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Abstract: As a generalization of the Auslander-Reiten transpose, Xi introduced and studied a more general transpose,
called the relative transpose (or, T -transpose). Based on this notion, the notion of relative n -torsionfree modules (or,
n -T -torsionfree modules) is introduced in this paper, which is a generalization of the n -torsionfree modules introduced
by Auslander and Bridger. We show that relative n -torsionfree modules have many similar properties of n -torsionfree
modules.
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1. Introduction and preliminaries
It is well known that the Auslander–Reiten theory is very important for representation theory of Artin algebra
and honological algebra. The transpose plays an important role in this theory. The transpose was studied
by many authors. For example, let C be a semidualizing R -bimodule, a transpose TrC M of an R -module
M with respect to C was introduced in [6]. Later, Geng [5] used TrC M to further develop the generalized
Gorenstein dimension with respect to C in the two-sided Noetherian setting. Especially, he generalized the
Auslander–Bridger formula to the generalized Gorenstein dimension case. The dual of Auslander transpose was
studied in [7], and the relative transpose of an R -module was considered in [8].

Auslander and Bridger introduced n -torsionfree modules and obtained an approximation theory for
finitely generated modules when n -syzygy modules and n -torsionfree modules coincide in [1]. Tang and Huang
[7] introduced and studied the cotranspose of modules with respect to a semidualizing module C , and using
it, they introduced n -C -cotorsionfree modules and showed that n -C -cotorsionfree modules have many dual
properties of n -torsionfree modules.

Based on [8], we introduce the notion of n -T -torsionfree modules. It turns out that many important
results on the n -C -torsion module are still true in this paper. We mainly prove the following two conclusions:

Theorem 1.1 Let T be self-orthogonal (i.e. Exti≥1
A (T, T ) = 0). Assume that M has an add(T )-resolution

and n ≥ 1 . Then the following statements are equivalent:
(1) Ωn

T (M) is n-T -torsionfree
(2) There exists an exact sequence 0 → L → N → M → 0 with N n-T -spherical and add(T )-pd

(L)≤ n− 1 .
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Theorem 1.2 Assume that M has an add(T )-resolution and n ≥ 1 . Then Ωi
T (M) is i-T -torsionfree for all

1 ≤ i ≤ n if and only if T -grade Exti(M,T ) ≥ i− 1 for all 1 ≤ i ≤ n .

We note that the above theorems extend two interesting theorems proved by Auslander–Bridger [1].
Let A be an Artin R -algebra, that is, R is a commutative Artin ring and A is an R -algebra which

is finitely generated as an R -module. The category of finitely generated left A -modules will be denoted by
A -mod. Throughout this paper, we assume that all modules are always finitely generated.

This paper is organized as follows. In Section 2, we introduce the definition of n -T -torsionfree mdules
as a generalization of n -torsionfree modules and give some characterizations of these modules (Theorem 2.7).
In particular, the proof of Theorem 1.1 (i.e. Theorem 2.9 in this section) is presented. In Section 3, we give the
definition of T -grade and prove Theorem 1.2 (i.e. Theorem 3.3 in this section)

Let X be a subcategory of A -mod and M be a left A -module. A homomorphism f : X → M with
X ∈ X is called a right X -approximation (or, X -precover) of M if the induced morphism Hom(X

′
, f) is

surjective for all X
′ ∈ X . Dually, a homomorphism f : M → X with X ∈ X is called a left X -approximation

(or, X -preenvelope) of M if the induced morphism Hom(f,X
′
) is surjective for all X

′ ∈ X in [2, 3]. An
X -resolution of M is an exact sequence

· · · // Xn
// Xn−1

// · · · // X1
// X0

// M // 0

with Xi ∈ X for all i ≥ 0 . In addition, if the exact sequence is Hom(X ,−) -exact, then the exact sequence is
called a proper X -resolution of M . Dually, we can define X -coresolution and proper X -coresolution. We say
that M has X -projective dimension M ≤ m , denoted by X -pd (M) ≤ m , if there is an X -resolution of M

of the form 0 → Xm → · · · → X1 → X0 → M → 0 . Let T be a module in A -mod. We denoted by B the
endomorphism algebra of T , thus T is a A -B bimodule in the natural manner. Throughout this paper, we
shall fix such a triple (A , T , B ). Denoted by Pre(AT ) the class whose objects are those left A -modules M

which posses an exact sequence of the form T1 → T0 → M → 0 with T0 , T1 ∈ add(T ), here add(T ) stands
for the additive category generated by T . For simplicity, we will denote the functor Hom(−, T ) by (−)∗ .

2. n-T -torsionfree modules

In this section, we introduce the definition of n -T -torsionfree module and give a characterization of n -T -
torsionfree modules (Theorem 2.7) and the relationship between n -T -torsionfree modules and n -T -spherical
modules (Theorem 2.9). Firstly, we recall the definition of transpose [4] and relative transpose [8]

Let P1 → P0 → M → 0 be a minimal projective presentation of M . Applying the functor HomA(−, A) ,
we obtain an exact sequence of right A -modules

0 // HomA(M,A) // HomA(P0, A)
f // HomA(P1, A) // C // 0

We denote the Cokernel of f by TrM and call it the transpose of M , i.e. C=TrM .
Let M be a left A -module in Pre(AT ) . Then we have an exact sequence

T1
f1 // T0

f0 // M // 0

689



ZHANG and GENG/Turk J Math

Applying HomA(−, T ) to exact sequence above, we have an exact sequence in mod-B :

0 // M∗ // T ∗
0

// T ∗
1

// ΣT (M) // 0 , (♮)

where ΣT (M) stands for the cokernel of Hom(f1, T ) . We call the ΣT (M) the transpose of M with respect to
T , or T -transpose of M . Note the T -transpose is a right B -module and depends on the exact sequence above.

Theorem 2.1 [8, Theorem 3.9] If M lies in Pre(AT ) , then we have an exact sequence

0 // Ext1B(
∑

T (M), T ) // M
αM // M∗∗ // Ext2B(

∑
T (M), T ) // 0,

where αM is the natural homomorphism, given by m 7→ (f 7→ f(m)) .

We introduce the following definition of n -T -torsionfree modules.

Definition 2.2 Let M be a finitely generated left A-module in Pre(AT ) . Then M is called n-T-torsionfree if
ExtiB(ΣT (M), T ) = 0 for all 1 ≤ i ≤ n . If ExtiB(ΣT (M), T ) = 0 for all i ≥ 1 , then M is ∞-T-torsionfree.

Remark 2.3 (1) If T = A , then n-T-torsionfree module coincide with n-torsionfree;
(2) If M is in add(AT ) , then M is ∞-T-torsionfree. This is very useful for the rest of the discussion;
(3) If M is n-T -torsionfree, then M is m-T -torsionfree for any m ≤ n .

The following lemma will be used frequently in this paper.

Lemma 2.4 Let M be a finitely generated left A-module in Pre(AT ) . Then M is n-T-torsionfree if and only if
αM is an isomorphism and ExtiB(M∗, T ) = 0 for all 1 ≤ i ≤ n− 2 .

Proof (⇒) Assume that M is n-T -torsionfree, then αM is an isomorphism by Theorem 2.1 and Definition
2.2. By dimension shifting for the exact sequence (♮) , we can obtain that ExtiB(ΣT (M), T ) ∼= Exti−2

B (M∗, T )

for all i ≥ 3 . And ExtiB(ΣT (M), T ) = 0 for all 1 ≤ i ≤ n since M is n-T -torsionfree, thus, ExtiB(M∗, T ) = 0

for all 1 ≤ i ≤ n− 2 .
(⇐) By the assumption, we have ExtiB(ΣT (M), T ) ∼= Exti−2

B (M∗, T ) = 0 for all 3 ≤ i ≤ n , but
Ext1,2B (ΣT (M), T ) = 0 by Theorem 2.1. Thus, the proof is completed. 2

Proposition 2.5 Let the exact sequence 0 → X → Y → Z → 0 be Hom(−, T )-exact and Z be n-T -torsionfree.
Then X is n-T -torsionfree if and only if Y is n-T -torsionfree.

Proof Applying Hom(−, T ) to the exact sequence 0 → X → Y → Z → 0 , we can obtain a new exact sequence
0 → Z∗ → Y ∗ → X∗ → 0 since this exact sequence is Hom(−, T ) -exact. In a similar way, we can obtain a new
exact sequence 0 → X∗∗ → Y ∗∗ → Z∗∗ . Consider the following commutative diagram with exact rows:

0 // X //

αX

��

Y //

αY

��

Z //

αZ

��

0

0 // X∗∗ // Y ∗∗ f // Z∗∗ // Ext1B(X∗, T )
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Since Z is n-T -torsionfree, we have that αZ is an isomorphism by Lemma 2.4. Thus αX is an
isomorphism if and only if αY is an isomorphism by Snake lemma. Now it is enough to prove that ExtiB(X∗, T ) =

0 if and only if ExtiB(Y ∗, T ) = 0 for all 1 ≤ i ≤ n− 2 by Lemma 2.4.
(⇒) It follows from the long exact sequence theorem and Lemma 2.4.

(⇐) We only prove that Ext1B(X∗, T ) = 0 by the long exact sequence theorem and Lemma 2.4. Consider
the exact sequence

0 // X∗∗ // Y ∗∗ f // Z∗∗ // Ext1B(X∗, T ) // Ext1B(Y ∗, T )

From the commutative diagram above, it is easy to verify that f is surjective, but Ext1B(Y ∗, T ) = 0 since Y is
n-T -torsionfree. Thus, Ext1B(X∗, T ) = 0 . 2

Lemma 2.6 Let M be in Pre(AT ) , then the following conclusions hold:
(1) M is 1-T-torsionfree if and only if M admits an injective add(AT )-preenvelope.
(2) M is 2-T-torsionfree if and only if there is an exact sequence 0 → M → T0 → T1 , where T0 and T1

are in add(AT ) and this exact sequence is HomA(−,A T )-exact.

Proof (1), (⇒) Assume that M is 1 -T -torsionfree, so αM is an injection by Theorem 2.1. Note that there is
an exact sequence B(X) → M∗ → 0 for some set X . By functor HomB(−, TB) , we obtain a new exact sequence

0 → M∗∗ f→ HomB(B
(X), TB) ∼= TX . Note that X is a finite set. Thus, we obtain a monomorphism fαM :

M → TX ∼= T (X) since f and αM are injective. Hence, we obtain an monomorphic add(AT ) -preenvelope:
M

v→ T (Y ) with Y = HomA(M,T ) finite set and v evaluation map.
(⇐) Assume that M admits an injective add(AT ) -preenvelope, then we have an exact sequence 0 →

M → T0 . Consider the following commutative diagram:

0 // M //

αM

��

T0

αT0

��
0 // M∗∗ // T ∗∗

0

It follows from Snake lemma and αT0 is an isomorphism that αM is a monomorphism. i.e. M is 1 -T -torsionfree.
(2), (⇒) Suppose that M is 2 -T -torsionfree, then we can obtain an exact sequence 0 → M → T0 →

C → 0 with HomA(−, T ) -exact by (1). Now we only prove that C is 1 -T -torsionfree by (1) again. We consider
the following commutative diagram with exact rows:

0 // M //

αM

��

T0
//

αT0

��

C //

αC

��

0

0 // M∗∗ // T ∗∗
0

f // C∗∗

Since M is 2 -T -torsionfree, αM is an isomorphism by Lemma 2.4. It follows from Snake lemma that αC is
monomorphic. i.e. C is 1 -T -torsionfree.
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(⇐) Set C is the cokernel of M → T0 . Thus M and C are 1 -T -torsionfree by (1). i.e. αM and αC

are injective. Based on the above commutative diagram, we easily verify that αM is surjective by the Snake
lemma. Consequently, αM is an isomorphism. i.e. M is 2 -T -torsionfree. 2

Theorem 2.7 Let M be in Pre(AT ) and n ≥ 1 . Then M is n-T-torsionfree if and only if there exists an exact
sequence

0 // M // T0
// T1

// · · · // Tn−1,

where Ti are in add(AT ) for any 0 ≤ i ≤ n− 1 and this exact sequence is HomA(−,A T )-exact.

Proof We proceed by induction on n . By Lemma 2.6, the cases n ≤ 2 is clear. Suppose that n ≥ 3 and that
the conclusion holds for the case n− 1 .

(⇒) There is an exact sequence 0 → M
f→ T0 → M1 → 0 with f an add(T ) -preenvelope by Lemma

2.6. Then we have a new exact sequence 0 → M∗
1 → T ∗

0 → M∗ → 0 . Note that T ∗
0 is a projective B -module.

By dimension shifting, we have ExtiB(M∗
1 , T )

∼= Exti+1
B (M∗, T ) for all i ≥ 1 . Since M is n -T -torsionfree,

αM is an isomorphism and ExtiB(M∗, T ) = 0 for all 1 ≤ i ≤ n − 2 by Lemma 2.4. We consider the following
commutative with exact rows:

0 // M //

αM

��

T0
//

αT0

��

M1
//

αM1

��

0

0 // M∗∗ // T ∗∗
0

// M∗∗
1

// 0

Since αT0 and αM are isomorphisms, αM1 is also an isomorphism by the Five Lemma. Note that
ExtiB(M∗

1 , T )
∼= Exti+1

B (M∗, T ) = 0 for all 1 ≤ i ≤ n− 3 , so M1 is (n -1)-T -torsionfree by Lemma 2.4. By the
induction hypothesis, there exists an exact sequence, 0 → M1 → T1 → T2 → · · · → Tn−1 . So combining it with
the exact sequence 0 → M → T0 → M1 → 0 , we can get the exact sequence we desired.

(⇐) Set M1 to be the cokernel of M → T0 . By the induction hypothesis, M1 is (n -1)-T -torsionfree.
We have ExtiB(M∗, T ) ∼= Exti−1

B (M∗
1 , T ) = 0 for all 2 ≤ i ≤ n − 2 by Lemma 2.4. Consider the following

commutative diagram:

0 // M //

αM

��

T0
//

αT0

��

M1
//

αM1

��

0

0 // M∗∗ // T ∗∗
0

f // M∗∗
1

// Ext1B(M∗, T ) // 0

Since αT0
and αM1

are isomorphisms, αM is also an isomorphism by the Five Lemma. It follows from the
commutative diagram above that f is surjective; thus, Ext1B(M∗, T ) = 0 . So M is n -T -torsionfree by Lemma
2.4 again. 2

Corollary 2.8 Let M be in Pre(AT ) . The following statements are equivalent:
(1) M is 1-T -torsionfree;

(2) there is an exact sequence 0 → M → T0 → N → 0 with T0 ∈ add(T ) and Ext1A(N,T ) = 0 ;
(3) there exists a monomorphic add(T )-preenvelope of M .
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Assume that M has an add(T )-resolution, that is, there is an exact sequence

· · · // Tn
fn // Tn−1

fn−1 // · · · // T1
f1 // T0

f0 // M // 0 (♯)

with Ti ∈ add(T ) for all i ≥ 0 . Ωi
T (M) = Imfi is called an n -th T -syzygy of M for any i ≥ 0 . In particular,

put Ω0
T (M) = M . In the following part of this section, we always assume that M has an add(T )-resolution.

A module M is called n -T -spherical if ExtiA(M,T ) = 0 for all 1 ≤ i ≤ n , and M is called ∞ -T -spherical if
it is n -T -spherical for all n ≥ 1 .

Theorem 2.9 If T is self-orthogonal and M has an add(T )-resolution (♯) , then the following statements are
equivalent:

(1) Ωn
T (M) is n-T -torsionfree

(2) There exists an exact sequence 0 → L → N → M → 0 such that N is n-T -spherical and add(T )-pd
(L)≤ n− 1 .

Proof (1) ⇒ (2) Suppose that Ωn
T (M) is n -T -torsionfree. By Theorem 2.7, there is an exact sequence

0 → Ωn
T (M) → T 0 → L → 0 , where T 0 ∈ add(T ) , L is (n − 1) -T -torsionfree and Ext1(L, T ) = 0 . Consider

the push-out of Ωn
T (M) → T 0 and Ωn

T (M) → Tn−1 :

0

��

0

��
0 // Ωn

T (M) //

��

T 0 //

��

L // 0

0 // Tn−1
/ /

��

N0
//

��

L // 0

Ωn−1
T (M)

��

Ωn−1
T (M)

��
0 0

When n=1, it follows from the second row in diagram above that Ext1A(N0, T ) = 0 since Ext1(L, T ) =
0 = Ext1(Tn−1, T ) . Hence, the conclusion follows from the middle column. For the cases of n ≥ 2 . Since
Ext1A(L, T ) = 0 , the second row in diagram above is Hom(−, T ) -exact. Then N0 is (n − 1) -T -torsionfree by
Proposition 2.5, since L is (n− 1) -T -torsinfree. By Theorem 2.7, there is an exact sequence 0 → N0 → T 1 →
V0 → 0 , where T 1 ∈ add(T ) , V0 is (n − 2) -T -torsionfree and Ext1A(V0, T ) = 0 . Consider the push-out of
N0 → T 1 and N0 → Ωn−1

T (M) :
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0

��

0

��
T 0

��

T 0

��
0 // N0

//

��

T 1 f //

��

V0
// 0

0 // Ωn−1
T (M) //

��

L0
//

��

V0
// 0

0 0

Note that Ext1(N0, T ) = 0 . Thus Ext2(V0, T ) = 0 by dimension shifting applied to the second row
in the diagram above. From the second column, we have add(T )-pd (L0) ≤ 1 . Consider the push-out of
Ωn−1

T (M) → L0 and Ωn−1
T (M) → Tn−2 :

0

��

0

��
0 // Ωn−1

T (M) //

��

L0
//

��

V0
// 0

0 // Tn−2
//

��

N1
//

��

V0
// 0

Ωn−2
T (M)

��

Ωn−2
T (M)

��
0 0

When n = 2 , it is easy to show that N1 is 2-T -spherical from the second row. Then the middle column in the
diagram above is just the exact sequence we desired.

Now, we assume that n ≥ 3 . Then N1 is (n− 2) -T -torsionfree by Proposition 2.5, since V0 is (n− 2) -
T -torsionfree. By Theorem 2.7, there is an exact sequence 0 → N1 → T

′

1 → V1 → 0 , where T
′

1 ∈ add(T ) , V1

is (n − 3) -T -torsionfree and Ext1A(V1, T ) = 0 . Repeating the above discussion, and so on, we can obtain the
exact sequence we desired.

(2) ⇒ (1) Since add(T ) -pd (L)≤ n− 1 , we have the following exact sequence:

0 // T
′

n−1

f
′
n−1 // · · · // T

′

1

f
′
1 // T

′

0

f
′
0 // L // 0.

with T
′

i ∈ add(T ) for all 0 ≤ i ≤ n− 1 . Set Imf
′

i = Li for all 0 ≤ i ≤ n− 1 . It is clear that Exti(T, Lj) = 0

for all i ≥ 1 and 0 ≤ j ≤ n− 1 since T is self-orthogonal. Consider the pull-back of T0 → M and N → M :
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0

��

0

��
L

��

L

��
0 // Ω1

T (M) // H0
//

��

N //

��

0

0 // Ω1
T (M) // T0

//

��

M //

��

0

0 0

Since Ext1(T, L) = 0 , we have that the second column is split in the diagram above and H0
∼= L

⊕
T0 . Hence,

we can obtain a new short exact sequence 0 → L1 → T
′

0

⊕
T0 → L

⊕
T0 → 0 . Consider the pull-back of

T
′

0

⊕
T0 → L

⊕
T0 and Ω1

T (M) → L
⊕

T0 :

0

��

0

��
0 // L1

// N1
//

��

Ω1
T (M) //

��

0

0 // L1
// T

′

0

⊕
T0

//

��

L
⊕

T0
//

��

0

N

��

N

��
0 0

Then consider further the pull-back of N1 → Ω1
T (M) and T1 → Ω1

T (M) :

0

��

0

��
Ω2

T (M)

��

Ω2
T (M)

��
0 // L1

// H1
//

��

T1
//

��

0

0 // L1
// N1

//

��

Ω1
T (M) //

��

0

0 0
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Since Ext1(T, L1) = 0 , we have H1
∼= L1

⊕
T1 . Similar to the discussion above, we can get some exact

sequences 0 → Ni → T
′

i−1

⊕
Ti−1 → Ni−1 → 0 with 1 ≤ i ≤ n and N0 = N . By dimension shifting, we have

Ext1≤j≤n−i(Ni, T ) = 0 for all 1 ≤ i ≤ n− 1 . There is an exact sequence 0 → N∗
i−1 → (T

′

i−1

⊕
Ti−1)

∗ → N∗
i →

0 . Next, we will prove that Ni is i -T -torsionfree.
When i=1, we consider the following natural commutative diagram:

0 // N1
//

αN1

��

T
′

0

⊕
T0

//

α
T

′
0

⊕
T0

��

N0
//

αN0

��

0

0 // N∗∗
1

// (T
′

0

⊕
T0)

∗∗ // N∗∗
0

It follows from Snake lemma that αN1 is injective. i.e. N1 is 1-T -torsionfree.
When i=2, we consider the following natural commutative diagram:

0 // N2
//

αN2

��

T
′

1

⊕
T1

//

α
T

′
1

⊕
T1

��

N1
//

αN1

��

0

0 // N∗∗
2

// (T
′

1

⊕
T1)

∗∗ // N∗∗
1

We have proved that αN1 is injective, it follows from Snake lemma that αN2 is an isomorphism. i.e. N2 is
2-T -torsionfree.

For the case i=3, we consider the following natural commutative diagram:

0 // N3
//

αN3

��

T
′

2

⊕
T2

//

α
T

′
2

⊕
T2

��

N2
//

αN2

��

0

0 // N∗∗
3

// (T
′

2

⊕
T2)

∗∗ // N∗∗
2

// Ext1B(N∗
3 , T ) // 0

It follows from the diagram above that αN3
is an isomorphism and Ext1B(N∗

3 , T ) = 0 . Thus, N3 is
3-T -torsionfree by Lemma 2.4. Iterating the argument above, we can finally get that Nn is n -T -torsionfree.
It is clear to see that Ωn

T (M) ∼= Nn . Thus Ωn
T (M) is n -T -torsionfree. 2

Proposition 2.10 If T is self-orthogonal and Ωn
T (M) is ∞-T -torsionfree for some n ≥ 1 , then there exists

an exact sequence 0 → L → N → M → 0 such that N ∈ ∞-T -torsionfree and add(T )-pd (L)≤ n− 1 .

Proof We will prove the result by induction on n .

When n = 1 , since Ω1
T (M) is ∞ -T -torsionfree, there exists an exact sequence 0 → Ω1

T (M) → T
′

0 →

X0 → 0 , where T
′

0 ∈ add(T ) , X0 is ∞ -T -torsionfree and Ext1(X0, T ) = 0 by Theorem 2.7. Consider the
push-out of Ω1

T (M) → T0 and Ω1
T (M) → T

′

0 :
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0

��

0

��
0 // Ω1

T (M) //

��

T0
//

��

M // 0

0 // T
′

0
//

��

N //

��

M // 0

X0

��

X0

��
0 0

It is easy to show that the middle row in the diagram above is just the exact sequence we desired.

Now suppose that n ≥ 2 . Since Ωn
T (M) = Ωn−1

T (Ω1
T (M)) , we obtain an exact sequence 0 → L

′ → N
′ →

Ω1
T (M) → 0 with N

′ ∞ -T -torsionfree and add(T ) -pd (L′ )≤ n− 2 by induction hypothesis. And there is an
exact sequence 0 → N

′ → T
′

0 → N
′′ → 0 with N

′′ ∞ -T -torsionfree and T
′

0 ∈ add(T ) and Ext1(N ′′
, T ) = 0

by Theorem 2.7. Consider the push-out of N
′ → T

′

0 and N
′ → Ω1

T (M) :

0

��

0

��
0 // L

′ // N
′ //

��

Ω1
T (M) //

��

0

0 // L
′ // T

′

0
//

��

L //

��

0

N
′′

��

N
′′

��
0 0

It follows from the middle row in the diagram above that add(T ) -pd (L)≤ n − 1 . We consider the
push-out of Ω1

T (M) → T0 and Ω1
T (M) → L :
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0

��

0

��
0 // Ω1

T (M) //

��

T0
//

��

M // 0

0 // L //

��

N //

��

M // 0

N
′′

��

N
′′

��
0 0

Since Ext1(N ′′
, T ) = 0 , we have that the second column in this diagram is Hom(−, T ) -exact. From Proposition

2.5, we get that N is ∞ -T -torsionfree. Thus, the middle row in the diagram above is just desired. 2

3. T -grade

In this section, let M be in A -mod, we give the definition of T -grade and mainly show that Ωi
T (M) is i -T -

torsionfree for all 1 ≤ i ≤ n if and only if T -grade Exti(M,T ) ≥ i− 1 for any 1 ≤ i ≤ n .
Assume that M has an add(T )-resolution,

· · · // Tn
// Tn−1

// · · · // T1
// T0

// M // 0 (§)

with Ti ∈ add(T ) for all i ≥ 0 . Applying Hom(−, T ) to the exact sequence:

0 // Ωn
T (M) // Tn−1

// Ωn−1
T (M) // 0,

we can obtain the following exact sequence

0 // (Ωn−1
T (M))∗ // T ∗

n−1

f // (Ωn
T (M))∗ // Ext1(Ωn−1

T (M), T ) // 0.

It is easy to show that Ext1(Ωn−1
T (M), T ) ∼= Extn(M,T ) . Set Q = Imf . We get two new exact sequences

0 // (Ωn−1
T (M))∗ // T ∗

n−1
// Q // 0. (1)

and

0 // Q // (Ωn
T (M))∗ // Extn(M,T ) // 0. (2)

Applying the functor Hom(−, T ) to the exact sequence (1), we have the following commutative diagram:

0 // Ωn
T (M) //

g

��

Tn−1
//

αTn−1

��

Ωn−1
T (M) //

α
Ω
n−1
T

(M)

��

0

0 // Q∗ // T ∗∗
n−1

h // (Ωn−1
T (M))∗∗ // Ext1(Q,T ) // 0

(3)
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Similarly, applying the functor Hom(−, T ) to the exact sequence (2), we have the following diagram with
exact row:

Ωn
T (M)

αΩn
T

(M)

��

Ωn
T (M)

g

��
0 // (Extn(M,T ))∗ // (Ωn

T (M))∗∗
i∗ // Q∗

(4)

From the left square in diagram (3), it is easy to verify that the square in diagram (4) is commutative.

Lemma 3.1 Assume that M has an add(T )-resolution (§) , then the following conclusions hold:
(1) Ω1

T (M) is 1-T -torsionfree
(2) For any n ≥ 2 , Coker(αΩn

T (M)) ∼= HomA(ExtnA(M,T ), T ) .

Proof (1) We have the following commutative diagram:

0 // Ω1
T (M) //

α
Ω1
T

(M)

��

T0

αT0

��
(Ω1

T (M))∗∗ // T ∗∗
0

It follows that αΩ1
T (M) is injective, i.e. Ω1

T (M) is 1 -T -torsionfree.

(2) If n ≥ 2 , then αΩn−1
T (M) is injective by (1). Hence g is an isomorphism in diagram (3) since

αTn−1 is an isomorphism. It follows from the diagram (3.4) by the Snake lemma that Coker(αΩn
T (M)) ∼=

HomA(ExtnA(M,T ), T ) . 2

Definition 3.2 Let N be in A-mod. the T -grade of N with respect to T , denoted by T-grade N, is defined to
be the integer n=inf{i|Exti(N,T ) ̸= 0} , and ∞ if such integer doesn’t exist.

Theorem 3.3 Assume that M has an add(T )-resolution (§) and n ≥ 1 . Then Ωi
T (M) is i-T -torsionfree for

all 1 ≤ i ≤ n if and only if T -grade Exti(M,T ) ≥ i− 1 for all 1 ≤ i ≤ n .

Proof We will prove the result by induction on n .
For the case of n = 1 , the conclusion follows from Lemma 3.1.
Suppose that n = 2 . Then Ω2

T (M) is 2 -T -torsionfree if and only if αΩ2
T (M) is an isomorphism. By

Lemma 3.1 (1), αΩ2
T (M) is injective. So Ω2

T (M) is 2 -T -torsionfree if and only if αΩ2
T (M) is surjective, but

Coker(αΩn
T (M)) ∼= HomA(ExtnA(M,T ), T )

by Lemma 3.1 (2). Hence, Ω2
T (M) is 2 -T -torsionfree if and only if HomA(Ext2A(M,T ), T ) = 0 , i.e., T -grade

Ext2(M,T ) ≥ 1 . Now we assume that n ≥ 3 .
(⇒) Assume that Ωi

T (M) is i -T -torsionfree for all 1 ≤ i ≤ n , we only need to prove that T -grade
Extn(M,T ) ≥ n−1 . By Lemma 3.1 (2), we have that 0 = Coker(αΩn

T (M)) ∼= HomA(ExtnA(M,T ), T ) . Applying
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the functor Hom(−, T ) to the exact sequence (2), we get the following new exact sequence:

0 // (Extn(M,T ))∗ // (Ωn
T (M))∗∗

i∗ // Q∗ // Ext1(Extn(M,T ), T ) // Ext1((Ωn
T (M))∗, T ).

By induction hypothesis, we know that αΩn−1
T (M) is an isomorphism. So g in diagram (3) is also an iso-

morphism, thus, i∗ in diagram (4) is surjective. Since Ext1((Ωn
T (M))∗, T ) = 0 by Lemma 2.4, we have

Ext1(Extn(M,T ), T ) = 0 from the exact sequence above. Hence, T -grade Extn(M,T ) ≥ 2 . Consider the
two exact sequences (1) and (2), we have

0 = Exti((Ωn−1
T (M))∗, T ) ∼= Exti+1(Q,T )

for all 1 ≤ i ≤ n− 3 by the assumption and Lemma 2.4. By dimension shifting, we obtain that Exti(Q,T ) ∼=
Exti+1(Extn(M,T ), T ) for 1 ≤ i ≤ n−3 , but Extn−2(Q,T ) ≇ Extn−1(Extn(M,T ), T ) . Hence, Extj(Extn(M,T ), T ) =

0 for any 3 ≤ j ≤ n− 2 . For the case of j = 2 , by the assumption, we have that αΩn−1
T (M) is an isomorphism.

It follows that h in diagram (3) is surjective, and Ext1(Q,T ) = 0 . So 0 = Ext1(Q,T ) ∼= Ext2(Extn(M,T ), T ) .
Consequently, Extk(Extn(M,T ), T ) = 0 for all 0 ≤ k ≤ n− 2 . i.e. T -grade Extn(M,T ) ≥ n− 1

(⇐) Assume that the assertion holds for the case n − 1 . i.e. if T -grade Exti(M,T ) ≥ i − 1 for all
1 ≤ i ≤ n− 1 , then Ωi

T (M) is i -T -torsionfree for all 1 ≤ i ≤ n− 1 . Suppose that T -grade Exti(M,T ) ≥ i− 1

for all 1 ≤ i ≤ n , it suffices to show that Ωn
T (M) is n -T -torsionfree by induction hypothesis. Note that

αΩn−1
T (M) is an isomorphism by Lemma 2.4. It follows that g is an isomorphism and Ext1(Q,T ) = 0 in

diagram (3). Because T -grade Extn(M,T ) ≥ n− 1 , i∗ is an isomorphism in the diagram (4); thus, αΩn
T (M) is

an isomorphism by Snake lemma.
Next, we only need to prove that Exti((Ωn

T (M))∗, T ) = 0 for all 1 ≤ i ≤ n− 2 by Lemma 2.4. From the
exact sequence (1), we have that

0 = Exti((Ωn−1
T (M))∗, T ) ∼= Exti+1(Q,T )

for all 1 ≤ i ≤ n − 3 by the assumption and Lemma 2.4. Since T -grade Extn(M,T ) ≥ n -1, we have that
Extj(Extn(M,T ), T ) = 0 for any 1 ≤ j ≤ n -2, and that Extj(Q,T ) ∼= Extj((Ωn

T (M))∗, T ) for 1 ≤ j ≤ n − 3

from the exact sequence (2). Consequently, Extj((Ωn
T (M))∗, T ) = 0 for 2 ≤ j ≤ n − 3 . It follows from the

assumption and Lemma 2.4 that Extn−3((Ωn−1
T (M))∗, T ) = 0 , so we have that 0 = Extn−3((Ωn−1

T (M))∗, T ) ∼=
Extn−2(Q,T ) from the exact sequence (1). Thus, Extn−2((Ωn

T (M))∗, T ) = 0 from the exact sequence (2) since
Extn−2(Extn(M,T ), T ) = 0 . In former portion, we proved Ext1(Q,T ) = 0 , so we have that 0 = Ext1(Q,T ) ∼=
Ext1((Ωn

T (M))∗, T ) from the exact sequence (2). Thus Exti((Ωn
T (M))∗, T ) = 0 for all 1 ≤ i ≤ n− 2 . 2
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