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Abstract: In this paper, we investigate Mannheim pairs, Frenet–Mannheim curves, and weakened Mannheim curves
with respect to the modified orthogonal frame in Euclidean 3-space (E3) . We derive some characterization results of
these curves.
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1. Introduction
In the study of the classical differential geometry of space curves, finding the corresponding relations between
different space curves has been an important and interesting characterization problem of space curves. For
example, if the normal vector of one space curve φ is normal to another curve ψ , then ψ is called the Bertrand
mate of φ . Liu [4] characterized a similar type of curves, weakened Bertrand curves and Frenet–Bertrand
curves under weakened conditions. There is another important class of space curves called Mannheim curves,
where the normal vector of one curve is the binormal vector to some other curve, and such a pair of curves
is called as Mannheim pair. Liu and Wang [5] derived the necessary and sufficient conditions for a curve to
possess a Mannheim partner curve in Euclidean and Minkowski spaces. Öztekin and Ergüt [9] studied the null
Mannheim curves in Minkowski space and derived some necessary and sufficient conditions. Recently, Tunçer
et al. [11] obtained some characterization results of the nonnull weakened Mannheim curves in Minkowski
3-space. Moreover, Karacan [3] characterized the weakened Mannheim curves in Euclidean 3-space. Mostly,
researchers have studied Mannheim curves with respect to the classical Frenet–Serret frame of a curve, where
we are supposed to consider that the curvature κ(s) ̸= 0 . In this paper, we shall drop the condition of κ(s) ̸= 0

and consider a general set of curves with a discrete set of zeros of κ(s) to characterize the Mannheim curves
according to the modified orthogonal frame in Euclidean 3-space. Bukcu and Karacan studied space curves
[2] and spherical curves [1] with respect to the modified orthogonal frame in Minkowski and Euclidean space,
respectively. Recently, Lone et al. [6] obtained some characterization results for helices and Bertrand curves
with respect to the modified orthogonal frame.
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2. Preliminaries
Let φ(s) be a C3 space curve in Euclidean 3-space E3 , parametrized by arc length s . We also assume that its
curvature κ(s) ̸= 0 anywhere. Then an orthonormal frame {t, n, b} exists satisfying the Frenet–Serret equations

 t′(s)
n′(s)
b′(s)

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 t(s)
n(s)
b(s)

 , (2.1)

where t is the unit tangent, n is the unit principal normal, b is the unit binormal, and τ(s) is the torsion. For
a given C1 function κ(s) and a continuous function τ(s) , there exists a C3 curve φ that has an orthonormal
frame {t, n, b} satisfying the Frenet–Serret frame (2.1). Moreover, any other curve φ̃ satisfying the same
conditions differs from φ only by a rigid motion.

Now let φ(t) be a general analytic curve, which can be reparametrized by its arc length. Assuming that
the curvature function has discrete zero points or κ(s) is not identically zero, we have an orthogonal frame
{T,N,B} defined as follows:

T =
dφ

ds
, N =

dT

ds
, B = T ×N,

where T ×N is the vector product of T and N . The relations between {T,N,B} and previous Frenet frame
vectors at nonzero points of κ are

T = t,N = κn,B = κb. (2.2)

Thus, we see that N(s0) = B(s0) = 0 when κ(s0) = 0 and squares of the length of N and B vary analytically
in s . From Eq. (2.2), it is easy to calculate

 T ′(s)
N ′(s)
B′(s)

 =

 0 1 0

−κ2 κ′

κ τ

0 −τ κ′

κ

 T (s)
N(s)
B(s)

 , (2.3)

and

τ = τ(s) =
det (φ′, φ′′, φ′′′)

κ2

is the torsion of φ . From Frenet–Serret equations, we know that any point where κ2 = 0 is a removable
singularity of τ . Let ⟨, ⟩ be the standard inner product of E3 , and then {T,N,B} satisfies

⟨T, T ⟩ = 1, ⟨N,N⟩ = ⟨B,B⟩ = κ2, ⟨T,N⟩ = ⟨T,B⟩ = ⟨N,B⟩ = 0. (2.4)

The orthogonal frame defined in Eq. (2.3) satisfying Eq. (2.4) is called the modified orthogonal frame [10]. We
see that for κ = 1 , the Frenet–-Serret frame coincides with the modified orthogonal frame.

Definition 2.1 Let φ and ψ be two space curves in Euclidean 3-space such that, at the corresponding points
of the curve, the principal normal vectors of φ coincide with the binormal vectors of ψ at the corresponding
points. Then ψ is called a Mannheim partner curve of Mannheim curve φ and the pair {φ,ψ} is called a
Mannheim pair [5].
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Definition 2.2 A Mannheim curve ψ(s∗) is a C∞ regular curve with nonzero curvature for which there exists
another C∞ regular curve φ(s) with φ′(s) ̸= 0 and parameterized by arc length and it also has nonvanishing
curvature, in bijection with it in such a way that the principal normal to ψ(s∗) and the binormal to φ(s) at
each pair of corresponding points coincide with the line joining the corresponding points. The curve φ(s) is said
to be a Mannheim conjugate of ψ(s∗) [3, 8].

Definition 2.3 A Frenet–Mannheim (FM) curve ψ(s∗) is a C∞ Frenet curve for which there exists another
C∞ Frenet curve φ(s) and φ′(s) ̸= 0 , in bijection with it so that, by suitable choice of the Frenet frames, the
principal normal vector Nψ(s

∗) and the binormal vector Bφ(s) at corresponding points on ψ(s∗) , φ(s) , both
lie on the line joining the corresponding points. The curve φ(s) is called the FM conjugate of ψ(s∗) [3, 8].

Definition 2.4 A weakened Mannheim (WM) curve ψ(s∗), s∗ ∈ I∗ , is a C∞ regular curve for which there
exists another C∞ regular curve φ(s), s ∈ I , and a homeomorphism ρ : I → I∗ , such that:

(i) There exist two disjoint closed subsets M , N of I with void interiors such that ρ ∈ C∞ on I\N , ds∗

ds = 0

on M , ρ−1 ∈ C∞ on ρ (I\M) , and ds
ds∗ = 0 on ρ(N) .

(ii) The line joining the corresponding points s , s∗ of φ(s) and ψ(s∗) is orthogonal to φ(s) and ψ(s∗) at
the points s , s∗ , respectively, and is along the principal normal to φ(s) or ψ(s∗) at the points s , s∗

whenever it is well defined.

The curve φ(s) is called a WM conjugate of ψ(s∗) [3, 8].

From classical differential geometry, we find that there is a rich literature available on the Bertrand pairs in
comparison to Mannheim curves. Thus, in this paper, we study the Mannheim curves according to the modified
orthogonal frame in Euclidean 3-space and obtain several conditions for Mannheim partner FM and WM
curves.

3. Mannheim partner curves according to modified orthogonal frame in E3

Theorem 3.1 Let C : φ(s) be a Mannheim curve in E3 parameterized by its arc length s and let C∗ : ψ(s∗)

be the Mannheim partner curve of C with an arc length parameter s∗ . The distance between corresponding
points of the Mannheim partner curves in E3 is |c|κφ , where c is a nonzero constant and κφ is the curvature
of curve φ .

Proof From the definition of Mannheim pair {C,C∗} , we can write
−−−−−−→
φ(s)ψ(s∗) = µ(s)Nφ(s) , or

ψ(s∗) = φ(s) + µ(s)Nφ(s) (3.1)

for some function µ (s) . Taking the derivative with respect to s and using Eq. (2.3), we get

ψ
′
(s∗) = Tφ + µ

′
Nφ + µ(−κ2φTφ +

κ
′

φ

κφ
Nφ + τφBφ)

or

Tψ
ds∗

ds
=
(
1− µκ2φ

)
Tφ +

(
µ

′
+ µ

κ
′

φ

κφ

)
Nφ + µτφBφ. (3.2)
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Taking the inner product of Eq. (3.2) with Bψ and considering Nφ
κφ

= ϵ
Bψ
κψ

(ϵ = ±1) , we get

µ
′
+ µ

κ′φ
κφ

= 0 or µ =
c

κφ
. (3.3)

This means that µ is not constant except c = 0 . On the other hand, from the distance function between the
points of φ(s) and ψ(s∗) , we have

d (φ(s), ψ(s∗)) = |c|κφ(s).
2

Theorem 3.2 A space curve φ(s) in E3 with respect to the modified orthogonal frame is a Mannheim curve
if and only if its curvature κφ and torsion τφ satisfy

κφ = c
(
κ2φ + τ2φ

)
, (3.4)

where c is a nonzero constant.

Proof Let C : φ(s) be a Mannheim curve in E3 with arc length parameter s and C∗ : ψ(s∗) the Mannheim
partner curve of C with arc length parameter s∗ . Inserting Eq. (3.3) into Eq. (3.1), we get

ψ(s∗) = φ(s) +
c

κφ(s)
Nφ(s) (3.5)

for some nonzero constant c . Differentiating Eq. (3.5) with respect to s and applying the modified orthogonal
frame formulas, we obtain

Tψ
ds∗

ds
= (1− cκφ)Tφ +

cτφ
κφ

Bφ. (3.6)

Again differentiating Eq. (3.6) with respect to s and applying the modified orthogonal frame formulas, we get

Nψ

(
ds∗

ds

)2

+ Tψ
d2s∗

ds2
= −cκ′φTφ + (1− cκφ)Nφ +

cτ ′φκφ − cκ′φτφ

κ2φ
Bφ

+
cτφ
κφ

(
−τφNφ +

κ′φ
κφ
Bφ

)
or

Nψ

(
ds∗

ds

)2

+ Tψ
d2s∗

ds2
= −cκ′φT +

1

κφ

(
κφ − cκ2φ − cτ2φ

)
Nφ + cτ ′φκφBφ. (3.7)

Taking the inner product of Eq. (3.7) with Bψ , we get

κφ − cκ2φ − cτ2φ = 0 or κφ = c
(
κ2φ + τ2φ

)
. (3.8)

This completes the proof.
Conversely, if the curvature κφ and the torsion τφ of curve C satisfy Eq. (3.4) for some nonzero constant

c, then define a curve C by Eq. (3.5), and we will prove that C is Mannheim and C∗ is the partner curve of
C. We have already found the equality below:

Tψ
ds∗

ds
= (1− cκφ)Tφ +

cτφ
κφ

Bφ.
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Differentiating the last equality with respect to s and with the help of Eq. (3.8), we get

Nψ

(
ds∗

ds

)2

+ Tψ
d2s∗

ds2
= −cκ′φTφ +

cτ ′φ
κφ

Bφ. (3.9)

Taking the cross product of Eq. (3.6) with Eq. (3.9), we obtain

ds

ds∗
Tψ ×

[
Nψ

(
ds∗

ds

)2

+ Tψ
d2s∗2

ds

]
=

[
(1− cκφ)Tφ +

cτφ
κφ

Bφ

]
×
(
−cκ′φTφ +

cτ ′φ
κφ

Bφ

)
or (

ds∗

ds

)3

Bψ = c
(
−τ ′φ + cτ ′φκφ − cκ′φτφ

) Nφ
κφ

. (3.10)

Since both Nφ
κφ

and Bψ
κψ

have unit length, we get

(
ds∗

ds

)3

=
c
(
−τ ′φ + cτ ′φκφ − cκ′φτφ

)
κψ

. (3.11)

Thus, we have
Bψ
κψ

= ϵ
Nφ
κφ

, ϵ = ±1,

or Nφ and Bψ are linearly dependent. This completes the proof. 2

Theorem 3.3 A pair of curves (C,C∗) is a Mannheim pair if and only if the curvature κψ and the torsion
τψ of curve C∗ satisfy:

τ ′ψ =
dτψ
ds∗

=
κψ
a

(
1 + a2τ2ψ

)
, (3.12)

where a is a nonzero constant.

Proof Suppose that C : φ(s) is a Mannheim curve. By the definition of φ(s) , we may write

φ(s) = ψ(s∗) + δ(s∗)Bψ(s
∗) (3.13)

for some function δ(s∗) . Differentiating Eq. (3.13) with respect to s∗ , we get

Tφ
ds

ds∗
= Tψ − δτψNψ +

(
δ′ + δ

κ′ψ
κψ

)
Bψ. (3.14)

Since Nφ and Bψ are linearly dependent, we get

δ′ + δ
κ′ψ
κψ

= 0 or δ(s∗) = a

κ
ψ

. (3.15)

This means that δ(s∗) is not a constant for each s∗ except a = 0 . Thus, with the help of Eq. (3.15), we can
rewrite Eq. (3.14) as follows:

Tφ
ds

ds∗
= Tψ −

aτ
ψ

κ
ψ

Nψ. (3.16)
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Let θ be the angle between Tφ and Tψ at the corresponding points of C and C∗ in Eq. (3.13). Then,
taking the inner product of Eq. (3.16) with Tψ and considering the equality cos2 θ + sin2 θ = 1, we get

cos θ = ds∗

ds
(3.17)

and
ds∗

ds
= −aτψ sin θ. (3.18)

From Eq. (3.17) and Eq. (3.18), we find

ds

ds∗
=

1

cos θ = − aτψ
sin θ (3.19)

and
tan θ = −aτ

ψ
. (3.20)

Thus, we can write Eq. (3.16) as follows:

Tφ = (cos θ)Tψ +
sin θ
κψ

Nψ. (3.21)

Differentiating Eq. (3.21) with respect to s∗ , we get

Nφ
ds

ds∗
= − sin θ (κψ + θ′)Tψ +

cos θ
κψ

(κψ + θ′)Nψ +

(
τψ
κψ

sin θ
)
Bψ. (3.22)

From this equation and the fact that the direction of Nφ
κφ

is coincident with Bψ
κψ

, we get

{
− sin θ (κψ + θ′) = 0

cos θ
κψ

(κψ + θ′) = 0
(3.23)

or
θ′ = −κ

ψ
. (3.24)

Differentiating Eq. (3.20) with respect to s∗ and applying Eq. (3.24), we get

κψ + a2κψτ
2
ψ − aτ ′ψ = 0

or
τ ′ψ =

κψ
a

(
1 + a2τ2ψ

)
.

Conversely, if the curvature κψ and the torsion τψ of C∗ satisfy Eq. (3.12) for some nonzero constant a, then
define a curve C by Eq. (3.13) and we will prove that C is a Mannheim and C∗ is the partner curve of C. We
can easily reduce Eq. (3.13) in the following expression:

Tφ
ds

ds∗
= Tψ − aτψ

κψ
Nψ.
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Differentiating the above equality with respect to s∗ and with the help of Eq. (2.3), we get

Nφ

(
ds

ds∗

)2

+ Tφ
d2s

ds∗2
= Nψ +

aκ′ψτψ − aκψτ
′

ψ

κ2ψ
Nψ − aτψ

κψ

(
−κ2ψTψ +

κ′ψ
κψ
Nψ + τψBψ

)
,

or noticing Eq. (3.12), we get

Nφ

(
ds

ds∗

)2

+ Tφ
d2s

ds∗2
= aτψκψTψ − a2τ2ψNψ +

cτ2ψ
κψ

Bψ. (3.25)

Taking the cross product of Eq. (3.16) with Eq. (3.25), we have

ds

ds∗
Tφ ×

[(
ds

ds∗

)2

Nφ + Tφ
d2s

ds∗2

]
=

(
Tψ − aτψ

κψ
Nψ

)
×

(
aτψκψTψ − a2τ2ψNψ +

aτ2ψ
κψ

Bψ

)

or (
ds

ds∗

)3

Bφ = −
aτ2ψ
κψ

(
aτψ
κψ

Tψ +Nψ

)
. (3.26)

Again taking the cross product of Eq. (3.16) with Eq. (3.26), we obtain

(
ds

ds∗

)4

Nφ =
aτ2ψ
κψ

(
κ2ψ + a2τ2ψ

)
Bψ

or

Nφ =
κφ
κψ
Bψ.

This means that the principal normal direction Nφ
κφ

of C : φ(s) coincides with the binormal direction Bψ
κψ

of

C∗ : ψ(s∗). Hence, C : φ(s) is a Mannheim curve and C∗ : ψ(s∗) is its Mannheim partner curve. Therefore,
for each Mannheim curve, there is a unique Mannheim partner curve. 2

Proposition 3.4 A simple parametric transformation reduces the condition

τ ′ψ =
κψ
a

(
1 + a2τ2ψ

)
to

τψ =
1

a
tan

(∫
κψds+ c0

)
.

Thus, the existence of a Mannheim partner curve to a Mannheim curve is unique.

Proposition 3.5 Let {φ(s), ψ(s∗)} be a Mannheim pair, where both φ and ψ are parameterized by arc length
s and s∗ , respectively. If φ(s) is a generalized helix according to the modified frame in E3 , then ψ(s∗) is a
straight line.
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Proof Let Tφ, Nφ , and Bφ be the tangent, the principal normal, and the binormal vectors of φ(s) ,
respectively. From the definition of the Mannheim curve and properties of generalized helices, we have

⟨Nφ, u⟩ = ⟨Bψ, u⟩ = 0,

where u is some constant vector. Differentiating the last equality, we obtain⟨
−τψNψ +

κ′

κ
Bψ, u

⟩
= −τψ ⟨Nψ, u⟩+

κ′

κ
⟨Bψ, u⟩ = −τψ ⟨Nψ, u⟩ = 0.

Since ⟨Nψ, u⟩ ̸= 0, we get
τψ = 0.

Thus, using the last equality in Eq. (3.12), we easily obtain

κψ = 0.

2

4. Frenet–Mannheim curves according to modified orthogonal frame in E3

In this section, we characterize FM curves. For that, we begin with a lemma.

Lemma 4.1 Suppose ψ(s⋆) , s⋆ ∈ I⋆ , is a FM curve with FM conjugate φ(s) . We mark all the quantities of
ψ(s⋆) with an asterisk and suppose

ψ(s⋆) = φ(s) + δ(s)Bφ(s). (4.1)

Then the distance (|δ|) between corresponding points of φ(s) , ψ(s⋆) is not constant, i.e. δ = cκφ , c ∈ R , and
⟨Tφ, Tψ⟩ = cos θ , where θ is a constant angle and

(i) sin θ = −aτφ cos θ,
(ii) (1 + ϵaκψ) sin θ = aτψ cos θ,
(iii) cos2 θ = 1 + ϵaκψ,
(iv) sin2 θ = a2τφτψ.

Proof From Eq. (4.1), we have
δ(s) = ⟨ψ(s⋆)− φ(s), Bφ(s)⟩ ,

where δ(s) is of class C∞ . Differentiating Eq. (4.1) with respect to s , we get

Tψ
ds⋆

ds
= Tφ + δ′Bφ + δ(−τφNφ +

κ′

κ
Bφ)

or

Tψ
ds⋆

ds
= Tφ − τφδNφ +

(
δ′ + δ

κ′φ
κφ

)
Bφ. (4.2)

By the given conditions, we have Bφ = ϵNψ with ϵ = ±1 . Taking the scalar multiplication of Eq. (4.2) with
Bφ , we obtain

δ′

δ
= −

κ′φ
κφ

⇒ δ =
a

κφ
, a ∈ R.
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Therefore,

Tψ
ds⋆

ds
= Tφ − aτφ

κφ
Nφ. (4.3)

Now, by the definition of the FM curve, we have ds⋆

ds ̸= 0 , so Tψ is a function of s of class C∞ . Hence,

⟨Tφ, Tψ⟩′ = ⟨Nφ, Tψ⟩+ ⟨Tφ, Nψ⟩
ds⋆

ds
= 0.

This implies that ⟨Tφ, Tψ⟩ is constant and thus there exists a constant angle θ , such that

Tψ = Tφ cos θ +Nφ
sin θ
κφ

. (4.4)

From Eq. (4.3) and Eq. (4.4), we get

(
ds

ds⋆
− cos θ

)
Tψ −

(
ds

ds⋆
a.τφ
κφ

+
sin θ
κφ

)
Nψ = 0.

Since Tψ and Nψ are linearly independent vectors, we have

ds

ds⋆
= cos θ (4.5)

and
ds⋆

ds
sin θ = −aτφ.

Using Eq. (4.5) in the last equality, we get

sin θ = −aτφ cos θ, (4.6)

which is (i) . Now write
φ(s) = ψ(s⋆)− ϵδ(s)Nψ(s).

The above equation implies that

Tφ =
ds⋆

ds

[
Tψ − ϵδ

′
Nψ − ϵδ

(
−κ2ψTψ +

κ′ψ
κψ
Nψ + τψBψ

)]
or

Tφ =
ds⋆

ds

[(
1 + ϵδκ2ψ

)
Tψ − ϵ

(
δ
′
+ δ

κ′ψ
κψ

)
Nψ − ϵδτψBψ

]
.

Using δ′

δ
= −

κ′ψ
κψ

, it follows that

Tφ =
ds⋆

ds

[
(1 + ϵaκψ)Tψ − ϵa

τψ
κψ
Bψ

]
. (4.7)
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On the other hand, Eq. (4.4) gives

Tψ ∧Nψ =

[
Tφ cos θ +Nφ

sin θ
κφ

]
∧Nψ =

[
Tφ cos θ +Nφ

sin θ
κφ

]
∧ (ϵBφ)

= ϵ (Tφ ∧Bφ) cos θ + ϵ (Nφ ∧Bφ)
sin θ
κφ

= −ϵNφ cos θ + ϵTφκφ sin θ

= −ϵNφ cos θ + ϵTφκ
2
φ

sin θ
κφ

= ϵTφ sin θ − ϵNφκφ cos θ.

⇒ Bψ = ϵTφ sin θ − ϵNφ cos θ.

Using Eq. (4.5) again, we get

Tφ = Tψ cos θ − ϵBψ
sin θ
κψ

. (4.8)

Taking the vector product of Eq. (4.5) and Eq. (4.6), we obtain

(1 + ϵaκψ) sin θ = aτψ cos θ,

which is (ii) . On the other hand, from Eq. (4.7) and Eq. (4.8), it follows that

ds⋆

ds
(1 + aϵκψ) = cos θ, (4.9)

ds⋆

ds
(aτψ) = sin θ. (4.10)

Thus, inserting Eq. (4.5) into Eq. (4.9) and using Eq. (4.6) in Eq. (4.10), we get (iii) and (iv) , respecti-
vely. 2

Theorem 4.2 Let ψ(s⋆) ∈ C∞ , s⋆ ∈ I⋆ , be a Frenet curve with τψ nowhere vanishing and satisfying

(1 + aϵκψ) sin θ = aτψ cos θ (4.11)

for some constant a ̸= 0 . Then ψ(s⋆) is a FM curve, which is nonplanar.

Proof Define the position vector of curve ψ(s⋆) as follows:

ψ(s⋆) = φ(s) +
a

κ(s)
Bφ(s).

Let us denote differentiation with respect to s by a dash. We have

ψ′(s∗) = Tφ − aτφ
κφ

Nφ.

Since τφ ̸= 0 , we see that ψ(s⋆) is a C∞ regular curve. Suppose all the quantities of ψ(s⋆) are marked by an
asterisk. Then

Tψ
ds⋆

ds
= Tφ − aτφ

κφ
Nφ.
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Hence, we have
ds⋆

ds
=
√
1− a2τ2φ.

Using Eq. (4.11), we get

Tψ = Tφ cos θ +Nφ
sin θ
κφ

,

and notice that from Eq. (4.11), we have sin θ ̸= 0 . Therefore,

dTψ
ds⋆

ds⋆

ds
= Nφ cos θ + sin θ

κφ

(
−κ2φTφ +

κ′φ
κφ
Nφ + τφBφ

)
−
κ′φ
κ2φ

sin θNφ

or

κψ
ds⋆

ds

Nψ
κψ

= − (κφ sin θ)Tφ +Nφ cos θ + (τφ sin θ) Bφ
κφ

. (4.12)

Now define Nψ
κψ

= ϵ
Bφ
κφ

. Then, from Eq. (4.12), we get

κψ = ϵ
ds

ds⋆
τφ sin θ.

These are C∞ functions of s (and hence of s⋆ ), and

dTψ
ds⋆

= Nψ.

Again, define Bψ = Tψ ∧Bφ and⟨
dBψ
ds⋆

, Nψ

⟩
=

⟨
−τψNψ +

κ′ψ
κψ
Bψ, Nψ

⟩
= −τψ ⟨Nψ, Nψ⟩ = −τψκ2ψ

or

τψ = −

⟨
dBψ
ds⋆ , Nψ

⟩
κ2ψ

.

These are also C∞ functions on I⋆ . It is then easy to verify that with the modified frame {Tψ, Nψ, Bψ} and
the functions κψ, τψ , the curve ψ(s⋆) becomes a C∞ Frenet curve. However, Bφ and Nψ lie on the line joining
the corresponding points of φ(s) and ψ(s⋆) . Thus, ψ(s⋆) is a FM curve and φ(s) is a FM conjugate of ψ(s⋆) .

2

Lemma 4.3 A necessary and sufficient condition for a regular curve ψ ∈ C∞ to be a FM curve with a FM

conjugate is that ψ is either a line or a nonplanar circular helix.

Proof ⇒: Suppose a line φ is a FM conjugate of ψ . This implies κφ = 0. Using Lemma 4.1, (iii) and (i) ,
(ii) , we have

cos2 θ = 1 + aϵκψ (4.13)

and then
cos2 θ sin θ = aτψ cos θ, (4.14)
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cos θ = −aτφ sin θ. (4.15)

From Eq. (4.15), it follows that cos θ ̸= 0 . Hence, Eq. (4.14) is proportional to

aτψ = cos θ sin θ. (4.16)

Case 1. sin θ = 0 . Then cos θ = ±1 , so (4.13) implies κψ = 0 , and ψ is a line. We also note that Eq.
(4.16) implies that τψ = 0 .

Case 2. sin θ ̸= 0 . Then cos θ ̸= ±1 , and Eqn. (4.13) and (4.16) imply that κψ, τψ are nonvanishing
constants, and ψ is a nonplanar circular helix.

⇐: Suppose that ψ is a nonplanar circular helix given by

ψ = (r cos t, r sin t, bt) ,
(
a, b ∈ R+

)
,

where t = s√
r2 + b2

.

We may write

ψ
′
(s) = Tψ =

r√
r2 + b2

(− sin t, cos t, k)

and

ψ
′′
(s) = Nψ =

−r
r2 + b2

(cos t, sin t, 0) .

⇒ κψ =
r

r2 + b2
and − r

Nψ
κψ

= r (cos t, sin t, 0) .

Then the curve ψ with

ψ = (r cos t, r sin t, bt) = r (cos t, sin t, 0) + (0, 0, bt)

= − r

κψ
Nψ + φ = φ− r

κψ

(
κψ
κφ
Bφ

)
= φ− r

κφ
Bφ,

or putting δ = − r

κφ
,

ψ = φ+ δBφ

will be a line along the z -axis and can be turned into a FM conjugate of ψ by defining Nψ
κψ

to be equal to
Bφ
κφ

. 2

Theorem 4.4 Let ψ(s⋆) ∈ C∞ be a plane Frenet curve with zero torsion and the curvature being bounded
above or bounded below. Then ψ is a FM curve, with FM conjugates that are curves in the plane.

Proof Suppose ψ is a curve satisfying the given conditions. Then κψ < − 1
a or κψ > − 1

a on I for some
constant a ̸= 0 . For such a , let φ be the curve with position vector

φ = ψ − εδNψ.
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Differentiating the last equality with respect to s∗ and considering equality δ
′
+δ

κ
′

φ

κφ
= 0 and δ =

a

κφ
(a ∈ R) ,

we get

Tφ
ds

ds∗
= Tψ − εδ

′
Nψ − εδ

(
−κ2ψTψ +

κ
′

ψ

κψ
Nψ

)
=
(
1 + εδκ2ψ

)
Tψ − ε

(
δ
′
+ δ

κ
′

ψ

κψ

)
Nψ

or

Tφ =
ds∗

ds
(1 + εaκψ)Tψ.

Since ds∗

ds (1 + εaκψ) ̸= 0 , φ is a C∞ regular curve, and Tφ = Tψ . It is then easy to verify that φ is a FM

conjugate of ψ . 2

5. Weakened Mannheim curves according to modified orthogonal frame in E3

Definition 5.1 Let D be a subset of a topological space X . If a function X 7→ Y is constant for each component
of D , we say that the function is D -piecewise constant [4].

Lemma 5.2 Suppose D is an open subset of a proper interval X of the real line. A necessary and sufficient
condition for every D -piecewise constant real continuous function on X to be constant is that there is an empty
dense-in-itself kernel of X\D [4].

We remark, however, that if D is dense in X , any D -piecewise constant, C1 real function on X is
constant, even if D has a nonempty dense-in-itself kernel.

Theorem 5.3 A WM curve for which M and N (defined in def. 2.4) have void dense-in-itself kernels is a
FM curve.

Proof Let φ(s) , s ∈ I , be a WM conjugate of WM curve ψ(s⋆), s⋆ ∈ I⋆ . From the definition of φ(s) and
ψ(s⋆) , it follows that both the curves have a C∞ family of the tangent vectors Tψ(s⋆) , Tφ(s) . Let

ψ(s) = ψ(ρ(s)) = φ(s) + δ(s)Bφ(s), (5.1)

where Bφ(s) is a vector function and δ(s) ≥ 0 , ∀s ∈ I . Let D = I\N , D⋆ = I⋆\ρ(M) . Then s⋆(s) ∈ C∞ on
D⋆.

Step 1. Prove δ = a
κφ(s)

. Since δ(= ∥ψ(s)− φ(s)∥) is C∞ on I and nowhere zero on every interval of

D , let X be any component of P := {s ∈ I : δ(s) ̸= 0} . Hence, both P and X are open in I . Consider L as
a component interval of X ∩ D . Then δ(s) and Bφ(s) are of class C∞ on L , and from Eq. (5.1), we have

ψ′(s) = Tφ + δ′(s)Bφ(s) + δ(s)B′
φ(s).

By the definition of a WM curve, we know that ⟨Tφ, Bφ(s)⟩ = 0 = ⟨ψ′(s⋆), Bφ(s)⟩ . Hence, using
⟨
B′
φ(s), Bφ(s)

⟩
=

0 , we get

0 =

(
δ′(s) + δ(s)

κ′φ(s)

κφ(s)

)
⟨Bφ(s), Bφ(s)⟩ .
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Therefore, δ = a
κφ

on L , where a is constant. Thus, δ is not constant on each interval of the set X ∩D , but by

the given conditions X\D has a void dense-in-itself kernel. It follows from Lemma 5.2 that δ is not constant
(and nonzero) on X . As δ is continuous on I , X should be closed in I , but in I , X is also open. Hence, by
connectedness, X = I , i.e. δ is not constant on I .

Step 2. Take the existence of frames

{Tφ(s), Nφ(s), Nφ(s)} , {Tψ(s⋆), Nψ(s⋆), Bψ(s⋆)} ,

which are the modified orthogonal frames for φ(s) on D and ψ(s⋆) on D⋆ , respectively. Since δ = a
κφ

is

a nonzero function, it follows from Eq. (5.1) that Bφ(s) is continuous on I and is of class C∞ on D , and
orthogonal to Tφ(s) . Define Bφ(s) = Tφ(s)∧Nφ(s) . Then {Tφ(s), Nφ(s), Bφ(s)} forms a right-handed modified
orthonormal frame for φ(s) , which is of class C∞ on D and continuous on I .

From the definition of a WM curve, it follows that there exists a scalar function κψ(s
⋆) such that

T ′
ψ(s

⋆) = κψ(s
⋆)Nψ(s

⋆) on I⋆ . Thus,
⟨
T ′
ψ(s

⋆), Nψ(s
⋆)
⟩
= κ2ψ(s

⋆) is continuous on I⋆ and of class C∞ on D⋆ .

Hence, the first Frenet formula holds on D⋆ . It is now easy to show that there exists a function τφ(s) of class
C∞ on D such that the Frenet formulas hold. Thus, {Tφ(s), Nφ(s), Bφ(s)} is a modified orthogonal frame for
φ(s) on D .

Similarly, there exists a modified orthogonal frame {Tψ(s⋆), Nψ(s⋆), Bψ(s⋆)} for ψ(s⋆) , which is contin-
uous on I⋆ and is a Frenet frame for ψ(s⋆) on D⋆ . Moreover, we may choose

Bφ(s) = Nψ(ρ(s)).

Step 3. Show that N = ∅ , M = ∅.
Noticing that on D , we have

⟨Tψ, Tφ⟩′ =
⟨
Nψ

ds⋆

ds
, Tφ

⟩
+ ⟨Tψ, κφNφ⟩ = 0,

on each component of D , ⟨Tψ, Tφ⟩ is constant and hence on I by Lemma 5.2. Thus, there exists an angle θ

such that
Tψ = Tφ cos θ +Nφ sin θ.

Furthermore,
Bφ(s) = Nψ(ρ(s)),

and so

Bψ(s
⋆) = −Tφ sin θ + Nφ

κφ
cos θ.

Hence, {Tψ(s⋆), Nψ(s⋆), Bφ(s)} are also of class C∞ on D . On the other hand, with respect to s⋆ on D⋆ ,
{Tψ(s⋆), Nψ(s⋆), Bψ(s⋆)} are of class C∞ . Writing Eq. (5.1) in the form

φ = ψ − a

κψ
Nψ or φ = ψ − δNψ
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and differentiating with respect to s on D ∩ ρ−1(D⋆) , we have

Tφ =
ds⋆

ds

[
(1 + aκψ)Tψ − aτψ

κψ
Bψ

]
. (5.2)

However,
Tφ = Tψ cos θ −Bψ sin θ.

Hence,
ds⋆

ds
(1 + aκψ) = cos θ and aτψ

κψ
= − sin θ. (5.3)

Since κ2ψ(s
⋆) =

⟨
T ′
ψ, Nψ

⟩
is continuous on I⋆ and ρ−1(D⋆) is dense, it follows by continuity that Eq. (5.3)

holds throughout D .

Case 1. cos θ ̸= 0 . Then Eq. (5.3) implies ds⋆

ds ̸= 0 on D . Hence, M = ∅ . Similarly, N = ∅ .
Case 2. cos θ = 0 . Then

Tψ = ±Nφ
κφ

. (5.4)

Taking the derivative of Eq. (5.1) with respect to s in D , we get

Tψ
ds⋆

ds
= ±aτφ

κφ
Nφ. (5.5)

Hence, using Eq. (5.4) in Eq. (5.5), we have

ds⋆

ds
= ±aτφ.

Therefore, we get

τφ = ±1

a

ds⋆

ds
,

and so also on I , by Lemma 5.2. It follows that τφ is nowhere zero on I . Consequently, ψ(s⋆) = φ(s)+δ(s)Bφ(s)

is of class C∞ on I⋆ . Hence, N = ∅ . Similarly, M = ∅ . 2
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