +Ty—- ] = {(1 —cky) Ty + IJB¢] X (—CR:DT¢ + H:B¢)
or
ds*\° N,
( ; ) By = ¢ (=7, + T ky — ckl,T,) =L (3.10)
S Ry

Since both % and f—” have unit length, we get
® P

N
(ds ) _¢ (=7} + etk — ekl T,) . (3.11)
ds Ko
Thus, we have
B N,
= = e—2 e=+1,
Rqy )
or N, and By, are linearly dependent. This completes the proof. O

Theorem 3.3 A pair of curves (C,C*) is a Mannheim pair if and only if the curvature ky and the torsion
Ty of curve C* satisfy:

dry Ky 2 _2
ds* = 7 (1 +a Tw) 5 (312)

Ty =
where a s a nonzero constant.

Proof Suppose that C': ¢(s) is a Mannheim curve. By the definition of ¢(s), we may write
@(s) = 1(s") +6(s7) By (s7) (3.13)

for some function &(s*). Differentiating Eq. (3.13) with respect to s*, we get

ds

Togor

P
= Tw — (STqup + ((S/ + (5/;1}) Bw. (314)
P

Since N, and By are linearly dependent, we get
K, a
§+6—~=0o0rd(s")=—. (3.15)
Ky Ky
This means that 0(s*) is not a constant for each s* except a = 0. Thus, with the help of Eq. (3.15), we can
rewrite Eq. (3.14) as follows:
T ds

ar,
oo = T — ﬁNw- (3.16)

P
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Let 6 be the angle between T, and Ty, at the corresponding points of C' and C* in Eq. (3.13). Then,
taking the inner product of Eq. (3.16) with T, and considering the equality cos? 6 + sin?f =1, we get

ds*
0= 3.17
cos T (3.17)
and
d *
dSS = —ay sin 6. (3.18)
From Eq. (3.17) and Eq. (3.18), we find
ds 1 aty
— - _ 3.19
ds*  cosf sin 0 ( )
and
tanf = —ar,. (3.20)
Thus, we can write Eq. (3.16) as follows:
sin 0
T, = (cos0) Ty + o Ny. (3.21)
Differentiating Eq. (3.21) with respect to s*, we get
ds . , cosf , Ty .
W@:—smﬁ(nw—&—G)Tw—!— o (Ky +6") Ny + @sme By (3.22)
From this equation and the fact that the direction of JZ—: is coincident with %7 we get
—sinf (ky +0') =0
or
0 =—x,. (3.24)
Differentiating Eq. (3.20) with respect to s* and applying Eq. (3.24), we get
Ky + a’kyT) —at) =0
or

Ty = %/} (1+a%7}).

Conversely, if the curvature k, and the torsion 7, of C* satisfy Eq. (3.12) for some nonzero constant a, then
define a curve C by Eq. (3.13) and we will prove that C' is a Mannheim and C* is the partner curve of C. We

can easily reduce Eq. (3.13) in the following expression:
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Differentiating the above equality with respect to s* and with the help of Eq. (2.3), we get

Jr -
ds* ? ds*2 K2

ds \ 2 42 aK! Ty — akyT. K
NSD a5 T, 5 :N¢+MN¢7@ 7I£iT¢,+waw Jr7'wa ,
W K K

or noticing Eq. (3.12), we get

d 2 d2 CT2
N, (d;) + Twﬁg = arykyTy — a’T Ny + ﬁ—ij. (3.25)

Taking the cross product of Eq. (3.16) with Eq. (3.25), we have

ds ds \” d*s aty, ar;
—T — ) No+T,— | =T, — —2N, T, — a®2Ny, + —YB
e o X [(ds*) ot ¢ g0 ( W o w) X | atypkyTy —a Ty Ny + oo "
or
ds \* aTi aty
— ) By, =— | —T, Ny | . 3.26
(ds*) o P (Hw v+ w> (3.26)

Again taking the cross product of Eq. (3.16) with Eq. (3.26), we obtain

d 4 CLTQ
(&) 5= 2% (v ot

Ky
or
K
N, = ~2B,.
Ky

This means that the principal normal direction % of C : ¢(s) coincides with the binormal direction E—Z of
P ,

C* : 9(s*). Hence, C : p(s) is a Mannheim curve and C* : 9(s*) is its Mannheim partner curve. Therefore,

for each Mannheim curve, there is a unique Mannheim partner curve. O

Proposition 3.4 A simple parametric transformation reduces the condition

T = %ﬁ (1+a*7)

1
Ty = Etan (/KwdS-i—CO).

Thus, the existence of a Mannheim partner curve to a Mannheim curve is unique.

to

Proposition 3.5 Let {¢(s),¥(s*)} be a Mannheim pair, where both ¢ and 1 are parameterized by arc length

s and s*, respectively. If ¢(s) is a generalized heliz according to the modified frame in E®, then 1(s*) is a

straight line.
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Proof Let T,, N,, and B, be the tangent, the principal normal, and the binormal vectors of ¢(s),

respectively. From the definition of the Mannheim curve and properties of generalized helices, we have
<N<Pau> = <B¢,,u> =0,
where w is some constant vector. Differentiating the last equality, we obtain
K K
<—TwNw + ,{Bw7u> = =7y (Ny,u) + — (By, u) = —7y (Ny, u) = 0.
Since (Ny,u) # 0, we get
Ty = 0.
Thus, using the last equality in Eq. (3.12), we easily obtain

HwZO.

4. Frenet—-Mannheim curves according to modified orthogonal frame in E3

In this section, we characterize FM curves. For that, we begin with a lemma.

Lemma 4.1 Suppose ¥(s*), s* € I*, is a FM curve with FM conjugate p(s). We mark all the quantities of
P(s*) with an asterisk and suppose

P(s™) = @(s) +6(s)By(s). (4.1)
Then the distance (|0]) between corresponding points of ¢(s), ¥(s*) is not constant, i.e. 6 = cky,, c € R, and

(T, Ty) = cos @, where 6 is a constant angle and

(1) sinf = —ar, cos b,

(#7) (1 + eaky)sind = ary cosb,
(vi1) cos? 0 = 1 + eaky,

(iv) sin® 0 = a®7,7y.

Proof From Eq. (4.1), we have
§(s) = (¥(s*) — »(s), By(s)) ,

where d(s) is of class C°°. Differentiating Eq. (4.1) with respect to s, we get

ds* , K
ng =T, + 8By + 6(—7p Ny + ;Bw)
or
ds* K
T,/,d—i =T, —7,0N, + <6/ + 5;’) B,. (4.2)
@

By the given conditions, we have B, = eNy, with € = £1. Taking the scalar multiplication of Eq. (4.2) with

B, , we obtain
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Therefore,
ds* ar,
Ty— =T, — —2N,. 4.3
Y s ks Ky ks (4.3)

Now, by the definition of the FM curve, we have % # 0, s0 T is a function of s of class C°°. Hence,

ds*
<T597T1/1>/ = <N<p7Tw> + <T</;7Nw> E =0.

This implies that (T,,Ty) is constant and thus there exists a constant angle 6, such that

in 6
Ty, =T,cos0 + N, . (4.4)
K

From Eq. (4.3) and Eq. (4.4), we get

Since Ty and Ny are linearly independent vectors, we have

5?5* = cosf (4.5)
and
C%* sinf = —ar,.
Using Eq. (4.5) in the last equality, we get
sinf = —ar, cos ¥, (4.6)

which is (7). Now write
o(s) = P(s*) — €d(s) Ny (s).

The above equation implies that

ds* ’ 9 ’iiﬁ
or
ds* 2 / F;ib
T, = I [(1 + €brg) Ty — € ((5 +5@ Ny — €01y By | -
5 Ky,
Using — = ——, it follows that
1) Rqp
ds* T
T, = 1 Ty, —ea—By| . 4.7
o= G [0 an T -l @7)
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On the other hand, Eq. (4.4) gives

ind in 0
TyANy, = |T,cos0+ NWT} AN, = [T@ cosf + NWSLD A (B,)
¢ @
sin ¢ .
= €(T, NBy)cost +e(N, A By) = —€eN,cost + €l Kk, sin
ke
5 sinf .
= —eN,cosf + eTLP/%T = €T, sinf — eNyky, cos .
©
= By = €l ,sinf —eN,cos.
Using Eq. (4.5) again, we get
in 0
T, =TycosO —eBy s;r; . (4.8)

Taking the vector product of Eq. (4.5) and Eq. (4.6), we obtain
(14 eaky)sing = ary, cos b,

which is (é¢). On the other hand, from Eq. (4.7) and Eq. (4.8), it follows that

d *
dss (14 aeky) = cosb, (4.9)
Ci;s (aty) = sinb. (4.10)

Thus, inserting Eq. (4.5) into Eq. (4.9) and using Eq. (4.6) in Eq. (4.10), we get (4i¢) and (iv), respecti-
vely. O

Theorem 4.2 Let ¢(s*) € C®, s* € I*, be a Frenet curve with T, nowhere vanishing and satisfying
(1 + aeky)sind = ary cos b (4.11)
for some constant a # 0. Then ¥(s*) is a FM curve, which is nonplanar.

Proof Define the position vector of curve 9(s*) as follows:
N a
P(s7) = p(s) + —=Bo(s)-

Let us denote differentiation with respect to s by a dash. We have
W(s*) =T, — Z2N,.
ke
Since 7, # 0, we see that ¢(s*) is a C° regular curve. Suppose all the quantities of ¢)(s*) are marked by an

asterisk. Then
ds* ar,
T,— =T, — —2N,.
P ds ¥ Ko ®
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Hence, we have

ds*
i \/1 —a2’7'£.

in @
Ty :Tg,cosﬁ—i—Nv,Sln ,
Ko

Using Eq. (4.11), we get

and notice that from Eq. (4.11), we have sinf # 0. Therefore,

dTy, ds* sin § Ky K,
—— = N, cosf —K2T, + —£N, B, ) — —ZsindN.
do* ds o COS O + o ( Kol + ™ o T Ty w) ’ﬂ% sin 0Ny,
or
ds* N, B
ﬁwd—zﬂ—z = — (kysin®) T, + N, cos 6 + (7, sin 0) H—w. (4.12)
©

Now define ]Z—I = ¢Be, Then, from Eq. (4.12), we get

K

A e sin 4.
These are C* functions of s (and hence of s*), and
dTy
dst OV

Again, define By, =T, A B, and

dB K,
<d f’Nw> = <—TwNw + wava> = =7y (Ny, Ny) = =Ty,
S Rapy
or

dB
(B )
Ty = ——5—".
P K%Q/)
These are also C*° functions on I*. It is then easy to verify that with the modified frame {Ty, Ny, By} and
the functions ky, 7y, the curve ¥(s*) becomes a C' Frenet curve. However, B, and Ny, lie on the line joining

the corresponding points of ¢(s) and t(s*). Thus, ¢ (s*) is a FM curve and ¢(s) is a FM conjugate of 1(s*).
O

Lemma 4.3 A necessary and sufficient condition for a regular curve ¢ € C*° to be a FM curve with a FM

conjugate is that 1 is either a line or a nonplanar circular helix.

Proof =-: Suppose a line ¢ is a F'M conjugate of ¢. This implies x, = 0. Using Lemma 4.1, (ii4) and (4),
(1), we have

cos? 0 = 1+ aeky (4.13)

and then
cos? @sinf = ary cos 0, (4.14)
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cosf = —ar,siné. (4.15)

From Eq. (4.15), it follows that cos@ # 0. Hence, Eq. (4.14) is proportional to
arty = cosfsinf. (4.16)

Case 1. sinf = 0. Then cosf = +1, so (4.13) implies ky = 0, and ¢ is a line. We also note that Eq.
(4.16) implies that 7, = 0.

Case 2. sinf # 0. Then cosf # £1, and Eqn. (4.13) and (4.16) imply that ky, 7, are nonvanishing
constants, and v is a nonplanar circular helix.

<: Suppose that 1 is a nonplanar circular helix given by

¥ = (rcost,rsint,bt), (a,b € R+),

s
V2 + 62

We may write

where t =

’ T

P (s)=Ty = W (—sint,cost, k)
and
W (s) = w = ﬁ (cost,sint,0).
= Ky = R and — 7"]:3 = r(cost,sint,0).
Then the curve vy with
¥ = (rcost,rsint,bt) =r (cost,sint,0)+ (0,0, bt)

r T Ky r
~ N —p—— (2B, )=¢-—B
Ky vre=e Ky (’% S0) v Ko *
. r
or putting 6 = ——,
Ky

Yb=p+ 6Bsa
will be a line along the z-axis and can be turned into a F'M conjugate of @ by defining ]Z—Z to be equal to

By

Ky

O

Theorem 4.4 Let 1)(s*) € C* be a plane Frenet curve with zero torsion and the curvature being bounded

above or bounded below. Then v is a FM curve, with FM conjugates that are curves in the plane.

Proof Suppose v is a curve satisfying the given conditions. Then ry < —é Or Ky > —% on I for some

constant a # 0. For such a, let ¢ be the curve with position vector
@ =1 — 6Ny,
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’

;K
Differentiating the last equality with respect to s* and considering equality § +§—- = 0 and § = @ (a € R),

Ky Ky
we get
ds ’ 2 “;p 2 ' “;b
or
d *
T, = c;s (14 cary) Ty.

Since %* (14+eary) # 0, ¢ is a C regular curve, and T, = Ty;. It is then easy to verify that ¢ is a FM
conjugate of 9. O

5. Weakened Mannheim curves according to modified orthogonal frame in E3

Definition 5.1 Let D be a subset of a topological space X . If a function X — Y is constant for each component

of D, we say that the function is D -piecewise constant [4].

Lemma 5.2 Suppose D is an open subset of a proper interval X of the real line. A necessary and sufficient
condition for every D -piecewise constant real continuous function on X to be constant is that there is an empty
dense-in-itself kernel of X\D [4].

We remark, however, that if D is dense in X', any D-piecewise constant, C'! real function on X is

constant, even if D has a nonempty dense-in-itself kernel.

Theorem 5.3 A WM curve for which M and N (defined in def. 2./) have void dense-in-itself kernels is a
FM curve.

Proof Let ¢(s), s€ I, bea WM conjugate of WM curve ¢ (s*),s* € I*. From the definition of ¢(s) and
(s*), it follows that both the curves have a C° family of the tangent vectors Ty, (s*), T,,(s). Let

P(s) = b(p(s)) = @(s) + 0(s) By (s), (5.1)

where B, (s) is a vector function and (s) >0, Vs € I. Let D =I\N, D* = I*\p(M). Then s*(s) € C* on
D*.
Step 1. Prove § = ;. Since 0(=[|v(s) — ¢(s)]]) is C*° on I and nowhere zero on every interval of

D, let X be any component of P := {s € I:(s) # 0}. Hence, both P and X are open in I. Consider L as
a component interval of X ND. Then §(s) and B,(s) are of class C* on £, and from Eq. (5.1), we have

¥/(s) = T +8'(s) By (s) + 6(s) B, (s)-

By the definition of a WM curve, we know that (T}, By(s)) = 0 = (¢'(s*), By(s)) . Hence, using (B (s), B,(s)) =
0, we get

0= (5'(8) +4(s)
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Therefore, § = - on L, where a is constant. Thus, J is not constant on each interval of the set X' ND, but by
)

the given conditions X'\D has a void dense-in-itself kernel. It follows from Lemma 5.2 that § is not constant
(and nonzero) on X. As § is continuous on I, X should be closed in I, but in I, X is also open. Hence, by
connectedness, X = I, i.e. § is not constant on I.

Step 2. Take the existence of frames

{Te(s), No(s), No ()}, {Tp(57), Nup(s7), By (57)

which are the modified orthogonal frames for ¢(s) on D and ¥(s*) on D*, respectively. Since § = % is
a nonzero function, it follows from Eq. (5.1) that B,(s) is continuous on I and is of class C*° on D, and
orthogonal to T,,(s). Define B, (s) = T,,(s)ANy(s). Then {T,,(s), N, (s), B,(s)} forms a right-handed modified
orthonormal frame for ¢(s), which is of class C>° on D and continuous on 1.

From the definition of a WM curve, it follows that there exists a scalar function ky(s*) such that
Ty, (s*) = ky(s*)Ny(s*) on I*. Thus, <T1’p(s*),N¢(s*)> = ni(s*) is continuous on I* and of class C*° on D*.
Hence, the first Frenet formula holds on D*. It is now easy to show that there exists a function 7,(s) of class
C® on D such that the Frenet formulas hold. Thus, {T,(s), N,(s), B,(s)} is a modified orthogonal frame for
»(s) on D.

Similarly, there exists a modified orthogonal frame {T(s*), Ny (s*), By(s*)} for ¢(s*), which is contin-

uous on I* and is a Frenet frame for ¢ (s*) on D*. Moreover, we may choose

B (5) = Ny(p(s))-

Step 3. Show that N =9, M =g2.
Noticing that on D, we have

ds*
<T7/MT<,0>/ = <N111d87TLp> + <Tw7’€L,DNLP> = Oa

on each component of D, (T, T,) is constant and hence on I by Lemma 5.2. Thus, there exists an angle ¢

such that
Ty =T,cos0+ N, sin6.

Furthermore,
By(s) = Ny(p(s)),
and so

N,
By(s*) = =T, sinf + K—W cos 6.
©

Hence, {Ty(s*), Ny(s*), B,(s)} are also of class C* on D. On the other hand, with respect to s* on D*,
{Ty(s%), Ny(s*), By(s*)} are of class C>°. Writing Eq. (5.1) in the form

a
p=1——Ny or p=1—0Ny
Ky
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and differentiating with respect to s on DN p~1(D*), we have

ds* aty
T, = 1 Ty — —DBy]| - 5.2
o s (1+ alﬂw) b P Wb (5.2)
However,
T, =Ty cost — By sing.
Hence,
9" (1 1 aky) = cosf and T — —sing (5.3)
aky) = cosf and — = —sin6. :
ds v Kap

Since ”12#(8*) = <T1;,N¢> is continuous on I* and p~!(D*) is dense, it follows by continuity that Eq. (5.3)

holds throughout D.

Case 1. cosf # 0. Then Eq. (5.3) implies % # 0 on D. Hence, M = @. Similarly, N = &.

Case 2. cosf = 0. Then
Ny

T, =+ 5.4
v (5.4)
Taking the derivative of Eq. (5.1) with respect to s in D, we get
ds* ar,
T =+—2N,. 5.5
P ds ’%Lp ® ( )
Hence, using Eq. (5.4) in Eq. (5.5), we have
ds*
Is *ar,
Therefore, we get
1ds*
= j:f
Te a ds’

and so also on I, by Lemma 5.2. It follows that 7, is nowhere zero on I. Consequently, 1(s*) = ¢(s)+6(s)By(s)
is of class C* on I*. Hence, N = &. Similarly, M = &. O
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