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Abstract: In this paper, we aim to introduce a quantum linear stochastic Volterra integral equation of convolution type
with operator-valued kernels in a nuclear topological algebra. We first establish the existence and uniqueness of the
solutions and give the explicit expression of the solutions. Then we prove the continuity, continuous dependence on free
terms and other properties of the solution.
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1. Introduction
Integral equations of Volterra type are used in the areas of physical and biological sciences [1, 2, 6, 7, 17].
In mathematics, the Volterra integral equations are a special type of integral equations. In fact, the Volterra
equations are not only simple special cases of the Fredholm equations but represent a class of equations with
their own specific problems. In the past three decades, much attention has been paid to the theory of Volterra
equations; there has been a big development particularly in the fractional ones. The increasing interest in these
equations comes from their application to problems in physics and other subjects. This paper is devoted to
studying the existence and some kind of regularity of solutions to stochastic Volterra equations in a nuclear
topological algebra of discrete-time normal martingales.

Hida’s white noise analysis is essentially a theory of infinite dimensional calculus on generalized functionals
of Brownian motion, which linked up the applications to the study of random processes and stochastic differential
equations. And considering the space of slowly growing Schwartz distributions as the space of trajectories of
white noise, Hida constructed a new theory of white noise functionals [10, 11, 14], which proved to be useful in
the study of stochastic equations. In [4, 13] the authors studied the following integral equation of Volterra type
with Hida distribution-valued kernels

φ(t) = φ0(t) +

∫ t

0

η(t, s) ⋄ φ(s)ds, 0 ≤ t ≤ l, (1.1)

where ⋄ stands for Wick product, {η(t, s)|0 ≤ t, s ≤ l} and {φ0(t)|0 ≤ t ≤ l} are given Hida distribution-valued
processes. It was shown in [13] that many interesting stochastic differential equations can look as the special
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cases of equation (1.1). In this paper, we will generalize equation (1.1) to the level of discrete-time normal
martingale operators.

Discrete-time normal martingales [15], which also play an important role in many theoretical and applied
fields, have attracted much attention in recent years. For example, the classical random walk is just such a
discrete-time normal martingale [12, 16]. Let M = (Mn)n∈N be a discrete-time normal martingale satisfying
some mild conditions. In [18], the authors constructed the testing functional space S(M) and generalized
functional space S∗(M) of M by using a specific orthonormal basis for square integrable functionals of M . In
[21], we introduced a transform, called 2D-Fock transform, for operators from S(M) to S∗(M) , characterized
the continuous linear operators from S(M) to S∗(M) , applied the 2D-Fock transform, and introduced a new
product, called convolution for operators from S(M) to S∗(M) . Let L be the set of all continuous linear
operators from S(M) to S∗(M) , we verified that (L, ∗) forms a commutative algebra with an involution and
a unit.

Motivated by what is mentioned above, we investigate the following quantum integral equation of Volterra
type with operator-valued kernels

T (t) = J(t) +

∫ t

0

K(t, s) ∗ T (s)ds, 0 ≤ t ≤ l, (1.2)

where l > 0 , ∗ stands for the convolution of L -valued function. {K(t, s)| 0 ≤ t, s ≤ l} ⊂ L and {J(t)| 0 ≤ t ≤
l} ⊂ L is a given L -valued quantum stochastic process.

As we know, in the mathematical description of quantum physics, many observables and quantities are
not bona fide operators in the Hilbert space but can only be considered as operators on a certain framework
of white noise analysis. The equation (1.2) can be interpreted as a quantum stochastic differential equation for
quantum stochastic processes to describe the evolution of a quantum system at a level of operators. We study
the existence and some kind of regularity of solutions to equation (1.2) and give the explicit expression of the
solutions. Moreover, we also prove the continuity, the continuous dependence on initial values as well as other
properties of the solution.

The paper is organized as follows. In Section 2, we briefly recall the construction and characterization
of continuous linear operators in L . In Section 3, we establish the existence and uniqueness of solution to
equation (1.2) and give the explicit expression of the solutions. In Sections 4 and 5, we prove the continuity,
the continuous dependence on initial values as well as other properties of the solution.

Notation and conventions: Throughout the paper, N designates the set of all nonnegative integers,
Γ denotes the finite power set of N , namely

Γ = {σ | σ ⊂ N and #(σ) < ∞ }, (1.3)

where #(σ) means the cardinality of σ as a set. In addition, we always assume that (Ω,F , P ) is a given
probability space with E denoting the expectation with respect to P . We denote by L2(Ω,F , P ) the usual
Hilbert space of square integrable complex-valued functions on (Ω,F , P ) and use ⟨·, ·⟩ and ∥ · ∥ to mean its
inner product and norm, respectively. By convention, ⟨·, ·⟩ is conjugate-linear in its first argument and linear
in its second argument.
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2. Generalized functionals of discrete-time normal martingales

Definition 2.1 A sequence M = (Mn)n∈N of random variables on (Ω,F , P ) is called a discrete-time normal
martingale if it is square integrable and satisfies:

(1) E[M0|F−1] = 0 and E[Mn|Fn−1] = Mn−1 for n ≥ 1 ;

(2) E[M2
0 |F−1] = 1 and E[M2

n|Fn−1] = M2
n−1 + 1 for n ≥ 1 ,

where F−1 = {∅,Ω} , Fn = σ(Mk; 0 ≤ k ≤ n) for n ∈ N and E[·|Fk] means the conditional expectation.

Let M = (Mn)n∈N be a discrete-time normal martingale on (Ω,F , P ) . Then one can construct from M

a process Z = (Zn)n∈N as
Z0 = M0, Zn = Mn −Mn−1, n ≥ 1.

It can be verified that Z admits the following properties:

E[Zn|Fn−1] = 0 and E[Z2
n|Fn−1] = 1, n ∈ N.

Thus, it can be viewed as a discrete-time noise, we called the discrete-time normal noise associated with M .
It is known [15] that Z has the chaotic representation property. Then the system {Zσ | σ ∈ Γ} defined

by Z∅ = 1 and

Zσ =
∏
i∈σ

Zi, σ ∈ Γ , σ ̸= ∅ (2.1)

is actually an orthonormal basis for L2(Ω,F∞, P ) , where F∞ = σ(Mn;n ∈ N) , the σ -field over Ω generated
by M , which is a closed subspace of L2(Ω,F , P ) as is known.

And, for brevity, we use L2(M) = L2(Ω,F∞, P ) , which shares the same inner product and norm with
L2(Ω,F , P ) , namely ⟨·, ·⟩ and ∥ · ∥ .

Lemma 2.1 [20] Let σ 7→ λσ be the N-valued function on Γ given by

λσ =

{ ∏
k∈σ(k + 1), σ ̸= ∅, σ ∈ Γ;

1, σ = ∅, σ ∈ Γ. (2.2)

Then, for p > 1 , the positive term series
∑

σ∈Γ λ
−p
σ converges; moreover,

∑
σ∈Γ

λ−p
σ ≤ exp

[ ∞∑
k=1

k−p

]
< ∞. (2.3)

Using the N -valued function defined by (2.2), we can construct a chain of Hilbert spaces consisting of
functionals of M as follows. For p ≥ 0 , we define a norm ∥ · ∥p on L2(M) through

∥ξ∥2p =
∑
σ∈Γ

λ2p
σ |⟨Zσ, ξ⟩|2, ξ ∈ L2(M) (2.4)

and put
Sp(M) =

{
ξ ∈ L2(M) | ∥ξ∥p < ∞

}
. (2.5)

It is not hard to check that ∥ · ∥p is a Hilbert norm and Sp(M) becomes a Hilbert space with ∥ · ∥p .
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It is easy to see that λσ ≥ 1 for all σ ∈ Γ . This implies that ∥·∥p ≤ ∥·∥q and Sq(M) ⊂ Sp(M) whenever
0 ≤ p ≤ q . Thus we actually get a chain of Hilbert spaces of functionals of M :

· · · ⊂ Sp+1(M) ⊂ Sp(M) ⊂ · · · ⊂ S1(M) ⊂ S0(M) = L2(M). (2.6)

We now put

S(M) =

∞∩
p=0

Sp(M) (2.7)

and endow it with the topology generated by the norm sequence {∥ · ∥p}p≥0 . Note that, for each p ≥ 0 , Sp(M)

is just the completion of S(M) with respect to ∥ · ∥p . Thus, S(M) is a countably Hilbert space [8].
For p ≥ 0 , we denote by S∗

p (M) the dual of Sp(M) and ∥ · ∥−p the norm of S∗
p (M) . Then S∗

p (M) ⊂
S∗
q (M) and ∥ · ∥−p ≥ ∥ · ∥−q whenever 0 ≤ p ≤ q . The lemma below is then an immediate consequence of the

general theory of countably Hilbert spaces (see [8]).

Lemma 2.2 [18] Let S∗(M) be the dual of S(M) and endow it with the strong topology. Then

S∗(M) =

∞∪
p=0

S∗
p (M). (2.8)

Moreover, the inductive limit topology on S∗(M) given by space sequence {S∗
p (M)}p≥0 coincides with the strong

topology.

We mention that, by identifying L2(M) with its dual, one comes to a Gel’fand triple

S(M) ⊂ L2(M) ⊂ S∗(M), (2.9)

which we refer to as the Gel’fand triple associated with M .
Throughout this paper, we denote by L the set of all continuous linear operators from S(M) to S∗(M) ,

that is L = L[S(M),S∗(M)] .

Definition 2.2 [21] For an operator T ∈ L , its 2D-Fock transform is the function T̃ on Γ× Γ given by

T̃ (σ, τ) = ⟨⟨T (Zσ), Zτ ⟩⟩, (σ, τ) ∈ Γ× Γ, (2.10)

where ⟨⟨·, ·⟩⟩ is the canonical bilinear form on S∗(M)× S(M) .

For two operators T1 , T2 ∈ L , their usual product T1T2 may not make sense. However, one can introduce
a product of other type for them.

Definition 2.3 Let T1 , T2 ∈ L , then their convolution T1 ∗ T2 is defined as

T̃1 ∗ T2(σ, τ) = T̃1(σ, τ)T̃2(σ, τ), (σ, τ) ∈ Γ× Γ. (2.11)

It can be verified that (L, ∗) forms a commutative algebra with an involution and a unit.
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Lemma 2.3 [3] Let (Tn)n≥1 ⊂ L be such

(1) T̃n(σ, τ) → T̃ (σ, τ) for all σ, τ ∈ Γ ;

(2) there exist constants C ≥ 0 and p ≥ 0 such that

sup
n≥1

|T̃n(σ, τ)| ≤ Cλp
σλ

p
τ , (σ, τ) ∈ Γ× Γ.

Then there exists a unique T ∈ L such that sequence (Tn)n≥1 converges strongly to T .

Lemma 2.4 [3] Let (E, E , ν) be a measure space and T (·) : E → L satisfies

(1) for any σ, τ ∈ Γ , the function T̃ (·)(σ, τ) : E → C is measurable;

(2) there exist p ≥ 0 and a nonnegative function C(ω) ∈ L1(E, ν) , such that for ν -a.e., ω ∈ E it holds that

|T̃ (ω)(σ, τ)| ≤ C(ω)λp
σλ

p
τ σ, τ ∈ Γ. (2.12)

Then the strongly Bochner integrable
∫
E
T (ω)dν(ω) exist and

∫
E

˜T (ω)dν(ω)(σ, τ) =

∫
E

T̃ (ω)(σ, τ)dν(ω), σ, τ ∈ Γ. (2.13)

In particular,
∫
E
T (ω)dν(ω) ∈ L .

Lemma 2.5 [3] Let 0 ≤ l < +∞ , T (·) : [0, l] → L is a L-valued function, then T (·) is continuous if and only
if:

(1) T̃ (·)(σ, τ) : [0, l] → C is continuous for any σ, τ ∈ Γ ;

(2) there exist p ≥ 0 and C ≥ 0 such that

|T̃ (·)(σ, τ)| ≤ Cλp
σλ

p
τ

for each σ, τ ∈ Γ and t ∈ [0, l] .

3. Existence and uniqueness of solution

In this section, we will establish the existence and uniqueness of solutions to equation (1.2) and also give an
explicit express of the solution. Throughout this section, l > 0 is given.

Theorem 3.1 Let the kernel {K(t, s)|0 ≤ t, s ≤ l} and the free term {J(t)|0 ≤ t ≤ l} of equation (1.2) satisfies
(1) for any σ, τ ∈ Γ , the function

K̃(·, ·)(σ, τ) : [0, l]× [0, l] → C
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is continuous, and

J̃(·)(σ, τ) : [0, l] → C

is measurable;
(2) there exist constants p ≥ 0 , M ≥ 1 , and a positive function c(t) ∈ L1[0, l] such that

|J̃(t)(σ, τ)| ≤ c(t)λp
σλ

p
τ , t ∈ [0, l],

for any σ, τ ∈ Γ and

|K̃(t, s)(σ, τ)| ≤ M, 0 ≤ s ≤ t ≤ l.

Then there exists a unique generalized L-valued solution T : [0, l] → L to equation (1.2). Moreover, the solution
T is given by

T (t) = J(t) +

∫ t

0

[

∞∑
n=1

Kn(t, s)] ∗ J(s)ds, 0 ≤ t ≤ l, (3.1)

where Kn is defined by
K1(t, s) = K(t, s),

Kn+1(t, s) =

∫ t

s

K(t, u) ∗Kn(u, s)du, n ≥ 1.
(3.2)

where the series
∞∑

n=1
Kn(t, s) converges in L strongly.

Proof (Existence) According to Lemma 2.4, for all n ≥ 1 and 0 ≤ s ≤ t ≤ l , the Bochner integral∫ t

s
K(t, u) ∗Kn(u, s)du exists and belongs to L .

Furthermore, by induction we can prove that

|K̃n(t, s)(σ, τ)| ≤
(t− s)n−1

(n− 1)!
Mn. (3.3)

for any σ, τ ∈ Γ , 0 ≤ s ≤ t ≤ l and n ≥ 1 .
In fact, (3.3) is obviously true for n = 1 . If the inequality (3.3) is proven for some n ≥ 1 . Then

| ˜Kn+1(t, s)(σ, τ)|

= |
∫ t

s

K̃(t, u)(σ, τ)K̃n(u, s)(σ, τ)du|

≤
∫ t

s

M
(u− s)n−1

(n− 1)!
Mndu

=
t− s

n!
Mn+1.

Now we consider the series
∞∑

n=1
Kn(t, s) . By (3.3), it is easy to see that for 0 ≤ s ≤ t ≤ l , we have

∞∑
n=1

|K̃n(t, s)(σ, τ)| ≤
∞∑

n=1

(t− s)n−1

(n− 1)!
Mn ≤ Me(t−s)M .
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and for any n ≥ 0 , the function

(t, s) :→ K̃n(t, s)(σ, τ)

is continuous. Then the sequence

(

n∑
i=1

Ki(t, s))n≥1 ⊂ L

satisfies the conditions of Lemma 2.3, so it converges to some A(s, t) ∈ L . We denoted A(s, t) =
∞∑

n=1
Kn(t, s) .

Obviously, for any n ≥ 1, 0 ≤ t < l , the Bochner integral

∫ t

0

[

n∑
i=1

Ki(t, s)] ∗ J(s)ds

exists and belongs to L . And

Ã(s, t)(σ, τ) =

∞∑
n=1

K̃n(t, s)(σ, τ)

for any σ, τ ∈ Γ , 0 ≤ s ≤ t ≤ l , which implies

|Ã(s, t)(σ, τ)| ≤
∞∑

n=1

| K̃n(t, s)(σ, τ) |≤ Me(t−s)M .

On the other hand, by the uniform convergence of
∞∑

n=1
K̃n(t, s)(σ, τ) , the function

(t, s) :→ Ãn(t, s)(σ, τ)

is continuous. Which means that the Bochner integral
∫ t

0
A(t, s) ∗ J(s)ds also exists and belongs to L .

Now let

T (t) = J(t) +

∫ t

0

A(t, s) ∗ J(s)ds, 0 ≤ t ≤ l

and

Tn(t) = J(t) +

∫ t

0

[

n∑
i=1

Ki(t, s)] ∗ J(s)ds, 0 ≤ t ≤ l, n ≥ 1.

For any σ, τ ∈ Γ and 0 ≤ t ≤ l , by the dominated convergence theorem, we have

T̃n(t)(σ, τ) → T̃ (s)(σ, τ).
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On the other hand, for 0 ≤ t ≤ l , we have

J(t) +

∫ t

0

K(t, s) ∗ Tn(s)ds

= J(t) +

∫ t

0

K(t, s) ∗ {J(s) +
∫ s

0

[

n∑
i=1

Ki(s, u)] ∗ J(u)du}ds

= J(t) +

∫ t

0

K(t, s) ∗ J(s)ds+
∫ t

0

∫ s

0

K(t, s) ∗ [
n∑

i=1

Ki(s, u)] ∗ J(u)duds

= J(t) +

∫ t

0

K(t, s) ∗ J(s)ds+
∫ t

0

{
∫ s

0

K(t, s) ∗ [
n∑

i=1

Ki(s, u)]ds} ∗ J(u)du

= J(t) +

∫ t

0

K(t, s) ∗ J(s)ds+
∫ t

0

[

n+1∑
i=2

Ki(s, u)] ∗ J(u)du

= J(t) +

∫ t

0

[

n+1∑
i=1

Ki(t, s)] ∗ J(s)ds

= Tn+1(t).

Therefore
Tn+1(t) = J(t) +

∫ t

0

K(t, s) ∗ Tn(s)ds.

Thus,
T̃n+1(t)(σ, τ) = J̃(t)(σ, τ) +

∫ t

0

K̃(t, s)(σ, τ) · T̃n(s)(σ, τ)ds.

By taking limit, we have

T̃ (t)(σ, τ) = J̃(t)(σ, τ) +

∫ t

0

K̃(t, s)(σ, τ)T̃ (s)(σ, τ)ds,

which implies that
T (t) = J(t) +

∫ t

0

K(t, s) ∗ T (s)ds.

This means that T is a solution of equation (1.2).
(Uniqueness) Let S : [0, l] → L be another solution of (1.2). Then for any σ, τ ∈ Γ , we have

|T̃ (t)(σ, τ)− S̃(t)(σ, τ)|

= |
∫ t

0

K̃(t, s)(σ, τ)[T̃ (t)(σ, τ)− S̃(t)(σ, τ)]ds|

≤ M

∫ t

0

|T̃ (t)(σ, τ)− S̃(t)(σ, τ)|ds

by Gronwall lemma

|T̃ (t)(σ, τ)− S̃(t)(σ, τ)| = 0, 0 ≤ t ≤ l,

which implies that T = S . 2
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4. Regularity of solution

In this section, we prove regularity solution of equation (1.2), we first study the continuity of solutions.

Theorem 4.1 Let the kernel {K(t, s)|0 ≤ t, s ≤ l} and the free term {J(t)|t ∈ [0, l]} of (1.2) be such that
(1) for any σ, τ ∈ Γ , the function

K̃(·, ·)(σ, τ) : [0, l]× [0, l] → C

and
J̃(·)(σ, τ) : [0, l] → C

are continuous;
(2) there exist constants p ≥ 0 , M ≥ 1 , and a positive function c(t) ∈ L1[0, l] such that

|J̃(t)(σ, τ)| ≤ c(t)λp
σλ

p
τ , t ∈ [0, l],

for any σ, τ ∈ Γ and

|K̃(t, s)(σ, τ)| ≤ M, 0 ≤ s ≤ t ≤ l.

Then, the solution T is continuous as a map from [0, l] to L .

Proof Let p ≥ 0,M ≥ 1, c > 0 , for any σ, τ ∈ Γ , we have

|K̃(t, s)(σ, τ)| ≤ M,

and
|J̃(t)(σ, τ)| ≤ cλp

σλ
p
τ , t ∈ [0, l],

then for any σ, τ ∈ Γ , we have

|T̃ (t)(σ, τ)|

≤ |J̃(t)(σ, τ)|+
∫ t

0

|K̃(t, s)(σ, τ)| · |T̃ (s)(σ, τ)|ds

≤ cλp
σλ

p
τ +M

∫ t

0

|T̃ (t)(σ, τ)|ds

0 ≤ t ≤ l , by Gronwall inequality we get

|T̃ (t)(σ, τ)| ≤ ceMlλp
σλ

p
τ , t ∈ [0, L].

On the other hand, for any σ, τ ∈ Γ , by (3.1) we get

T̃ (t)(σ, τ) = J̃(t)(σ, τ) +

∫ t

0

[

∞∑
n=1

K̃n(t, s)(σ, τ)] · J̃(s)(σ, τ)ds,

0 ≤ t ≤ l . By induction on n ≥ 1 we see that the function

(t, s) :→ K̃n(t, s)(σ, τ), 0 ≤ s ≤ t ≤ l
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are continuous. Since the series
∞∑

n=1
K̃n(t, s)(σ, τ) is uniformly convergent on the set 0 ≤ s ≤ t ≤ l , it follows

that the function

(t, s) →
∞∑

n=1

K̃n(t, s)(σ, τ)

is continuous. Noting that the function J̃(·)(σ, τ) : [0, l] → C is also continuous, by Lemma 2.5, we come to the
conclusion. 2

The next theorem tells us under what conditions the solutions would take values in L[S(M),S(M)] .

Theorem 4.2 Let {T (t)|0 ≤ t ≤ l} be a solution of (1.2). Suppose that the kernel {K(t, s)|0 ≤ t, s ≤ l} and
the free term {J(t)|t ∈ [0, l]} of (1.2) satisfy the conditions: for any p ≥ 0 , there exist q ≥ 0 and M ≥ 0 such
that

| K̃(t, s)(σ, τ) |≤ M

and

| J̃(t)(σ, τ) |≤ ρ(t)λp+q
σ λ−q

τ

for any σ, τ ∈ Γ, 0 ≤ t ≤ l . Then the solution {T (t)|0 ≤ t ≤ l} lies in L[S(M),S(M)] .

Proof The conditions imply that

|T̃ (t)(σ, τ)| =| J̃(t)(σ, τ) +
∫ t

0

K̃(t, s)(σ, τ) · T̃ (s)(σ, τ)ds|

≤ |J̃(t)(σ, τ)|+
∫ t

0

|K̃(t, s)(σ, τ)| · |T̃ (s)(σ, τ)|ds

≤ cλp+q
σ λ−p

τ +M

∫ t

0

|T̃ (t)(σ, τ)|ds

for any σ, τ ∈ Γ, 0 ≤ t ≤ l . By Gronwall inequality, we get

|T̃ (t)(σ, τ)| ≤ ceMlλp+q
σ λ−p

τ , t ∈ [0, l].

Hence, by a charcterization theorem for operators in L[S(M),S(M)] , we come to the conclusion. 2

5. Continuous dependence of solutions on free terms

In this section, we prove that the solution T of equation (1.2) depends continuously on the free term J .
Let

C([0, l],L) = {S|S : [0, l] → L is continuous}.

For σ, τ ∈ Γ , define a seminorm ∥ · ∥σ,τ on C([0, l],L) as follows:

∥ · ∥σ,τ = sup
0≤t≤l

|S̃(t)(σ, τ)|, S ∈ C([0, l],L).
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We equip C([0, l],L) with the topology generated by seminorms {∥ · ∥σ,τ | σ, τ ∈ Γ} . Then C([0, l],L) becomes
a Hausdorff topological vector space. For p ≥ 0 , let Cp([0, l],L) = {S|S ∈ C([0, l],L), and there exists α , such
that

sup
0≤t≤l

|S̃(t)(σ, τ)| ≤ αλp
σλ

p
τ , ∀σ, τ ∈ Γ.

Then, Cp([0, l],L) is a subspace of C([0, l],L) .
In the sequel, we assume that p ≥ 0 , and the kernel K(t, s) of (1.2) satisfies that:

(1) K̃(·, ·)(σ, τ) : [0, l]× [0, l] → C is continuous for all σ, τ ∈ Γ ;

(2) sup
0≤t≤l

|K̃(t, s)(σ, τ)| ≤ M, for all σ, τ ∈ Γ.

Theorem 5.1 Let T ∈ Cp([0, l],L) . Define

S(t) =

∫ t

0

K(t, s) ∗ T (s)ds, 0 ≤ t ≤ l.

Then S ∈ Cp([0, l],L).

Proof For t ∈ [0, l] , the integral
∫ t

0
K(t, s) ∗ T (s)ds exists. Hence, S(t) is well defined. Obviously, for all

σ, τ ∈ Γ , the function S̃(·)(σ, τ) is continuous. Let α > 0 be such

sup
0≤t≤l

|T̃ (t)(σ, τ)| ≤ αλp
σλ

p
τ , σ, τ ∈ Γ.

Then for all σ, τ ∈ Γ, we have

|S̃(t)(σ, τ)| = |
∫ t

0

K̃(t, s)(σ, τ)T̃ (t)(σ, τ)ds|

≤ MeMl,

Therefore, S ∈ Cp([0, l],L). 2

Theorem 5.2 For each J ∈ Cp([0, l],L) , let TJ be the unique solution of equation (1.2) corresponding to J ,
then TJ ∈ Cp([0, l],L) .

Proof Let J ∈ Cp([0, l],L) .Then by Theorem 3.1 and Theorem 4.1, we know that (1.2) has a unique solution
TJ ∈ C([0, l],L) . Now let c > 0 be such that

sup
0≤t≤l

|J̃(t)(σ, τ)| ≤ cλp
σλ

p
τ , ∀ σ, τ ∈ Γ.

Then

|T̃ (t)(σ, τ)|

≤ |J̃(t)(σ, τ)|+ |
∫ t

0

K̃(t, s)(σ, τ)T̃ (s)(σ, τ)ds|

≤ cλp
σλ

p
τ +M

∫ t

0

|T̃ (s)(σ, τ)|ds
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By Gronwall inequality,

|T̃ (t)(σ, τ)| ≤ αλp
σλ

p
τ , ∀ σ, τ ∈ Γ, 0 ≤ t ≤ l.

where α = ceMl , hence T ∈ Cp([0, l],L) . 2

Theorem 5.3 For each J ∈ Cp([0, l],L) , Let TJ ∈ Cp([0, l],L) be the unique solution of equation (1.2)
corresponding to J . Define a map Θ : Cp([0, l],L) → Cp([0, l],L) as,

Θ(J) = TJ , J ∈ Cp([0, l],L).

Then Θ is a topological homeomorphism, that is, Θ is a linear bijection, and both Θ and Θ−1 are continuous.

Proof The uniqueness of the solution to equation (1.2) implies that Θ is linear.
In fact, ∀ σ, τ ∈ Γ and J ∈ Cp([0, l],L) , we have

|T̃J(t)(σ, τ)| ≤ |J̃(t)(σ, τ)|+
∫ t

0

|K̃(t, s)(σ, τ)| |T̃J(s)(σ, τ)|ds

≤ ∥J∥σ,τ +M

∫ t

0

|T̃J(t)(σ, τ)|ds

0 ≤ t ≤ l . Hence,

|T̃J(t)(σ, τ)| ≤ ∥J(t)∥σ,τeMt,

which implies that
∥TJ∥(σ,τ) ≤ eMl∥J(t)∥σ,τ ,

i.e.
∥Θ(J)∥(σ,τ) ≤ eMl∥J(t)∥σ,τ .

Therefore, Θ is a continuous injection.
Now we prove that Θ is a surjective. For any T ∈ Cp([0, l],L) , according to Theorem 5.2, we can find a

S ∈ Cp([0, l],L) such that

S(t) =

∫ t

0

K(t, s) ∗ T (s)ds, 0 ≤ t ≤ l.

Put J = T − S , then J ∈ Cp([0, l],L) and

T (t) = J(t) +

∫ t

0

K(t, s) ∗ T (s)ds, 0 ≤ t ≤ l.

which means that T = Θ(J) . Therefore, Θ is surjective.
So far, we have shown that Θ is a continuous linear bijection; thus, Θ−1 exists. It remains to prove that

Θ−1 is continuous.
In fact, for ∀ σ, τ ∈ Γ and T ∈ Cp([0, l],L) , let J = Θ−1(T ) , then

J(t) = T (t)−
∫ t

0

K(t, s) ∗ T (s)ds, 0 ≤ t ≤ l.
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Hence,

|J̃(t)(σ, τ)|

≤ |T̃ (t)(σ, τ)|+
∫ t

0

|K̃(t, s)(σ, τ)| · |T̃ (t)(σ, τ)|ds

≤ ∥T∥σ,τ + tM∥T∥σ,τ

0 ≤ t ≤ l , which implies that
∥J∥σ,τ ≤ (1 +Ml)∥T∥σ,τ .

Therefore, Θ−1 is continuous. 2

Remark If we define a map A : Cp([0, l],L) → Cp([0, l],L) by

(AT )(t) =

∫ t

0

K(t, s) ∗ T (s)ds, 0 ≤ t ≤ l.

T ∈ Cp([0, l],L) , then we have (I −A)−1 = Θ . Thus, A is a continuous linear map from Cp([0, l],L) to itself.
It is interesting to compare the map A with the classical Volterra integral operator.
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