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Abstract: This paper investigates stability of the nabla (q, h) -fractional difference equations. Asymptotic stability of
the special nabla (q, h) -fractional difference equations are discussed. Stability theorems for discrete fractional Lyapunov
direct method are proved. Furthermore, we give some new lemmas (including important comparison theorems) related
to the nabla (q, h) -fractional difference operators that allow proving the stability of the nabla (q, h) -fractional difference
equations, by means of the discrete fractional Lyapunov direct method, using Lyapunov functions. Some examples are
given to illustrate these results.
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1. Introduction
Fractional calculus plays an important role in modern control areas. Stability theory of fractional differential
equations is frequently used in fractional controllers. However, due to fractional operators depend on the value
of past state, it is difficult to extend the normal Lyapunov stability results to fractional cases since the Leibniz
law becomes very complicated and does not hold in general.

Matignon [15] proposed an explicit stability condition for a linear fractional differential systems. The
articles [13, 14] present the fractional Lyapunov direct method to the fractional order differential systems; for
the applications of this method, see [20–22]. However, it is a difficult task to find an appropriate Lyapunov
function by means of this method. Some authors have proposed Lyapunov functions to prove the stability of
the fractional order systems. For the application of this method, we refer to [1–3, 9, 10, 19, 23].

The (q, h) -fractional difference equations have received a lot of attention recently; the basic theory and
its applications can be found in [4, 5, 7, 8, 12, 16, 17]. In this paper, we use the idea in [10] to analyse
the stability and asymptotical stability of the nabla (q, h) -fractional difference equations. Firstly, we prove
the stability theorems of discrete fractional Lyapunov direct method for the special nabla (q, h) -fractional
difference equations. Furthermore, we present some new lemmas, which enable us to determine the stability of
such equations by establishing Lyapunov functions. Next, using these lemmas and discrete fractional Lyapunov
direct method, we give sufficient conditions for these equations to be stable or asymptotically stable. Finally,
some examples are given to illustrate our main results.
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2. Preliminaries
We recall some notation of (q, h) -calculus (for details, see [4, 5]). For any real number α and any q > 0 , q ̸= 1 ,
we set [α]q := qα−1

q−1 . The extension of the q -binomial coefficient to the noninteger value n is given via the

q̃ -Gamma function Γq̃(t) defined for 0 < q̃ < 1 as follows:

Γq̃(t) :=
(q̃, q̃)∞(1− q̃)1−t

(q̃t, q̃)∞
, 0 < q̃ < 1,

where (a, q̃)∞ =
∏∞

j=0(1 − aq̃j) and t ∈ R\{0,−1,−2, ...} . It is easy to check that Γq̃ satisfies Γq̃(t + 1) =

[t]q̃Γq̃(t) . The q̃ -analogue of the power function is introduced as

(t− s)
(α)
q̃ = tα

(s/t, q̃)∞
(q̃αs/t, q̃)∞

, t ̸= 0, 0 < q̃ < 1, α ∈ R.

For α = n a positive integer, this expression reduces to

(t− s)
(n)
q̃ = tn

n−1∏
j=0

(
1− q̃j

s

t

)
.

Here, the (q, h) -set is defined by:

Tt0
(q,h) = {t0qk + [k]qh, k ∈ Z} ∪

{ h

1− q

}
, t0 > 0, q ≥ 1, h ≥ 0, q + h > 1.

Note that if q = 1 , then the cluster point h/(1− q) = −∞ is not involved in Tt0
(q,h) . The forward and backward

jump operator is the linear function σ(t) = qt + h and ρ(t) = q−1(t − h) , respectively. Similarly, the forward
and backward graininess is given by µ(t) = (q − 1)t+ h and ν(t) = q−1µ(t) , respectively. Observe that

σk(t) = qkt+ [k]qh, and ρk(t) = q−k(t− [k]qh).

Let a ∈ Tt0
(q,h) , a > h/(1 − q) be fixed. Then we introduce restrictions of the time scale Tt0

(q,h) by the
relation

T̃σi(a)
(q,h) = {t ∈ T̃t0

(q,h), t ≥ σi(a)}, i = 0, 1, ...,

where the symbol σi stands for the ith iterate of σ (analogously, we use the symbol ρi ). For the simplicity of

notation, we put q̃ = 1/q whenever considering the time scale Tt0
(q,h) or T̃σi(a)

(q,h) . The nabla (q, h) -difference of

the function x : Tt0
(q,h) → R is defined by

(∇(q,h)x)(t) :=
x(t)− x(ρ(t))

ν(t)
=

x(t)− x(q̃(t− h))

(1− q̃)t+ q̃h
,

where q̃ = 1/q . The nabla (q, h) -fractional power functions and the (q, h) -Taylor monomials of degree α are
defined by

(t− s)
(α)
(q̃,h) = ([t]− [s])

(α)
q̃ ,
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ĥα(t, s) :=
(t− s)

(α)
(q̃,h)

Γq̃(α+ 1)
, α ∈ R,

respectively, where [t] = t+ hq̃/(1− q̃) and [s] = s+ hq̃/(1− q̃) , 0 < q̃ < 1 . The following relations

ν(t) = [t](1− q̃),

ν(ρk(t)) = q−kν(t),

[s]

[t]
= q̃n

hold for s , t ∈ Tt0
(q,h) , if there exists n ∈ N0 such that t = σn(s) . The nabla (q, h) -integral of x : [a, t]∩T̃a

(q,h) :→

R is defined by ∫ t

a

x(τ)∇τ :=

k∑
i=1

x(σi(a))ν(σi(a)),

where t = σk(a) , k ≥ 1 , and by convention
∫ a

a
x(τ)∇τ = 0 .

Definition 2.1 (See [4, Definition 1]). The Riemann–Liouville nabla (q, h)-fractional sum of order α > 0

over the set T̃a
(q,h) is defined by

(a∇−α
(q,h)x)(t) =

∫ t

a

ĥα−1(t, ρ(τ))x(τ)∇τ. (2.1)

Definition 2.2 (See [4, Definition 3]). Assume α > 0 , n = ⌈α⌉ , that is, n is the ceiling of α . Then the

Riemann–Liouville nabla (q, h)-fractional difference of order α over the set T̃σn(a)
(q,h) is defined by

(a∇α
(q,h)x)(t) = (∇n

(q,h)(a∇
−(n−α)
(q,h) x))(t). (2.2)

Lemma 2.1 Assume α > 0 , n = ⌈α⌉ , that is, n is the ceiling of α . Then the following formula is equivalent
to (2.2)

(a∇α
(q,h)x)(t) =


∫ t

a

ĥ−α−1(t, ρ(τ))x(τ)∇τ, α ∈ (n− 1, n), t ∈ T̃σn(a)
(q,h) ,

(∇n
(q,h)x)(t), α = n, t ∈ T̃σn(a)

(q,h) .

(2.3)

Proof If α = n , we have

(a∇α
(q,h)x)(t) = (∇n

(q,h)(a∇
−(n−α)
(q,h) x))(t) = (∇n

(q,h)(a∇
−0
(q,h)x))(t) = (∇n

(q,h)x)(t).

If α ∈ (n− 1, n) , we have

(a∇α
(q,h)x)(t) = (∇n

(q,h)(a∇
−(n−α)
(q,h) x))(t) =

(
∇n−1

(q,h)∇(q,h)

(∫ t

a

ĥn−α−1(t, ρ(τ))x(τ)∇τ
))

.
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Taking the difference with respect to t , and using (see [5, Lemma 2.3]) t∇(q,h)ĥ−α(t, ρ(τ)) = ĥ−α−1(t, ρ(τ)) ,
we get

∇(q,h)

(∫ t

a

ĥn−α−1(t, ρ(τ))x(τ)∇τ
)

=
1

ν(t)

(∫ t

a

ĥn−α−1(t, ρ(τ))x(τ)∇τ −
∫ ρ(t)

a

ĥn−α−1(ρ(t), ρ(τ))x(τ)∇τ
)

=

∫ t

a
t∇(q,h)(ĥn−α−1(t, ρ(τ))x(τ))∇τ + ĥn−α−1(ρ(t), ρ(t))x(t)

=

∫ t

a

ĥn−α−2(t, ρ(τ))x(τ)∇τ.

Hence, we have

(a∇α
(q,h)x)(t) = ∇n−1

(q,h)

∫ t

a

ĥn−α−2(t, ρ(τ))x(τ)∇τ.

Repeating the similar procedure n− 1 times, we obtain

(a∇α
(q,h)x)(t) =

∫ t

a

ĥ−α−1(t, ρ(τ))x(τ)∇τ.

The proof is complete. 2

Definition 2.3 (See [17, p. 2218]). Assume α > 0 , n = ⌈α⌉ , that is, n is the ceiling of α . Then the Caputo

nabla (q, h)-fractional difference of order α over the set T̃σn(a)
(q,h) is defined by

(Ca ∇α
(q,h)x)(t) = (a∇−(n−α)

(q,h) (∇n
(q,h)x))(t) =

∫ t

a

ĥn−α−1(t, ρ(τ))(∇n
(q,h)x)(τ)∇τ. (2.4)

Lemma 2.2 (See [17, Theorem 3.9]). Assume α ∈ R and n ∈ N1 so that n− 1 < α ≤ n . Then

a∇−α
(q,h)

C
a ∇α

(q,h)x(t) = x(t)−
n−1∑
k=0

ĥk(t, a)∇k
(q,h)x(a), t ∈ T̃a

(q,h). (2.5)

The following corollary appears in Du et al. [7, Corollary 4.6].

Corollary 2.1 Assume x : T̃a
(q,h) → R , q > 1 , and 0 < α < 1 . Then

(σ(a)∇−α
(q,h)(∇(q,h)x))(t) = (∇(q,h)(a∇−α

(q,h)x))(t)− x(σ(a))ĥα−1(t, a), t ∈ T̃σ(a)
(q,h). (2.6)

Lemma 2.3 Assume x , y : T̃a
(q,h) → R and b , c ∈ T̃a

(q,h) , b < c . Then we have the integration by parts
formula: ∫ c

b

x(ρ(t))(∇(q,h)y)(t)∇t = x(t)y(t)|ct=b −
∫ c

b

y(t)(∇(q,h)x)(t)∇t. (2.7)
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Proof From the definition of nabla (q, h) -difference, we have

∇(q,h)(x(t)y(t)) =
x(t)y(t)− x(ρ(t))y(ρ(t))

ν(t)

=
x(ρ(t))[y(t)− y(ρ(t))] + y(t)[x(t)− x(ρ(t))]

ν(t)

= x(ρ(t))(∇(q,h)y)(t) + y(t)(∇(q,h)x)(t).

Integrating from b to c on both sides of the above formula, we have (2.7) holds. The proof is complete. 2

Now, we give the following remark, it is essential for our main results.

Remark 2.1 For 0 < α < 1 , 0 < q̃ < 1 , 1 ≤ j ≤ k1 , k1 + 1 ≤ k2 , we have

ĥ−α(σ
k2(a), σj−1(a))− ĥ−α(σ

k1(a), σj−1(a))

=
(σk2(a)− σj−1(a))

(−α)
(q̃,h)

Γq̃(−α+ 1)
−

(σk1(a)− σj−1(a))
(−α)
(q̃,h)

Γq̃(−α+ 1)

=
([σk2(a)]− [σj−1(a)])

(−α)
q̃

Γq̃(−α+ 1)
−

([σk1(a)]− [σj−1(a)])
(−α)
q̃

Γq̃(−α+ 1)

=
[σk2(a)]−α( [σ

j−1(a)]
[σk2 (a)]

, q̃)∞

Γq̃(−α+ 1)(q̃−α [σj−1(a)]
[σk2 (a)]

, q̃)∞
−

[σk1(a)]−α( [σ
j−1(a)]

[σk1 (a)]
, q̃)∞

Γq̃(−α+ 1)(q̃−α [σj−1(a)]
[σk1 (a)]

, q̃)∞

=
[σk2(a)]−α(q̃k2−j+1, q̃)∞

Γq̃(−α+ 1)(q̃−ν+k2−j+1, q̃)∞
− [σk1(a)]−α(q̃k1−j+1, q̃)∞

Γq̃(−α+ 1)(q̃−α+k1−j+1, q̃)∞

=
[σk2(a)]−α

∏∞
i=0(1− q̃k2−j+1+i)

Γq̃(−α+ 1)
∏∞

i=0(1− q̃−α+k2−j+1+i)
−

[σk1(a)]−α
∏∞

i=0(1− q̃k1−j+1+i)

Γq̃(−α+ 1)
∏∞

i=0(1− q̃−α+k1−j+1+i)

=
q̃k2α(a+ h

q−1 )
−α

∏∞
i=0(1− q̃k2−j+1+i)

Γq̃(−α+ 1)
∏∞

i=0(1− q̃−α+k2−j+1+i)
−

q̃k1α(a+ h
q−1 )

−α
∏∞

i=0(1− q̃k1−j+1+i)

Γq̃(−α+ 1)
∏∞

i=0(1− q̃−α+k1−j+1+i)

=
[
q̃k2α−k1α − (1− q̃k1−j+1) · · · (1− q̃k2−j)

(1− q̃−α+k1−j+1) · · · (1− q̃−α+k2−j)

]
×
q̃k1α(a+ h

q−1 )
−α

∏∞
i=0(1− q̃k2−j+1+i)

Γq̃(−α+ 1)
∏∞

i=0(1− q̃−α+k2−j+1+i)
< 0.

For 0 < α < 1 , 0 < q̃ < 1 , 1 ≤ j ≤ k , we have

ĥ−α(σ
k(a), σj−1(a)) =

(σk(a)− σj−1(a))
(−α)
(q̃,h)

Γq̃(−α+ 1)

=
([σk(a)]− [σj−1(a)])

(−α)
q̃

Γq̃(−α+ 1)

=
[σk(a)]−α( [σ

j−1(a)]
[σk(a)]

, q̃)∞

Γq̃(−α+ 1)(q̃−α [σj−1(a)]
[σk(a)]

, q̃)∞
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=
[σk(a)]−α(q̃k−j+1, q̃)∞

Γq̃(−α+ 1)(q̃−α+k−j+1, q̃)∞

=
[σk(a)]−α

∏∞
i=0(1− q̃k−j+1+i)

Γq̃(−α+ 1)
∏∞

i=0(1− q̃−α+k−j+1+i)
> 0.

For 0 < α ≤ 1 , 0 < q̃ < 1 , 1 ≤ j ≤ k , we have

ĥα−1(σ
k(a), σj−1(a)) =

(σk(a)− σj−1(a))
(α−1)
(q̃,h)

Γq̃(α)

=
([σk(a)]− [σj−1(a)])

(α−1)
q̃

Γq̃(α)

=
[σk(a)]α−1( [σ

j−1(a)]
[σk(a)]

, q̃)∞

Γq̃(α)(q̃α−1 [σj−1(a)]
[σk(a)]

, q̃)∞

=
[σk(a)]α−1(q̃k−j+1, q̃)∞
Γq̃(α)(q̃α+k−j , q̃)∞

=
[σk(a)]α−1

∏∞
i=0(1− q̃k−j+1+i)

Γq̃(α)
∏∞

i=0(1− q̃α+k−j+i)
> 0.

For 0 < α < 1 , 0 < q̃ < 1 , 1 ≤ j ≤ k − 1 , we have

ĥ−α−1(σ
k(a), σj−1(a)) =

(σk(a)− σj−1(a))
(−α−1)
(q̃,h)

Γq̃(−α)

=
([σk(a)]− [σj−1(a)])

(−α−1)
q̃

Γq̃(−α)

=
[σk(a)]−α−1( [σ

j−1(a)]
[σk(a)]

, q̃)∞

Γq̃(−α)(q̃−α−1 [σj−1(a)]
[σk(a)]

, q̃)∞

=
[σk(a)]−α−1(q̃k−j+1, q̃)∞
Γq̃(−α)(q̃−α+k−j , q̃)∞

=
[σk(a)]−α−1

∏∞
i=0(1− q̃k−j+1+i)

Γq̃(−α)
∏∞

i=0(1− q̃−α+k−j+i)
< 0,

ĥ−α−1(σ
k(a), σk−1(a)) =

(σk(a)− σk−1(a))
(−α−1)
(q̃,h)

Γq̃(−α)

=
([σk(a)]− [σk−1(a)])

(−α−1)
q̃

Γq̃(−α)

=
[σk(a)]−α−1( [σ

k−1(a)]
[σk(a)]

, q̃)∞

Γq̃(−α)(q̃−α−1 [σk−1(a)]
[σk(a)]

, q̃)∞
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=
[σk(a)]−α−1(q̃, q̃)∞
Γq̃(−α)(q̃−α, q̃)∞

=
[σk(a)]−α−1

∏∞
i=0(1− q̃1+i)

Γq̃(−α)
∏∞

i=0(1− q̃−α+i)
> 0.

For q > 1 , 1 ≤ j ≤ k , we have

ν(σj(a)) = σj(a)− ρ(σj(a))

= σj(a)− σj−1(a)

=
(
qja+

qj − 1

q − 1
h
)
−

(
qj−1a+

qj−1 − 1

q − 1
h
)

= qj−1a(q − 1) + qj−1h

> qj−1(q − 1)
h

1− q
+ qj−1h

= 0,

where we used a > h
1−q .

3. Basic definitions and lemmas
In this section, we will present some basic definitions and lemmas, which are important for our main results.

Consider the following nonlinear nabla (q, h) -fractional difference equations

{
(Ca ∇α

(q,h)x)(t) = f(t, x(t)), t ∈ T̃σ(a)
(q,h),

x(a) = x0,
(3.1)

where f : T̃σ(a)
(q,h) × R → R , x : T̃a

(q,h) → R , and α ∈ (0, 1] , and

{
(a∇α

(q,h)x)(t) = f(t, x(t)), t ∈ T̃σ2(a)
(q,h) ,

x(σ(a)) = x0,
(3.2)

where f : T̃σ2(a)
(q,h) ×R → R , x : T̃σ(a)

(q,h) → R , and α ∈ (0, 1] . It is easy to see that equations (3.1) and (3.2) has a
unique solution.

The constant xeq is an equilibrium point of equation (3.1) (or (3.2)) if and only if (Ca ∇α
(q,h)xeq)(t) =

f(t, xeq(t)) = 0 ((a∇α
(q,h)xeq)(t) = f(t, xeq(t)) in the case of the Riemann–Liouville nabla (q, h) -fractional

difference equation) for all t ∈ T̃σ(a)
(q,h) .

Assume that f(t, 0) = 0 so that the trivial solution x ≡ 0 is an equilibrium point of equation (3.1) (or
(3.2)). Note that there is no loss of generality in doing so because any equilibrium point can be shifted to the
origin via a change of variables.

First, we present the following simple definitions and important facts.
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Definition 3.1 The equilibrium point x = 0 of equation (3.1) (or (3.2)) is said to be
(a) stable, if for each ε > 0 , there exists δ = δ(ε) > 0 such that ∥x(a)∥ < δ (or ∥x(σ(a))∥ < δ implies

∥x(σk(a))∥ < ε for all k ∈ N0 .
(b) attractive, if there exists δ > 0 such that ∥x(a)∥ < δ (or ∥x(σ(a))∥ < δ implies limk→∞ x(σk(a)) = 0 .
(c) asymptotically stable, if it is stable and attractive.

The equation (3.1) (or (3.2)) is called stable (asymptotically stable) if their equilibrium point x = 0 is
stable (asymptotically stable).

Definition 3.2 (See [11, Definition 3.2]). A function ϕ(r) is said to belong to the class K if and only if
ϕ ∈ C[[0, ρ),R+] , ϕ(0) = 0 , and ϕ(r) is strictly monotonically increasing in r .

Definition 3.3 A real valued function V (t, x) defined on T̃a
(q,h) × Sρ , where Sρ = {x ∈ Rn : ∥x∥ ≤ ρ} , is said

to be positive definite if and only if V (t, 0) = 0 for all t ∈ T̃a
(q,h) and there exists ϕ ∈ K such that ϕ(r) ≤ V (t, x) ,

∥x∥ = r , (t, x) ∈ T̃a
(q,h) × Sρ .

Definition 3.4 A real valued function V (t, x) defined on T̃a
(q,h) × Sρ , where Sρ = {x ∈ Rn : ∥x∥ ≤ ρ} , is said

to be decrescent if and only if V (t, 0) = 0 for all t ∈ T̃a
(q,h) and there exists ϕ ∈ K such that V (t, x) ≤ ϕ(r) ,

∥x∥ = r , (t, x) ∈ T̃a
(q,h) × Sρ .

Now, we give the following lemmas for the Caputo nabla (q, h) -fractional difference, which will be useful
for proving the stability of equation (3.1). The proof of Lemmas 3.2–3.4 is motivated by the proof in [2, Lemmas
2.7–2.9].

Lemma 3.1 Assume (Ca ∇α
(q,h)x)(t) ≥ (Ca ∇α

(q,h)y)(t) , t ∈ T̃σ(a)
(q,h) , x(a) ≥ y(a) , and α ∈ (0, 1] . Then we have

x(t) ≥ y(t) for t ∈ T̃a
(q,h) .

Proof Let F (t) := x(t)− y(t) . For α = 1 , we have

(Ca ∇α
(q,h)F )(t) = (∇(q,h)F )(t) ≥ 0,

it is easy to see x(t) ≥ y(t) for t ∈ T̃a
(q,h) .

For α ∈ (0, 1) , since (Ca ∇α
(q,h)x)(t) ≥ (Ca ∇α

(q,h)y)(t) , we have

(Ca ∇α
(q,h)F )(t) ≥ 0,

which can be written as ∫ t

a

ĥ−α(t, ρ(τ))(∇(q,h)F )(τ)∇τ ≥ 0.

By the integration by parts formula (2.7), we have

ĥ−α(t, τ)F (τ)|tτ=a +

∫ t

a

ĥ−α−1(t, ρ(τ))F (τ)∇τ ≥ 0.
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Letting t = σk(a) , k ≥ 1 , we have

−ĥ−α(σ
k(a), a)F (a) +

k∑
j=1

ĥ−α−1(σ
k(a), σj−1(a))F (σj(a))ν(σj(a)) ≥ 0.

Since ĥ−α(σ
k(a), a) > 0 , ĥ−α−1(σ

k(a), σk−1(a)) > 0 , ĥ−α−1(σ
k(a), σj−1(a)) < 0 , 1 ≤ j ≤ k−1 , ν(σj(a)) > 0 ,

1 ≤ j ≤ k , and x(a) ≥ y(a) are true. When k = 1 , we have x(σ(a)) ≥ y(σ(a)) . Suppose F (σj(a)) ≥ 0 ,
0 ≤ j ≤ k − 1 , by strong induction, we obtain F (t) ≥ 0 , that is, x(t) ≥ y(t) for t ∈ T̃a

(q,h) . The proof is
complete. 2

Consider the following fractional difference equation

(Ca ∇α
(q,h)x)(t) = −γ(x(t)), x(a) = x0, α ∈ (0, 1], t ∈ T̃σ(a)

(q,h), (3.3)

where γ ∈ K and x(t) is a positive definite and decrescent function. We can easily show this equation has a
unique solution.

Lemma 3.2 Assume x(t) is a solution of equation (3.3), and x(a) > 0 . Then (∇(q,h)x)(t) < 0 for t ∈ T̃σ(a)
(q,h) .

Proof We assume that there exists a first point t1 such that (∇(q,h)x)(t) ≥ 0 on [σ(t1), t2] ∩ T̃a
(q,h) , where

t1 ∈ T̃σ(a)
(q,h) , t2 ∈ T̃σ2(a)

(q,h) , and (∇(q,h)x)(t) < 0 on [σ(a), t1] ∩ T̃a
(q,h) . For α = 1 , we have

(Ca ∇α
(q,h)x)(t2)− (Ca ∇α

(q,h)x)(t1) = (∇(q,h)x)(t2)− (∇(q,h)x)(t1) > 0.

For α ∈ (0, 1) , by Definition 2.3, we have

(Ca ∇α
(q,h)x)(t2)− (Ca ∇α

(q,h)x)(t1) =

∫ t2

a

ĥ−α(t2, ρ(τ))(∇(q,h)x)(τ)∇τ −
∫ t1

a

ĥ−α(t1, ρ(τ))(∇(q,h)x)(τ)∇τ

t1=σk1 (a), t2=σk2 (a)================
k1≥1, k2≥2, k2≥k1+1

k2∑
j=1

ĥ−α(σ
k2(a), σj−1(a))(∇(q,h)x)(σ

j(a))ν(σj(a))

−
k1∑
j=1

ĥ−α(σ
k1(a), σj−1(a))(∇(q,h)x)(σ

j(a))ν(σj(a))

=

k1∑
j=1

(ĥ−α(σ
k2(a), σj−1(a))− ĥ−α(σ

k1(a), σj−1(a)))(∇(q,h)x)(σ
j(a))ν(σj(a))

+

k2∑
j=k1+1

ĥ−α(σ
k2(a), σj−1(a))(∇(q,h)x)(σ

j(a))ν(σj(a)) > 0,

where ĥ−α(σ
k2(a), σj−1(a))−ĥ−α(σ

k1(a), σj−1(a)) < 0 , 1 ≤ j ≤ k1 , ĥ−α(σ
k2(a), σj−1(a)) > 0 , k1+1 ≤ j ≤ k2 ,

and ν(σj(a)) > 0 , 1 ≤ j ≤ k2 .
On the other hand, we have

(Ca ∇α
(q,h)x)(t2)− (Ca ∇α

(q,h)x)(t1) = −γ(x(t2)) + γ(x(t1)) ≤ 0,
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which is a contradiction. Hence, we have (∇(q,h)x)(t) < 0 for t ∈ T̃σ(a)
(q,h) . The proof is complete. 2

Lemma 3.3 Assume x(a) > 0 . Then the solution of equation (3.3) is positive on T̃a
(q,h) .

Proof According to Lemma 3.2, we can see that (∇(q,h)x)(t) < 0 leads to

(Ca ∇α
(q,h)x)(t) < 0, α ∈ (0, 1], t ∈ T̃σ(a)

(q,h).

Hence, by equation (3.3) and the monotonicity of the function γ , we have x(t) > 0 for t ∈ T̃a
(q,h) . The proof is

complete. 2

Lemma 3.4 Assume x(t) is a solution of equation (3.3), and x(a) > 0 . Then the solution of equation (3.3)
has a limit and

lim
t→∞

x(t) = 0, t ∈ T̃a
(q,h).

Proof From Lemmas 3.2 and 3.3, we can see the limit exists. Arguing by contradiction, we assume
limt→∞ x(t) = c > 0 for t ∈ T̃a

(q,h) . For α ∈ (0, 1] , taking the operator a∇−α
(q,h) on both side of equation

(3.3), and using (2.5), we have

x(t)− x(a) = −(a∇−α
(q,h)γ)(x(t))

= −
∫ t

a

ĥα−1(t, ρ(τ))γ(x(τ))∇τ

t=σk(a)=======
k≥1

−
k∑

j=1

ĥα−1(σ
k(a), σj−1(a))γ(x(σj(a)))ν(σj(a))

≤ −γ(x(σk(a)))

k∑
j=1

ĥα−1(σ
k(a), σj−1(a))ν(σj(a))

= −γ(x(σk(a)))ĥα(σ
k(a), a),

where we used ĥα−1(σ
k(a), σj−1(a)) > 0 , ν(σj(a)) > 0 , 1 ≤ j ≤ k . Due to the fact that

lim
t→∞

(x(t)− x(a)) = c− x(a) < 0,

while

lim
k→∞

−γ(x(σk(a)))ĥα(σ
k(a), a) = −∞,
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because of the fact that

lim
k→∞

γ(x(σk(a)))ĥα(σ
k(a), a) = γ(c) lim

k→∞

([σk(a)]− [a])
(α)
q̃

Γq̃(α+ 1)

= γ(c) lim
k→∞

[σk(a)]α(q̃k, q̃)∞
Γq̃(α+ 1)(q̃k+α, q̃)∞

= γ(c) lim
k→∞

q̃−kα(a+ hq̃
1−q̃ )

α

Γq̃(α+ 1)

∏∞
i=0(1− q̃k+i)∏∞

i=0(1− q̃k+α+i)

= γ(c) lim
k→∞

q̃−kα(a+ hq̃
1−q̃ )

α

Γq̃(α+ 1)

(1− q̃α) · · · (1− q̃k+α−1)

(1− q̃) · · · (1− q̃k−1)

∏∞
i=0(1− q̃1+i)∏∞
i=0(1− q̃α+i)

= γ(c) lim
k→∞

q̃−kα(a+ hq̃
1−q̃ )

α

Γq̃(α+ 1)

(1− q̃α) · · · (1− q̃k+α−1)

(1− q̃) · · · (1− q̃k−1)

Γq̃(α)

(1− q̃)1−α

= ∞,

where we used limk→∞ q̃−kα = ∞ , and

lim
k→∞

(1− q̃α) · · · (1− q̃k+α−1)

(1− q̃) · · · (1− q̃k−1)
=

∏∞
i=0(1− q̃α+i)∏∞
i=0(1− q̃1+i)

=
(q̃α, q̃)

(q̃, q̃)
=

(1− q̃)1−α

Γq̃(α)
.

This yields a contradiction. Hence, we have

lim
t→∞

x(t) = 0, t ∈ T̃a
(q,h).

The proof is complete. 2

Lemma 3.5 Assume x(t) , y(t) satisfy

(Ca ∇α
(q,h)x)(t) ≤ −γ(x(t)), t ∈ T̃σ(a)

(q,h),

and

(Ca ∇α
(q,h)y)(t) ≥ −γ(y(t)), t ∈ T̃σ(a)

(q,h).

If x(a) ≤ y(a) , then x(t) ≤ y(t) for t ∈ T̃a
(q,h) .

Proof We assume that there exists a first point t1 such that x(t1) > y(t1) , and x(t) ≤ y(t) on [a, ρ(t1)]∩T̃a
(q,h) ,

t1 ∈ T̃σ(a)
(q,h) . For α = 1 , we have

(Ca ∇α
(q,h)x)(t1)− (Ca ∇α

(q,h)y)(t1) = (∇(q,h)x)(t1)− (∇(q,h)y)(t1) > 0.

For α ∈ (0, 1) , using Definition 2.3, we have
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(Ca ∇α
(q,h)x)(t1)− (Ca ∇α

(q,h)y)(t1)

=

∫ t1

a

ĥ−α(t1, ρ(τ))∇(q,h)(x(τ)− y(τ))∇τ

= ĥ−α(t1, τ)(x(τ)− y(τ))|t1τ=a +

∫ t1

a

ĥ−α−1(t1, ρ(τ))(x(τ)− y(τ))∇τ

t1=σk1 (a)========
k1≥1

−ĥ−α(σ
k1(a), a)(x(a)− y(a))

+ĥ−α−1(σ
k1(a), σk1−1(a))(x(σk1(a))− y(σk1(a)))ν(σk1(a))

+

k1−1∑
j=1

ĥ−α−1(σ
k1(a), σj−1(a))(x(σj(a))− y(σj(a)))ν(σj(a)) > 0,

where ĥ−α(σ
k1(a), a) > 0 , ĥ−α−1(σ

k1(a), σk1−1(a)) > 0 , ĥ−α−1(σ
k1(a), σj−1(a)) < 0 , 1 ≤ j ≤ k1 − 1 , and

ν(σj(a)) > 0 , 1 ≤ j ≤ k1 .
On the other hand, we have

(Ca ∇α
(q,h)x)(t1)− (Ca ∇α

(q,h)y)(t1) ≤ −γ(x(t1)) + γ(y(t1)) < 0,

which is a contradiction. Hence, we have x(t) ≤ y(t) for t ∈ T̃a
(q,h) . The proof is complete.

2

Theorem 3.1 Assume x = 0 is an equilibrium point of equation (3.1). If there exists a positive definite and
decrescent scalar function V (t, x) , and class-K functions γ1 , γ2 , and γ3 such that

γ1(∥x(t)∥) ≤ V (t, x(t)) ≤ γ2(∥x(t)∥), t ∈ T̃a
(q,h), (3.4)

and
(Ca ∇α

(q,h)V )(t, x(t)) ≤ −γ3(∥x(t)∥), t ∈ T̃σ(a)
(q,h). (3.5)

Then equation (3.1) is asymptotically stable.

Proof From the inequalities (3.4), (3.5), we have

(Ca ∇α
(q,h)V )(t, x(t)) ≤ −γ3(γ

−1
2 (V (t, x(t)))), t ∈ T̃σ(a)

(q,h).

Consider the fractional difference equation

(Ca ∇α
(q,h)U)(t, x(t)) = −γ3(γ

−1
2 (U(t, x(t)))), t ∈ T̃σ(a)

(q,h),

when V (a, x(a)) ≤ U(a, x(a)) . By Lemma 3.5, we have V (t, x(t)) ≤ U(t, x(t)) , t ∈ T̃a
(q,h) . According to

Lemma 3.2, we obtain U(t, x(t)) ≤ U(a, x(a)) , t ∈ T̃a
(q,h) . Using (3.4), we get ∥x(t)∥ ≤ γ−1

1 (V (t, x(t))) .

Hence, we have ∥x(t)∥ ≤ γ−1
1 (U(a, x(a))) . Then, it follows from the definition of stability that equation (3.1)

is stable. Furthermore, from Lemma 3.4, we have limt→∞ V (t, x(t)) = 0 . Since γ1 ∈ K , and the fact that
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γ1(∥x(t)∥) ≤ V (t, x(t)) , we have limt→∞ x(t) = 0 . Hence, equation (3.1) is asymptotically stable. The proof is
complete. 2

In what follows, we will present results concerning the Riemann–Liouville nabla (q, h) -fractional differ-
ence, which are important to prove the stability of equation (3.2).

Lemma 3.6 Assume that (a∇α
(q,h)x)(t) ≥ (a∇α

(q,h)y)(t) , t ∈ T̃σ2(a)
(q,h) , x(σ(a)) ≥ y(σ(a)) , and α ∈ (0, 1] . Then

we have x(t) ≥ y(t) for t ∈ T̃σ(a)
(q,h) .

Proof Let F (t) := x(t)− y(t) . For α = 1 , we have

(a∇α
(q,h)F )(t) = (∇(q,h)F )(t) ≥ 0,

it is easy to see x(t) ≥ y(t) for t ∈ T̃σ(a)
(q,h) .

For α ∈ (0, 1) , since (a∇α
(q,h)x)(t) ≥ (a∇α

(q,h)y)(t) , we have

(a∇α
(q,h)F )(t) ≥ 0,

which can be written as ∫ t

a

ĥ−α−1(t, ρ(τ))F (τ)∇τ ≥ 0.

Letting t = σk(a) , k ≥ 2 , we have

k∑
j=1

ĥ−α−1(σ
k(a), σj−1(a))F (σj(a))ν(σj(a)) ≥ 0.

Since ĥ−α−1(σ
k(a), σk−1(a)) > 0 , ĥ−α−1(σ

k(a), σj−1(a)) < 0 , 1 ≤ j ≤ k − 1 , ν(σj(a)) > 0 , 1 ≤ j ≤ k , and
x(σ(a)) ≥ y(σ(a)) are true. When k = 2 , we have x(σ2(a)) ≥ y(σ2(a)) . Suppose F (σj(a)) ≥ 0 , 1 ≤ j ≤ k− 1 ,

by strong induction, we obtain F (t) ≥ 0 , that is, x(t) ≥ y(t) for t ∈ T̃σ(a)
(q,h) . The proof is complete. 2

Consider the following fractional difference equation

(a∇α
(q,h)x)(t) = −γ(x(t)), x(σ(a)) = x0, α ∈ (0, 1], t ∈ T̃σ2(a)

(q,h) , (3.6)

where γ ∈ K and x(t) is a positive definite and decrescent function. We can easily show this equation has a
unique solution.

Lemma 3.7 Assume x(σ(a)) > 0 . Then the solution of equation (3.6) is positive on T̃σ(a)
(q,h) .

Proof In order to show x(t) > 0 for t ∈ T̃σ(a)
(q,h) . Arguing by contradiction, we assume that there exists a first

point t1 = σk1(a) , k1 ≥ 2 such that x(t1) ≤ 0 , and x(t) > 0 on [a, ρ(t1)] ∩ T̃σ(a)
(q,h) . For α = 1 , and t = t1 , the

equation (3.6) can be written as
(∇(q,h)x)(t1) = −γ(x(t1)), (3.7)
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we can see easily the L.H.S. of equation (3.7) is negative, while the R.H.S. of equation (3.7) is nonnegative,
which is a contradiction.

For α ∈ (0, 1) , and t = t1 , the equation (3.6) can be written as

∫ t1

a

ĥ−α−1(t1, ρ(τ))x(τ)∇τ = −γ(x(t1)). (3.8)

Taking t1 = σk1(a) , k1 ≥ 2 in (3.8), we have

k1∑
j=1

ĥ−α−1(σ
k1(a), σj−1(a))x(σj(a))ν(σj(a)) = −γ(x(σk1(a))), (3.9)

that is,

k1−1∑
j=1

ĥ−α−1(σ
k1(a), σj−1(a))x(σj(a))ν(σj(a))

= −ĥ−α−1(σ
k1(a), σk1−1(a))x(σk1(a))ν(σk1(a))− γ(x(σk1(a))).

(3.10)

Since ĥ−α−1(σ
k1(a), σj−1(a)) < 0 , 1 ≤ j ≤ k1−1 , ĥ−α−1(σ

k1(a), σk1−1(a)) > 0 , and ν(σj(a)) > 0 , 1 ≤ j ≤ k1 ,
we can obtain the L.H.S. of equation (3.10) is negative, while the R.H.S. of equation (3.10) is nonnegative, which

is a contradiction. Thus, we conclude x(t) > 0 for t ∈ T̃σ(a)
(q,h) . The proof is complete. 2

Lemma 3.8 Assume x(t) is a solution of equation (3.6), and x(σ(a)) > 0 . Then the solution of equation (3.6)
has a limit and

lim
t→∞

x(t) = 0, t ∈ T̃σ(a)
(q,h).

Proof For α = 1 , the equation (3.6) can be written as

(∇(q,h)x)(t) = −γ(x(t)),

so, by taking t = σk(a) , we obtain

x(σk(a))− x(σ(a)) = −ν(σk(a))γ(x(σk(a)))− q̃ν(σk(a))γ(x(σk−1(a)))− · · ·

−q̃k−2ν(σk(a))γ(x(σ2(a)))

≤ −(1 + q̃ + · · ·+ q̃k−2)ν(σk(a))γ(x(σk(a)))

= −1− q̃k−1

1− q̃
[aqk−1(q − 1) + qk−1h]γ(x(σk(a)))

= −
[
aq(qk−1 − 1) + qh

qk−1 − 1

q − 1

]
γ(x(σk(a)))

= −
(
a+

h

q − 1

)
q(qk−1 − 1)γ(x(σk(a))).
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Due to the fact that x(t) is positive and decreasing, so limt→∞ x(t) exists. Assume limt→∞ x(t) = c > 0 for

t ∈ T̃σ2(a)
(q,h) , we have

lim
k→∞

(x(σk(a))− x(σ(a))) = c− x(σ(a)) < 0,

while

lim
k→∞

[
−
(
a+

h

q − 1

)
q(qk−1 − 1)γ(x(σk(a)))

]
= −∞.

This yields a contradiction. So, we have

lim
t→∞

x(t) = 0, t ∈ T̃σ(a)
(q,h).

For α ∈ (0, 1) , applying the operator σ(a)∇−α
(q,h) to both sides of equation (3.6), we obtain

(σ(a)∇−α
(q,h)(a∇

α
(q,h)x))(t) = −(σ(a)∇−α

(q,h)γ)(x(t)).

Using (2.6), we get

x(t)− x(σ(a))ĥα−1(t, a)[σ(a)]
1−α(1− q̃)1−α = −σ(a)∇−α

(q,h)γ(x(t)).

Since ĥα−1(σ
k(a), σj−1(a)) > 0 , ν(σj(a)) > 0 , 1 ≤ j ≤ k , we obtain

x(t) = x(σ(a))ĥα−1(t, a)[σ(a)]
1−α(1− q̃)1−α

−
∫ t

a

ĥα−1(t, ρ(τ))γ(x(τ))∇τ

t=σk(a)=======
k≥1

x(σ(a))ĥα−1(σ
k(a), a)[σ(a)]1−α(1− q̃)1−α

−
k∑

j=1

ĥα−1(σ
k(a), σj−1(a))γ(x(σj(a)))ν(σj(a))

< x(σ(a))ĥα−1(σ
k(a), a)[σ(a)]1−α(1− q̃)1−α.
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Due to the fact that

lim
k→∞

ĥα−1(σ
k(a), a) = lim

k→∞

([σk(a)]− [a])
(α−1)
q̃

Γq̃(α)

= lim
k→∞

[σk(a)]α−1(q̃k, q̃)∞
Γq̃(α)(q̃k+α−1, q̃)∞

= lim
k→∞

q̃k(1−α)(a+ hq̃
1−q̃ )

α−1

Γq̃(α)

∏∞
i=0(1− q̃k+i)∏∞

i=0(1− q̃k+α−1+i)

= lim
k→∞

q̃k(1−α)(a+ hq̃
1−q̃ )

α−1

Γq̃(α)

(1− q̃α) · · · (1− q̃k+α−2)

(1− q̃) · · · (1− q̃k−1)

∏∞
i=0(1− q̃1+i)∏∞
i=0(1− q̃α+i)

= lim
k→∞

q̃k(1−α)(a+ hq̃
1−q̃ )

α−1

Γq̃(α)

(1− q̃α) · · · (1− q̃k+α−2)

(1− q̃) · · · (1− q̃k−1)

Γq̃(α)

(1− q̃)1−α

= 0,

where we used limk→∞ q̃k(1−α) = 0 , and

lim
k→∞

(1− q̃α) · · · (1− q̃k+α−2)

(1− q̃) · · · (1− q̃k−1)
=

∏∞
i=0(1− q̃α+i)∏∞
i=0(1− q̃1+i)

=
(q̃α, q̃)

(q̃, q̃)
=

(1− q̃)1−α

Γq̃(α)
.

Thus, we conclude

lim
t→∞

x(t) = 0, t ∈ T̃σ(a)
(q,h).

The proof is complete. 2

Lemma 3.9 Assume x(t) , y(t) satisfy

(a∇α
(q,h)x)(t) ≤ −γ(x(t)), t ∈ T̃σ2(a)

(q,h) ,

and
(a∇α

(q,h)y)(t) ≥ −γ(y(t)), t ∈ T̃σ2(a)
(q,h) .

If x(σ(a)) ≤ y(σ(a)) , then x(t) ≤ y(t) for t ∈ T̃σ(a)
(q,h) .

Proof The proof is similar to Lemma 3.5, and so we omit the details. 2

Theorem 3.2 Assume x = 0 is an equilibrium point of equation (3.2). Assume there exists a positive definite
and decrescent scalar function V (t, x) , and class-K functions γ1 , γ2 , and γ3 such that

γ1(∥x(t)∥) ≤ V (t, x(t)) ≤ γ2(∥x(t)∥), t ∈ T̃σ(a)
(q,h), (3.11)

and
(a∇α

(q,h)V )(t, x(t)) ≤ −γ3(∥x(t)∥), t ∈ T̃σ2(a)
(q,h) . (3.12)

Then equation (3.2) is asymptotically stable.
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Proof From the inequalities (3.11), (3.12), we have

(a∇α
(q,h)V )(t, x(t)) ≤ −γ3(γ

−1
2 (V (t, x(t)))), t ∈ T̃σ2(a)

(q,h) .

Consider the fractional difference equation

(a∇α
(q,h)U)(t, x(t)) = −γ3(γ

−1
2 (U(t, x(t)))), t ∈ T̃σ2(a)

(q,h) ,

when V (σ(a), x(σ(a))) ≤ U(σ(a), x(σ(a))) . By Lemma 3.9, we have V (t, x(t)) ≤ U(t, x(t)) , t ∈ T̃σ(a)
(q,h) .

From the proof of Lemma 3.8, we obtain U(t, x(t)) ≤ U(σ(a), x(σ(a)))ĥα−1(σ
k(a), a)[σ(a)]1−α(1 − q̃)1−α ≤

U(σ(a), x(σ(a)))ĥα−1(σ(a), a)[σ(a)]
1−α(1− q̃)1−α , t ∈ T̃σ(a)

(q,h) . Using (3.11), we get

∥x(t)∥ ≤ γ−1
1

(
U (σ (a) , x (σ (a))) ĥα−1 (σ (a) , a) [σ (a)]

1−α
(1− q̃)

1−α
)

. Then, according to the definition of

stability, we conclude that equation (3.2) is stable. Furthermore, from Lemma 3.8, we have limt→∞ V (t, x(t)) =

0 . Since γ1 ∈ K , and the fact that γ1(∥x(t)∥) ≤ V (t, x(t)) , we have limt→∞ x(t) = 0 . So, equation (3.2) is
asymptotically stable. The proof is complete. 2

4. Stability analysis of fractional difference equations

In this section, we will introduce some relevant results for the nabla (q, h) -fractional difference equations.
Initially, we will present some new lemmas, which will subsequently allow us to extend the Lyapunov type
results for the nabla (q, h) -fractional difference equations. Then, the sufficient conditions for stability of the
nabla (q, h) -fractional difference equations are presented.

Lemma 4.1 (See [6, Theorem 2.2]). Assume a , b ≥ 0 , and p , q > 1 are such that 1
p + 1

q = 1 . Then the
following inequality holds

ab ≤ 1

p
ap +

1

q
bq, (4.1)

where equality holds if and only if ap = bq .

Lemma 4.2 Assume α ∈ (0, 1] , x ∈ R , t ∈ T̃a
(q,h) , and β = m

n ≥ 1 , where m ∈ {2k, k ∈ N1} and n ∈ N1 .
Then the following inequality holds

(Ca ∇α
(q,h)x

β)(t) ≤ βxβ−1(t)(Ca ∇α
(q,h)x)(t), t ∈ T̃σ(a)

(q,h). (4.2)

Proof For β = 1 , the inequality (4.2) is clearly true. For β > 1 , we need to equivalently prove

βxβ−1(t)(Ca ∇α
(q,h)x)(t)− (Ca ∇α

(q,h)x
β)(t) ≥ 0. (4.3)
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For α = 1 , we have

βxβ−1(t)(∇(q,h)x)(t)− (∇(q,h)x
β)(t)

= βxβ−1(t)
x(t)− x(ρ(t))

ν(t)
− xβ(t)− xβ(ρ(t))

ν(t)

=
(β − 1)xβ(t)− βxβ−1(t)x(ρ(t)) + xβ(ρ(t))

ν(t)

≥ 0,

where we used the following inequality

xβ−1(t)x(τ) ≤ |xβ−1(t)| · |x(τ)|

(4.1)

≤ β − 1

β
|xβ−1(t)|

β
β−1 +

1

β
|x(τ)|β

=
β − 1

β
xβ(t) +

1

β
xβ(τ), t, τ ∈ T̃a

(q,h).

(4.4)

For α ∈ (0, 1) , using the integration by parts formula (2.7), we have

βxβ−1(t)(Ca ∇α
(q,h)x)(t)− (Ca ∇α

(q,h)x
β)(t)

= βxβ−1(t)

∫ t

a

ĥ−α(t, ρ(τ))(∇(q,h)x)(τ)∇τ −
∫ t

a

ĥ−α(t, ρ(τ))(∇(q,h)x
β)(τ)∇τ

= βxβ−1(t)
[
ĥ−α(t, τ)x(τ)|tτ=a +

∫ t

a

ĥ−α−1(t, ρ(τ))x(τ)∇τ
]

−
[
ĥ−α(t, τ)x

β(τ)|tτ=a +

∫ t

a

ĥ−α−1(t, ρ(τ))x
β(τ)∇τ

]
t=σk(a)=======

k≥1
−βĥ−α(σ

k(a), a)xµ−1(σk(a))x(a) + ĥ−α(σ
k(a), a)xβ(a)

+(β − 1)ĥ−α−1(σ
k(a), σk−1(a))xβ(σk(a))ν(σk(a))

+

k−1∑
j=1

ĥ−α−1(σ
k(a), σj−1(a))[βxβ−1(σk(a))x(σj(a))− xβ(σj(a))]ν(σj(a))

(4.4)

≥ −βĥ−α(σ
k(a), a)xβ−1(σk(a))x(a) + ĥ−α(σ

k(a), a)xβ(a)

+(β − 1)xβ(σk(a))

k∑
j=1

ĥ−α−1(σ
k(a), σj−1(a))ν(σj(a))

= ĥ−α(σ
k(a), a)(−µxµ−1(σk(a))x(a) + xβ(a))

+(β − 1)ĥ−α(σ
k(a), a)xβ(σk(a))

(4.4)

≥ 0,
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where ĥ−α(σ
k(a), a) > 0 , ĥ−α−1(σ

k(a), σj−1(a)) < 0 , 1 ≤ j ≤ k − 1 , and ν(σj(a)) > 0 , 1 ≤ j ≤ k . The proof
is complete. 2

Corollary 4.1 Assume α ∈ (0, 1] , x(t) ≥ 0 , t ∈ T̃a
(q,h) , and n ∈ {2k + 1, k ∈ N1} . Then the following

inequality holds

(Ca ∇α
(q,h)x

n)(t) ≤ nxn−1(t)(Ca ∇α
(q,h)x)(t), t ∈ T̃σ(a)

(q,h). (4.5)

Corollary 4.2 Assume α ∈ (0, 1] , and m ∈ N1 . Then the following inequality holds

(Ca ∇α
(q,h)x

2m)(t) ≤ 2mx(2m−1)(t)(Ca ∇α
(q,h)x)(t), t ∈ T̃σ(a)

(q,h). (4.6)

Theorem 4.1 Assume x = 0 is an equilibrium point of equation (3.1). Then, for β = m
n ≥ 1 , where

m ∈ {2k, k ∈ N1} and n ∈ N1 , if the following condition is satisfied

xβ−1(t)f(t, x(t)) ≤ 0, t ∈ T̃σ(a)
(q,h),

then equation (3.1) is stable. Also, if

xβ−1(t)f(t, x(t)) < 0, t ∈ T̃σ(a)
(q,h), ∀ x ̸= 0,

then equation (3.1) is asymptotically stable.

Proof Let us consider the following Lyapunov function, which is positive definite:

V (t) =
xβ(t)

β
.

Using Lemma 4.2 gives us

(Ca ∇α
(q,h)V )(t) ≤ xβ−1(t)(Ca ∇α

(q,h)x)(t) = xβ−1(t)f(t, x(t)) ≤ 0.

Hence, by Lemma 3.1, we have
V (t, x(t)) ≤ V (a, x(a)), t ∈ T̃a

(q,h),

that is,
xβ(t)

β
≤ xβ(a)

β
.

According to the definition of stability in the sense of Lyapunov, we obtain equation (3.1) is stable in the sense
of Lyapunov.

If
xβ−1(t)f(t, x(t)) < 0, t ∈ T̃σ(a)

(q,h), ∀ x ̸= 0,

similar to the above step, we can show equation (3.1) is stable. Then, according to Lemma 4.2, we have
(Ca ∇α

(q,h)V )(t) ≤ xβ−1(t)(Ca ∇α
(q,h)x)(t) < 0 , that is, the fractional order (q, h) -difference of V is negative definite.

According to Theorem 3.1 and the relationship between positive definite functions and class-K functions in [18].
We obtain that equation (3.1) is asymptotically stable. The proof is complete. 2
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Lemma 4.3 Assume α ∈ (0, 1] , x ∈ R , t ∈ T̃σ(a)
(q,h) , and β = m

n ≥ 1 , where m ∈ {2k, k ∈ N1} and n ∈ N1 .

Then the following inequality holds

(a∇α
(q,h)x

β)(t) ≤ βxβ−1(t)(a∇α
(q,h)x)(t), t ∈ T̃σ(a)

(q,h). (4.7)

Proof For β = 1 , the inequality (4.7) is clearly true. For β > 1 , we need to equivalently prove

βxβ−1(t)(a∇α
(q,h)x)(t)− (a∇α

(q,h)x
β)(t) ≥ 0. (4.8)

For α = 1 , the proof of this result is similar to the proof of Lemma 4.2. For α ∈ (0, 1) , using Lemma 2.1, we
have

βxβ−1(t)(a∇α
(q,h)x)(t)− (a∇α

(q,h)x
β)(t)

= βxβ−1(t)

∫ t

a

ĥ−α−1(t, ρ(τ))x(τ)∇τ −
∫ t

a

ĥ−α−1(t, ρ(τ))x
β(τ)∇τ

t=σk(a)=======
k≥1

(β − 1)ĥ−ν−1(σ
k(a), σk−1(a))xβ(σk(a))ν(σk(a))

+

k−1∑
j=1

ĥ−α−1(σ
k(a), σj−1(a))

[
βxβ−1(σk(a))x(σj(a))− xβ(σj(a))

]
ν(σj(a))

(4.4)

≥ (β − 1)xβ(σk(a))

k∑
j=1

ĥ−α−1(σ
k(a), σj−1(a))ν(σj(a))

= (β − 1)xβ(σk(a))ĥ−α(σ
k(a), a)

≥ 0,

where ĥ−α(σ
k(a), a) > 0 , ĥ−α−1(σ

k(a), σj−1(a)) < 0 , 1 ≤ j ≤ k − 1 , and ν(σj(a)) > 0 , 1 ≤ j ≤ k . The proof
is complete. 2

Corollary 4.3 Assume α ∈ (0, 1] , x(t) ≥ 0 , t ∈ T̃σ(a)
(q,h) , and n ∈ {2k + 1, k ∈ N1} . Then the following

inequality holds

(a∇α
(q,h)x

n)(t) ≤ nxn−1(t)(a∇α
(q,h)x)(t), t ∈ T̃σ(a)

(q,h). (4.9)

Corollary 4.4 Assume α ∈ (0, 1] , and m ∈ N1 . Then the following inequality holds

(a∇α
(q,h)x

2m)(t) ≤ 2mx(2m−1)(t)(a∇α
(q,h)x)(t), t ∈ T̃σ(a)

(q,h). (4.10)

Theorem 4.2 Assume x = 0 is an equilibrium point of equation (3.2). Then, for β = m
n ≥ 1 , where

m ∈ {2k, k ∈ N1} and n ∈ N1 , if the following condition is satisfied

xβ−1(t)f(t, x(t)) ≤ 0, t ∈ T̃σ2(a)
(q,h) ,
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then equation (3.2) is stable. Also, if

xβ−1(t)f(t, x(t)) < 0, t ∈ T̃σ2(a)
(q,h) , ∀ x ̸= 0,

then equation (3.2) is asymptotically stable.

Proof Let us consider the following Lyapunov function, which is positive definite:

V (t) =
xβ(t)

β
.

Using Lemma 4.3 gives us

(a∇α
(q,h)V )(t) ≤ xβ−1(t)(a∇α

(q,h)x)(t) = xβ−1(t)f(t, x(t)) ≤ 0.

By Lemma 3.6, we have

V (t, x(t)) ≤ V (σ(a), x(σ(a))), t ∈ T̃σ(a)
(q,h),

that is,
xβ(t)

β
≤ xβ(σ(a))

β
.

According to the definition of stability in the sense of Lyapunov, we obtain equation (3.2) is stable in the sense
of Lyapunov.

If
xβ−1(t)f(t, x(t)) < 0, t ∈ T̃σ2(a)

(q,h) , ∀ x ̸= 0,

similar to the above step, we can show equation (3.2) is stable. Then, using Lemma 4.3, we have (a∇α
(q,h)V )(t) ≤

xβ−1(t)(a∇α
(q,h)x)(t) < 0 , that is, the fractional order (q, h) -difference of V is negative definite. Using Theorem

3.2 and the relationship between positive definite functions and class-K functions in [18]. We conclude that
equation (3.2) is asymptotically stable. The proof is complete. 2

Remark 4.1 If x(t) ≥ 0 , then the power rules in Lemmas 4.2 and 4.3 hold for β ≥ 1 . In particular, the
assumption β = m

n (m ∈ {2k, k ∈ N1} and n ∈ N1 ) is no longer required.

5. Numerical results
Now, we give some numerical examples to illustrate the application of the results established in the previous
sections.

Example 5.1 Consider the following nabla (q, h)-fractional difference equation

(Ca ∇α
(q,h)x)(t) = −x3(t), x(0) = 0.4, (5.1)

where α = 0.9 , a = 0 , q = h = 1 , x ∈ R , t ∈ T̃σ(a)
(q,h) , and this difference equation has the trivial solution

x(t) = 0 .
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We can see that

xβ−1(t)(Ca ∇α
(q,h)x)(t) = xβ−1(t)(−x3(t))

= −x
12
5 (t) ≤ 0

for β = 2
5 . Thus, from Theorem 4.1, equation (5.1) is stable, as it can be seen from Figure 1.

Example 5.2 Consider the following nabla (q, h)-fractional difference equation

(a∇α
(q,h)x)(t) = −x3(t), x(1) = 0.4, (5.2)

where α = 0.9 , a = 0 , q = h = 1 , x ∈ R , t ∈ T̃σ2(a)
(q,h) , and this difference equation has the trivial solution

x(t) = 0 .
We can see that

xβ−1(t)(a∇α
(q,h)x)(t) = xβ−1(t)(−x3(t))

= −x
12
5 (t) ≤ 0

for β = 2
5 . Thus, from Theorem 4.2, equation (5.2) is stable, as can be seen from Figure 2.
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Figure 1. Stability of x for α = 0.9 . Figure 2. Stability of x for α = 0.9 .

6. Conclusion
This paper gives stability theorems for discrete fractional Lyapunov direct method for the special nabla (q, h) -
fractional difference equations. Furthermore, some new lemmas are presented that allows establishing a broader
family of Lyapunov functions to determine the stability of the nabla (q, h) -fractional difference equations. As a
result, we give sufficient conditions for these equations to be stable or asymptotically stable. In addition, some
examples are given to show the established results.
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