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Abstract: Pair matrix equations have numerous applications in control system engineering, such as for stability analysis
of linear control systems and also for reduction of nonlinear control system models. There are some situations in which
the classical pair matrix equations are not well equipped to deal with the uncertainty problem during the process of
stability analysis and reduction in control system engineering. Thus, this study presents a new algorithm for solving fully
fuzzy pair matrix equations where the parameters of the equations are arbitrary triangular fuzzy numbers. The fuzzy
Kronecker product and fuzzy V ec -operator are employed to transform the fully fuzzy pair matrix equations to a fully
fuzzy pair linear system. Then a new associated linear system is developed to convert the fully fuzzy pair linear system
to a crisp linear system. Finally, the solution is obtained by using a pseudoinverse method. Some related theoretical
developments and examples are constructed to illustrate the proposed algorithm. The developed algorithm is also able
to solve the fuzzy pair matrix equation.

Key words: Fully fuzzy pair matrix equation, fully fuzzy linear system, Kronecker product, V ec -operator, associated
linear system

1. Introduction
In real world applications, matrix equations play an essential role in several situations. In the literature, a few
researchers reported that the matrix equation has been used in control system engineering [30], image restoration
[6], model reduction [5], signal processing [28], and stochastic control [31]. In control system engineering, for
example, the matrix equation is used as a technical tool in stability analysis of linear control system and also
in reduction of nonlinear control system models.

Considering that many uncertain situations may occur during system processes, such as conflicting
requirements during the system process, instability of environmental conditions [3], and noise distraction [1], the
classical matrix equation is sometimes not well equipped to deal with those situations. Thus, a fuzzy number
has been embedded to deal with the uncertainty parameters.

To date, considerable work has been conducted on matrix equations, such as the fuzzy matrix equation
(FME), AX̃m = B̃m [17], and fuzzy Sylvester matrix equation (FSE), AX̃ + X̃B = C̃ [2, 15, 16, 18, 19, 27].
In these studies, some of the parameters were considered in the form of fuzzy numbers. On the other hand,
there are also a number of studies in which all the parameters of the matrix equations are in the form of fuzzy
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numbers. As examples there are the fully fuzzy matrix equation (FFME) of ÃX̃m = B̃m [25], fully fuzzy
continuous-time Sylvester matrix equation of ÃX̃ + X̃B̃ = C̃ [23, 29] and ÃX̃ − X̃B̃ = C̃ [8, 13], and also the
fully fuzzy discrete-time Sylvester matrix equation of ÃX̃B̃ − X̃ = C̃ [9].

Meanwhile, there are some applications where two matrix equations are required to be solved simultane-
ously. In this case, the combination of two matrix equations is called a pair matrix equation (PME). The PME
is also important in various applications, such in control systems. According to [30], the PME is used to make
the computational process less complicated, especially in analyzing the stability of control systems so that the
control system always performs well according to its specifications.

In the classical case of the PME, where the parameters of the PME are in crisp form, many studies have
been conducted, such as [7, 11, 32]. However, far fewer studies have been conducted for solving the PME with a
fuzzy environment, such as [26] and also [10]. In [26], the PME consists of A1X̃+X̃B1 = C̃1 and A2X̃B2 = C̃2 ,
where only some of the parameters of the equation are in the form of arbitrary fuzzy numbers. A numerical
iterative method was used to obtain the approximate solutions. In [10], all the parameters of the PME are
in fuzzy form, whereby the fully fuzzy matrix equation (FFME) involved consists of Ã1X̃ + X̃B̃1 = C̃1 and
Ã2X̃B̃2 − X̃ = C̃2 . In that study, a direct method was proposed to solve the positive PFFME. Due to the
limitations of these two studies, we aim to provide an algorithm for solving an arbitrary PFFME of{

Ã1X̃ + X̃B̃1 = C̃1

Ã2X̃B̃2 = C̃2,
(1)

where Ãi and B̃i (i = 1, 2) are arbitrary fuzzy matrices with some common sizes, whereas C̃i (i = 1, 2) are
arbitrary common size fuzzy matrices, where the fuzzy matrix X̃ is to be determined.

The main contribution of this study would be the improvement of the associated linear system that
was originally constructed in [22]. Besides that, the fuzzy Kronecker product and fuzzy V ec -operator are also
utilized in this algorithm to convert the PFFME into a simpler form of equations. The development of the
algorithm presented in this study provides the first investigation on how to solve the PFFME in Eq. (1). With
that, the algorithm will contribute to real-world applications, such as the process of analyzing the stability of
linear control systems involved with the uncertainty problem.

The remaining part of the paper proceeds as follows. In Section 2, the fundamental concepts of fuzzy
set theory and Kronecker operation are provided. In Section 3, new definitions, theorems, and corollaries are
defined and then a new algorithm for solving the PFFME is constructed. Next, two numerical examples are
illustrated in Section 5 and the solution of the PFME is shown in Section 6. Finally, the conclusion is drawn in
Section 7.

2. Preliminaries
This section will recall some definitions and theorems that will be used in this study.

Definition 1 [33] A fuzzy number is a function such as u : R → [0, 1] satisfying the following properties:

• u is normal; that is, there exists an x0 ∈ R such that u(x0) = 1 .

• u is fuzzy convex; that is, u(λx+ (1− λ)y) ≥ min{u(x), u(y)} for any x, y ∈ R , λ ∈ [0, 1] .
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• u is upper semicontinuous.

• supp u = {x ∈ R|u(x) > 0} is the support of u , and its closure cl(supp u) is compact.

Definition 2 [33] A fuzzy number M̃ = (m,α, β) is said to be a triangular fuzzy number (TFN) if its
membership function is given by:

µM̃ (x) =


1− m−x

α , m− α ≤ x ≤ m,α > 0,

1− x−m
β , m ≤ x ≤ m+ β, β > 0,

0, otherwise.
(2)

In this case, m is the mean value of M̃ , whereas α and β are right and left spreads, respectively.

Definition 3 [33] A fuzzy number M̃ = (m,α, β) is called an arbitrary fuzzy number where it may be positive,
negative, or near zero, which can be classified as follows:

• M̃ is a positive (negative) fuzzy number iff m− α ≥ 0 (β +m ≤ 0) .

• M̃ is a zero fuzzy number if (m = 0, α, β = 0) .

• M̃ is a near zero fuzzy number iff m− α ≤ 0 ≤ β +m .

Definition 4 [14] The arithmetic operations of two positive fuzzy numbers M̃ = (m,α, β) and Ñ = (n, γ, δ)

are as follows:

• Addition:
M̃ ⊕ Ñ = (m,α, β)⊕ (n, γ, δ) = (m+ n, α+ γ, β + δ). (3)

• Opposite:
−M̃ = −(m,α, β) = (−m,β, α). (4)

• Subtraction:
M̃ ⊖ Ñ = (m,α, β)⊖ (n, γ, δ) = (m− n, α+ δ, β + γ). (5)

• Multiplication:
M̃ ⊗ Ñ = (m,α, β)⊗ (n, γ, δ) ∼= (mn,mγ + nα,mδ + nβ). (6)

Definition 5 [20] Let M̃ = (m,α, β) and Ñ = (n, γ, δ) be two arbitrary triangular fuzzy numbers. Then
Kaufmann’s approximation for multiplication of arbitrary triangular fuzzy numbers is defined as:

M̃ ⊗ Ñ = (f, p, q), (7)

where f = mn , p = f − r , q = s− f ,

r = min((m− α)(n− γ), (m− α)(n+ δ)) =

{
(m− α)(n− γ) if m− α ≥ 0

(m− α)(n+ δ) if m− α < 0,
(8)

s = max((m+ β)(n− γ), (m+ β)(n+ δ)) =

{
(m+ β)(n− γ) if m+ β < 0

(m+ β)(n+ δ) if m+ β ≥ 0.
(9)
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Theorem 1 [24] Consider an arbitrary fuzzy number M̃ = (ma, αa, βa) and positive fuzzy solution X̃ =

(mx, αx, βx) .

• If M̃ is positive, then the following inequalities are satisfied:

0 ≤ (mx − αx)(ma − αa) ≤ (mx + βx)(ma − αa), (10)

0 ≤ (mx − αx)(ma + βa) ≤ (mx + βx)(ma + βa). (11)

• If M̃ is negative, then the following inequalities are satisfied:

0 ≥ (mx − αx)(ma − αa) ≥ (mx + βx)(ma − αa), (12)

0 ≥ (mx − αx)(ma + βa) ≥ (mx + βx)(ma + βa). (13)

• If M̃ is near zero, then the inequalities in Eqs. (11) and (12) are satisfied for all X̃ .

Definition 6 [12] An n× n fully fuzzy linear system (FFLS) is defined as follows:
ã11x̃1 + ã12x̃2 + ...+ ã1nx̃n = b̃1

ã21x̃1 + ã22x̃2 + ...+ ã2nx̃n = b̃2
...

ãm1x̃1 + ãm2x̃2 + ...+ ãmnx̃n = b̃m,

(14)

which can also be written in a matrix form of


ã11 ã12 . . . ã1n
ã21 ã22 . . . ã2n
...

... . . . ...
ãm1 ãm2 . . . ãmn



x̃1

x̃2

...
x̃n

 =


b̃1
b̃2
...
b̃m

 , (15)

and it is usually denoted in a form of
M̃X̃ = B̃, (16)

where all the entries M̃, B̃ , and X̃ are arbitrary triangular fuzzy numbers.

Definition 7 [4] Let (A)ij be any real m×n matrix. The pseudoinverse of A is an n×m matrix X satisfying
the following conditions:

• AXA = A ,

• XAX = X ,

• (AX)T = AX ,

• (XA)T = XA .
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Definition 8 [23] Let Ã = (ãij)m×n and B̃ = (b̃ij)p×q be fuzzy matrices. The fuzzy Kronecker product is
represented as Ã⊗k B̃ with the operation

Ã⊗k B̃ =


ã11B̃ ã12B̃ . . . ã1nB̃

ã21B̃ ã22B̃ . . . ã2nB̃
...

... . . . ...
ãm1B̃ ãm2B̃ . . . ãmnB̃


=[ãijB̃](mp)×(nq).

(17)

Definition 9 [23] The V ec-operator of a fuzzy matrix is a linear transformation that converts the fuzzy matrix
of C̃ = (c̃1, c̃2, ..., c̃n) into a column vector as

V ec(C̃) =


c̃1
c̃2
...
c̃n

 . (18)

Theorem 2 [23] If Ã = (ãij)m×m is a fuzzy matrix and Ũ = (ũij)p×p is a unitary fuzzy matrix defined as

Ũ =


(1, 0, 0) (0, 0, 0) . . . (0, 0, 0)
(0, 0, 0) (1, 0, 0) . . . (0, 0, 0)

...
... . . . ...

(0, 0, 0) (0, 0, 0) . . . (1, 0, 0)

 , (19)

then

• ÃŨ = Ũ Ã = Ã,

• ŨT = Ũ .

Theorem 3 [23] Let Ã = (ãij)m×m , B̃ = (b̃ij)n×n , and X̃ = (x̃ij)m×n . Then:

• V ec[ÃX̃] = [Ũn ⊗k Ã]V ec(X̃),

• V ec[X̃B̃] = [B̃T ⊗k Ũm]V ec(X̃),

where Ũm and Ũn denote the fuzzy unitary matrices with orders m and n , respectively.

Theorem 4 [23] Let Ã = (ãij)m×m , B̃ = (b̃ij)n×n , and X̃ = (x̃ij)m×n . Then the FFME ÃX̃ + X̃B̃ = C̃ can
be transformed as an FFLS:

[(Ũn ⊗k Ã) + (B̃T ⊗k Ũm)]V ec(X̃) = V ec(C̃), (20)

where Ũm and Ũn denote the fuzzy unitary matrices with orders m and n , respectively.
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3. Theoretical development for solving the PFFME
This section contains definitions, theorems, and a corollary that have been developed for solving the PFFME.

Theorem 5 Let Ã = (ãij)m×m and B̃ = (b̃ij)n×n . Then

Ã⊗ B̃ = [(Ã⊗ Ũ)(Ũ ⊗ B̃)]. (21)

Proof According to Definition 8 and also the concept of matrix multiplication,

Ã⊗ B̃ =


ã11B̃ ã21B̃ . . . ãm1B̃

ã12B̃ ã22B̃ . . . ãm2B̃
...

... . . . ...
ã1mB̃ ã2mB̃ . . . ãmmB̃

.


On the other hand,

(Ã⊗ Ũ)(Ũ ⊗ B̃) =


ã11Ũ ã21Ũ . . . ãm1Ũ

ã12Ũ ã22Ũ . . . ãm2Ũ
...

... . . . ...
ã1mŨ ã2mŨ . . . ãmmŨ



B̃ 0 . . . 0

0 B̃ . . . 0
...

... . . . ...
0 0 . . . B̃



=


ã11B̃ ã21B̃ . . . ãm1B̃

ã12B̃ ã22B̃ . . . ãm2B̃
...

... . . . ...
ã1mB̃ ã2mB̃ . . . ãmmB̃

.


Hence, the theorem is proved. 2

Theorem 6 Let Ã = (ãij)p×q , B̃ = (b̃ij)r×s , and X̃ = (x̃ij)q×r . Then

V ec[ÃX̃B̃] = [B̃T ⊗k Ã]V ec(X̃). (22)

Proof Use Theorem 2(1) to write a matrix X̃ as

X̃ = X̃Ũ .

Then
V ec[ÃX̃B̃] = V ec[ÃX̃ŨT B̃] by Theorem 2(2)

= V ec[(ÃX̃)(B̃T Ũ)T ] by matrix transpose

= (B̃T Ũ ⊗k Ũ)V ec(ÃX̃) by Theorem 3(2)

= (B̃T ⊗k Ũ)V ec(ÃX̃) by Theorem 2(1)

= (B̃T ⊗k Ũ)[(Ũ ⊗ Ã)V ec(X̃)] by Theorem 3(1)

= [(B̃T ⊗k Ũ)(Ũ ⊗k Ã)]V ec(X̃) by associative matrix

= (B̃T ⊗k Ã)V ec(X̃) by Theorem 5.

Therefore, the theorem is obviously proved. 2
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Corollary 1 Let Ã1 = (ã1ij)p×p , Ã2 = (ã2ij)r×p , B̃1 = (b̃1ij)q×q , and B̃2 = (b̃2ij)q×s be parameters of the
PFFME. Then a PFFME is equivalent to a pair of fully fuzzy linear systems (PFFLS):

[(
Ũq×q ⊗k (Ã1)p×p

)
+
(
(B̃T

1 )q×q ⊗k Ũp×p

)]
X̃v = C̃v1(

(B̃T
2 )s×q ⊗k (Ã2)r×p

)
X̃v = C̃v2,

(23)

where
C̃v1 = V ec(C̃1); C̃v2 = V ec(C̃2); X̃v = V ec(X̃).

Proof According to Theorem 4,
ÃX̃ + X̃B̃ = C̃

can be converted to be
[(Ũn ⊗k Ã) + (B̃T ⊗k Ũm)]V ec(X̃) = V ec(C̃),

similarly to the equation
ÃX̃B̃ = C̃, (24)

which can be transformed to
(B̃T ⊗k Ã)V ec(X̃) = C̃ (25)

based on Theorem 6. Thus, it is obvious that the PFFME in Eq. (1) can be converted to a PFFLS:
[(

Ũq×q ⊗k (Ã1)p×p

)
+
(
(B̃T

1 )q×q ⊗k Ũp×p

)]
X̃v = C̃v1(

(B̃T
2 )s×q ⊗k (Ã2)r×p

)
X̃v = C̃v2.

2

Theorem 7 Let Ã1X̃ + X̃B̃1 = C̃1 and Ã2X̃B̃2 = C̃2 be a PFFME, where Ã1 and B̃1 are square matrices
whereas Ã2 and B̃2 are rectangle matrices. Then the number of columns of the Kronecker product for these two
equations is always the same.

Proof According to Corollary 1, the Kronecker product of

(Ã1)p×pX̃p×q + X̃p×q(B̃1)q×q = (C̃1)p×q (26)

is [(
Ũq×q ⊗k (Ã1)p×p

)
+
(
(B̃T

1 )q×q ⊗k Ũp×p

)]
(X̃)p×q = (C̃1)p×q. (27)

Applying Definition 8, the equation will yield a FFLS with the size of the coefficient matrix being qp× qp .

On the other hand, the Kronecker product for

(Ã2)r×pX̃p×q(B̃2)q×s = (C̃2)r×s (28)

is (
(B̃T

2 )s×q ⊗k (Ã2)r×p

)
(X̃)p×q = (C̃2)r×s. (29)
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Then, by Definition 8, the coefficient of the FFLS for this equation is a matrix with size of sr × qp .

Thus, this is proof that the PFFME will yield the same number of columns since they have same solution of
X̃ . 2

Remark 1 The size of coefficient matrix
[(

Ũq×q ⊗k (Ã1)p×p

)
+
(
(B̃T

1 )q×q ⊗k Ũp×p

)]
in Eq. (27) is always a

square matrix since the fuzzy matrices Ã1 and B̃1 in Eq. (26) are always square matrices.

Theorem 8 The fuzzy matrices Ã1 and B̃1 for the fully fuzzy matrix equation in Eq. (26) must be square
matrices.

Proof Let

(Ã1)p×pX̃p×q + X̃p×q(B̃1)q×q = C̃p×q,

(Ã1X̃)p×q + (X̃B̃1)p×q = C̃p×q,

be the fully fuzzy matrix equation as shown in Eq. (26), where Ã1 and B̃1 are fuzzy coefficients and X̃p×q is
the fuzzy solution. If the fuzzy coefficients Ã1 and B̃1 are nonsquare with order (Ã1)q×p and (B̃1)q×p , and
the solution is X̃p×q , then

(Ã1)q×pX̃p×q + X̃p×q(B̃1)q×p

will yield

(Ã1X̃)q×q + (X̃B̃1)p×p.

However, the addition of (Ã1X̃)q×q and (X̃B̃1)p×p is invalid due to the difference in sizes. Thus, in all cases,
Ã1 and B̃1 must be square matrices. 2

Remark 2 The size of coefficient matrix
(
(B̃T

2 )s×q ⊗k (Ã2)r×p

)
in Eq. (29) will only be a square matrix if

• both matrices Ã2 and B̃2 are square;

• both matrices Ã2 and B̃2 are nonsquare, but the sizes of both matrices are the same.

Definition 10 A pair of fully fuzzy linear systems (PFFLS) as stated in Eq. (23) can also be represented as
follows: {

(F1,M1, N1)⊗ (mx, αx, βx) = (mc1 , αc1 , βc1)

(F2,M2, N2)⊗ (mx, αx, βx) = (mc2 , αc2 , βc2).
(30)
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Remark 3 Based on Corollary 1, the following terms as in Definition 10 can be given:

(F1,M1, N1) =
[(

Ũq×q ⊗k (Ã1)p×p

)
+

(
(B̃T

1 )q×q ⊗k Ũp×p

)]
,

(F2,M2, N2) =
(
(B̃T

2 )s×q ⊗k (Ã2)r×p

)
,

(mc1 , αc1 , βc1) = V ec(C̃1),

(mc2 , αc2 , βc2) = V ec(C̃2),

(mx, αx, βx) = X̃.

Definition 11 An associated linear system for the PFFLS is defined as

FX = B, (31)

where

F =


F1 0 0
F2 0 0
M1 (F1 −M1)

+ −(F1 −M1)
−

M2 (F2 −M2)
+ −(F2 −M2)

−

N1 −(F1 +N1)
− (F1 +N1)

+

N2 −(F2 +N2)
− (F2 +N2)

+

 , X =

mx

αx

βx

 , B =


mc1

mc2

αc1

αc2

βc1

βc2

 . (32)

Theorem 9 The solution of the PFFLS is equivalent to the solution of the associated linear system.

Proof In order to show the equivalence of the solution, the PFFLS needs to be converted to the associated
linear system.

Considering that the PFFLS in Definition 10 is an arbitrary PFFLS, the arbitrary fuzzy multiplication arithmetic
formulas as stated in Definition 5 are used in obtaining the solution. Hence,

{
F1m

x = mc1

F2m
x = mc2 ,

(33)

{
F1m

x −min((F1 −M1)(m
x − αx), (F1 −M1)(m

x + βx)) = αc1

F2m
x −min((F2 −M2)(m

x − αx), (F2 −M2)(m
x + βx)) = αc2 ,

(34)

{
max((F1 +N1)(m

x + βx), (F1 +N1)(m
x − αx))− F1m

x = βc1

max((F2 +N2)(m
x + βx), (F2 +N2)(m

x − αx))− F2m
x = βc2 ,

(35)

where (Fi −Mi) and (Fi +Ni) for i = 1, 2 would have two cases that both need to be considered. These cases
are as follows:

{
if Fi −Mi ≥ 0 then (Fi −Mi)

+

if Fi −Mi < 0 then (Fi −Mi)
−,

(36)
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{
if Fi +Ni ≥ 0 then (Fi +Ni)

+

if Fi +Ni < 0 then (Fi +Ni)
−,

(37)

for i = 1, 2 .

{
F1m

x − ((F1 −M1)
+(mx − αx) + (F1 −M1)

−(mx + βx)) = αc1

F2m
x − ((F2 −M2)

+(mx − αx) + (F2 −M2)
−(mx + βx)) = αc2 ,

(38)

{
((F1 +N1)

+(mx + βx) + (F1 +N1)
−(mx − αx))− F1m

x = βc1

((F2 +N2)
+(mx + βx) + (F2 +N2)

−(mx − αx))− F2m
x = βc2 .

(39)

Subsequently, Eq. (38) can be simplified as follows:

{
F1m

x − (F1 −M1)
+mx + (F1 −M1)

+αx − (F1 −M1)
−mx − (F1 −M1)

−βx = αc1

F2m
x − (F2 −M2)

+mx + (F2 −M2)
+αx − (F2 −M2)

−mx − (F2 −M2)
−βx = αc2 ,

{
F1m

x − ((F1 −M1)
+ + (F1 −M1)

−)mx + (F1 −M1)
+αx − (F1 −M1)

−βx = αc1

F2m
x − ((F2 −M2)

+ + (F2 −M2)
−)mx + (F2 −M2)

+αx − (F2 −M2)
−βx = αc2 .

(40)

Similarly to Eq. (39),

{
(F1 +N1)

+mx + (F1 +N1)
+βx + (F1 +N1)

−mx − (F1 +N1)
−αx − F1m

x = βc1

(F2 +N2)
+mx + (F2 +N2)

+βx + (F2 +N2)
−mx − (F2 +N2)

−αx − F2m
x = βc2 ,

{
((F1 +N1)

+ + (F1 +N1)
−)mx + (F1 +N1)

+βx − (F1 +N1)
−αx − F1m

x = βc1

((F2 +N2)
+ + (F2 +N2)

−)mx + (F2 +N2)
+βx − (F2 +N2)

−αx − F2m
x = βc2 .

(41)

By assuming that ((Fi −Mi)
+ + (Fi −Mi)

−) = (Fi −Mi) for i = 1, 2 , then Eq. (40) will be as follows:

{
F1m

x − (F1 −M1)m
x + (F1 −M1)

+αx − (F1 −M1)
−βx = αc1

F2m
x − (F2 −M2)m

x + (F2 −M2)
+αx − (F2 −M2)

−βx = αc2 ,

which can be reduced to

{
F1m

x − F1m
x −M1m

x + (F1 −M1)
+αx − (F1 −M1)

−βx = αc1

F2m
x − F2m

x −M2m
x + (F2 −M2)

+αx − (F2 −M2)
−βx = αc2 .

(42)

For Eq. (41), where ((Fi +Ni)
+ + (Fi +Ni)

−) = (Fi +Ni) for i = 1, 2 , then

{
(F1 +N1)m

x + (F1 +N1)
+βx − (F1 +N1)

−αx − F1m
x = βc1

(F2 +N2)m
x + (F2 +N2)

+βx − (F2 +N2)
−αx − F2m

x = βc2 ,
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and this can be reduced to

{
F1m

x +N1m
x + (F1 +N1)

+βx − (F1 +N1)
−αx − F1m

x = βc1

F2m
x +N2m

x + (F2 +N2)
+βx − (F2 +N2)

−αx − F2m
x = βc2 .

(43)

Therefore, by taking Eq. (33) and simplifying Eq.s (42) and (43), we obtain

F1m
x = mc1 ,

F2m
x = mc2 ,

M1m
x + (F1 −M1)

+αx − (F1 −M1)
−βx = αc1 ,

M2m
x + (F2 −M2)

+αx − (F2 −M2)
−βx = αc2 ,

N1m
x + (F1 +N1)

+βx − (F1 +N1)
−αx = βc1 ,

N2m
x + (F2 +N2)

+βx − (F2 +N2)
−αx = βc2 ,

(44)

which can be written in a matrix form of
FX = B, (45)

where

F =


F1 0 0
F2 0 0
M1 (F1 −M1)

+ −(F1 −M1)
−

M2 (F2 −M2)
+ −(F2 −M2)

−

N1 −(F1 +N1)
− (F1 +N1)

+

N2 −(F2 +N2)
− (F2 +N2)

+

 , X =

mx

αx

βx

 , B =


mc1

mc2

αc1

αc2

βc1

βc2

 . (46)

Thus, the solution of the associated linear system is the same as the solution of the PFFLS. 2

4. Solution for arbitrary PFFME

In this section, an algorithm for finding the solution of the PFFME is presented by considering that the param-
eters are arbitrary fuzzy numbers.

Step 1: Transforming the PFFME to PFFLS.

Eq. (1) is transformed accordingly as shown in Corollary 1.

Step 2: Converting the PFFLS to an associated linear system.

The conversion of the associated linear system is based on Theorem 9.

Step 3: Obtaining the final solution.

The final solution X̃ can be obtained by computing the inverse of the coefficient for Eq. (46). In this case,
coefficient F would be a nonsquare matrix, and thus a generalized inverse method, such as the pseudoinverse
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method, should be applied. Thus,

X = F †B, (47)

where F † is a pseudoinverse [4].

5. Numerical examples

Example 1 Consider the PFFME, {
Ã1X̃ + X̃B̃1 = C̃1

Ã2X̃B̃2 = C̃2,

where

Ã1 =

(12, 8, 5) (7, 3, 3) (11, 8, 5)
(9, 5, 6) (8, 5, 7) (9, 3, 7)
(10, 1, 8) (12, 8, 6) (8, 3, 6)

 , B̃1 =

(
(8, 3, 2) (10, 8, 2)
(7, 4, 7) (6, 4, 3)

)
,

C̃1 =

(268, 212, 233) (296, 265, 217)
(248, 161, 240) (270, 198, 228)
(316, 218, 342) (318, 236, 324)

 ,

Ã2 =

(
(9, 2, 3) (8, 4, 3) (9, 2, 3)
(8, 3, 2) (7, 3, 8) (11, 3, 3)

)
, B̃2 =

(
(7, 2, 2) (10, 4, 2) (11, 3, 5)
(9, 2, 1) (7, 2, 3) (10, 2, 9)

)
,

C̃2 =

(
(2732, 2045, 2442) (2971, 2466, 2910) (3564, 2641, 4944)
(2836, 2271, 2914) (2962, 2683, 3487) (3686, 2914, 5685)

)
,

and

X̃ =

(mx
11, α

x
11, β

x
11) (mx

12, α
x
12, β

x
12)

(mx
21, α

x
21, β

x
21) (mx

22, α
x
22, β

x
22)

(mx
31, α

x
31, β

x
31) (mx

32, α
x
32, β

x
32)

 ≥ 0.

Solution:

Step 1: Transform the PFFME into Eq. (30) according to its Kronecker product.

(F1,M1, N1) =


(20, 11, 7) (7, 3, 3) (11, 8, 5) (7, 4, 7) (0, 0, 0) (0, 0, 0)
(9, 5, 6) (16, 8, 9) (9, 3, 7) (0, 0, 0) (7, 4, 7) (0, 0, 0)
(10, 1, 8) (12, 8, 6) (16, 6, 8) (0, 0, 0) (0, 0, 0) (7, 4, 7)
(10, 8, 2) (0, 0, 0) (0, 0, 0) (18, 12, 8) (7, 3, 3) (11, 8, 5)
(0, 0, 0) (10, 8, 2) (0, 0, 0) (9, 5, 6) (14, 9, 10) (9, 3, 7)
(0, 0, 0) (0, 0, 0) (10, 8, 2) (10, 1, 8) (12, 8, 6) (14, 7, 9)

 ,

(mc1 , αc1 , βc1) =


(268, 212, 233)
(248, 161, 240)
(316, 218, 342)
(296, 265, 217)
(270, 198, 228)
(318, 236, 324)

 ,
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and

(F2,M2, N2) =


(63, 32, 39) (56, 44, 37) (63, 32, 39) (81, 36, 36) (72, 52, 35) (81, 36, 36)
(56, 37, 30) (49, 35, 70) (77, 43, 43) (72, 43, 26) (63, 41, 79) (99, 49, 38)
(90, 56, 48) (80, 72, 46) (90, 56, 48) (63, 32, 48) (56, 44, 45) (63, 32, 48)
(80, 62, 36) (70, 58, 94) (110, 74, 52) (56, 37, 38) (49, 35, 77) (77, 43, 54)
(99, 49, 78) (88, 68, 73) (99, 49, 78) (90, 38, 111) (80, 56, 102) (90, 38, 111)
(88, 57, 62) (77, 54, 123) (121, 66, 88) (80, 46, 92) (70, 44, 143) (110, 52, 129)

 ,

(mc2 , αc2 , βc2) =


(2732, 2045, 2442)
(2836, 2271, 2914)
(2872, 2466, 2910)
(2962, 2683, 3487)
(3564, 2641, 4944)
(3686, 2914, 5685)

 .

Step 2: Considering all the fuzzy matrices in Step 1, the crisp matrices are obtained as follows:

F1 =


20 7 11 7 0 0
9 16 9 0 7 0
10 12 16 0 0 7
10 0 0 18 7 11
0 10 0 9 14 9
0 0 10 10 12 14

 ,M1 =


11 3 8 4 0 0
5 8 3 0 4 0
1 8 6 0 0 4
8 0 0 12 3 8
0 8 0 5 9 3
0 0 8 1 8 7

 , N1 =


7 3 5 7 0 0
6 9 7 0 7 0
8 6 8 0 0 7
2 0 0 8 3 5
0 2 0 6 10 7
0 0 2 8 6 9

 ,

and from (mc1 , αc1 , βc1) ,

mc1 =


268
248
316
296
270
318

 , αc1 =


212
161
218
265
198
236

 , βc1 =


233
240
342
217
228
324

 .

On the other hand,

F2 =


63 56 63 81 72 81
56 49 77 72 63 99
90 80 90 63 56 63
80 70 110 56 49 77
99 88 99 90 80 90
88 77 121 80 70 110

 ,M2 =


32 44 32 36 52 36
37 35 43 43 41 49
56 72 56 32 44 32
62 58 74 37 35 43
49 68 49 38 56 38
57 54 66 46 44 52

 , N2 =


39 37 39 36 35 36
30 70 43 26 79 38
48 46 48 48 45 48
36 94 52 38 77 54
78 73 78 111 102 111
62 123 88 92 143 129

 ,

and

mc2 =


2732
2836
2872
2962
3564
3686

 , αc2 =


2045
2271
2466
2683
2641
2914

 , βc2 =


2442
2914
2910
3487
4944
5685

 .

Then an associated linear systems, FX = B , is obtained as follows:
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20 7 11 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 16 9 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0
10 12 16 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 18 7 11 0 0 0 0 0 0 0 0 0 0 0 0
0 10 0 9 14 9 0 0 0 0 0 0 0 0 0 0 0 0
0 0 10 10 12 14 0 0 0 0 0 0 0 0 0 0 0 0
63 56 63 81 72 81 0 0 0 0 0 0 0 0 0 0 0 0
56 49 77 72 63 99 0 0 0 0 0 0 0 0 0 0 0 0
90 80 90 63 56 63 0 0 0 0 0 0 0 0 0 0 0 0
80 70 110 56 49 77 0 0 0 0 0 0 0 0 0 0 0 0
99 88 99 90 80 90 0 0 0 0 0 0 0 0 0 0 0 0
88 77 121 80 70 110 0 0 0 0 0 0 0 0 0 0 0 0

11 3 8 4 0 0 20 7 11 7 0 0 0 0 0 0 0 0
5 8 3 0 4 0 9 16 9 0 7 0 0 0 0 0 0 0
1 8 6 0 0 4 10 12 16 0 0 7 0 0 0 0 0 0
8 0 0 12 3 8 10 0 0 18 7 11 0 0 0 0 0 0
0 8 0 5 9 3 0 10 0 9 14 9 0 0 0 0 0 0
0 0 8 1 8 7 0 0 10 10 12 14 0 0 0 0 0 0
32 44 32 36 52 36 63 56 63 81 72 81 0 0 0 0 0 0
37 35 43 43 41 49 56 49 77 72 63 99 0 0 0 0 0 0
56 72 56 32 44 32 90 80 90 63 56 63 0 0 0 0 0 0
62 58 74 37 35 43 80 70 110 56 49 77 0 0 0 0 0 0
49 68 49 38 56 38 99 88 99 90 80 90 0 0 0 0 0 0
57 54 66 46 44 52 88 77 121 80 70 110 0 0 0 0 0 0

7 3 5 7 0 0 0 0 0 0 0 0 20 7 11 7 0 0
6 9 7 0 7 0 0 0 0 0 0 0 9 16 9 0 7 0
8 6 8 0 0 7 0 0 0 0 0 0 10 12 16 0 0 7
2 0 0 8 3 5 0 0 0 0 0 0 10 0 0 18 7 11
0 2 0 6 10 7 0 0 0 0 0 0 0 10 0 9 14 9
0 0 2 8 6 9 0 0 0 0 0 0 0 0 10 10 12 14
39 37 39 36 35 36 0 0 0 0 0 0 63 56 63 81 72 81
30 70 43 26 79 38 0 0 0 0 0 0 56 49 77 72 63 99
48 46 48 48 45 48 0 0 0 0 0 0 90 80 90 63 56 63
36 94 52 38 77 54 0 0 0 0 0 0 80 70 110 56 49 77
78 73 78 111 102 111 0 0 0 0 0 0 99 88 99 90 80 90
62 123 88 92 143 129 0 0 0 0 0 0 88 77 121 80 70 110





mx
11

mx
21

mx
12

mx
22

mx
13

mx
23

αx
11

αx
21

αx
12

αx
22

αx
13

αx
23

βx
11

βx
21

βx
12

βx
22

βx
13

βx
23



=



268
248
316
296
270
318
2732
2836
2872
2962
3564
3686
212
161
218
265
198
236
2045
2271
2466
2683
2641
2914
233
240
342
217
228
324
2442
2914
2910
3487
4944
5685



.

Step 3: Therefore, the final solution is obtained as follows by using pseudoinverse method:

mx
11

mx
21

mx
12

mx
22

mx
13

mx
23

αx
11

αx
21

αx
12

αx
22

αx
13

αx
23

βx
11

βx
21

βx
12

βx
22

βx
13

βx
23



=



5
7
7
6
4
10
1
1
2
1
0
3
1
0
6
2
1
4



.
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Hence,

X̃ =

(mx
11, α

x
11, β

x
11) (mx

12, α
x
12, β

x
12)

(mx
21, α

x
21, β

x
21) (mx

22, α
x
22, β

x
22)

(mx
31, α

x
31, β

x
31) (mx

32, α
x
32, β

x
32)


=

(5, 1, 1) (6, 1, 2)
(7, 1, 0) (4, 0, 1)
(7, 2, 6) (10, 3, 4)

 .

Example 2 Consider the PFFME, {
Ã1X̃ + X̃B̃1 = C̃1

Ã2X̃B̃2 = C̃2,

where

Ã1 =

(
(−8, 3, 2) (10, 8, 2)
(7, 4, 7) (−6, 4, 3)

)
, B̃1 =

(−12, 8, 5) (7, 3, 3) (11, 8, 5)
(9, 5, 6) (−8, 5, 7) (9, 3, 7)
(10, 1, 8) (12, 8, 6) (−8, 3, 6)

 ,

C̃1 =

(
(122, 313, 329) (151, 379, 312) (59, 268, 349)
(56, 264, 420) (49, 354, 367) (170, 293, 389)

)
,

Ã2 =

(5, 1, 1) (6, 1, 2)
(7, 1, 0) (4, 0, 1)
(9, 2, 6) (8, 2, 6)

 , B̃2 =

(−9, 2, 3) (8, 4, 3) (7, 4, 3)
(8, 3, 2) (−7, 3, 8) (6, 3, 1)
(11, 3, 3) (9, 2, 3) (−10, 2, 8)

 ,

C̃2 =

(1059, 1841, 2739) (798, 2235, 2700) (339, 1818, 2303)
(1113, 1598, 2055) (862, 1878, 2153) (215, 1463, 1951)
(1671, 3705, 6387) (1274, 4502, 5995) (445, 3805, 4989)

 ,

and

X̃ =

(
(mx

11, α
x
11, β

x
11) (mx

12, α
x
12, β

x
12) (mx

13, α
x
13, β

x
13)

(mx
21, α

x
21, β

x
21) (mx

22, α
x
22, β

x
22) (mx

23, α
x
23, β

x
23)

)
≥ 0.

Solution:

Step 1: Transform the PFFME to the form of Eq. (30) according to its Kronecker product.

(F2,M2, N2) =


(−20, 11, 7) (10, 8, 2) (9, 5, 6) (0, 0, 0) (10, 1, 8) (0, 0, 0)
(7, 4, 7) (−18, 12, 8) (0, 0, 0) (9, 5, 6, ) (0, 0, 0) (10, 1, 8)
(7, 3, 3) (0, 0, 0) (−16, 8, 9) (10, 8, 2) (12, 8, 6) (0, 0, 0)
(0, 0, 0) (7, 3, 3) (7, 4, 7) (−14, 9, 10) (0, 0, 0) (12, 8, 6)
(11, 8, 5) (0, 0, 0) (9, 3, 7) (0, 0, 0) (−16, 6, 8) (10, 8, 2)
(0, 0, 0) (11, 8, 5) (0, 0, 0) (9, 3, 7) (7, 4, 7) (−14, 7, 9)

 ,

(mc1 , αc1 , βc1) =


(122, 313, 329)
(56, 264, 420)
(151, 379, 312)
(49, 354, 367)
(59, 268, 349)
(170, 293, 389)

 ,
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and

(F2,M2, N2) =



(−45, 21, 21) (−54, 34, 24) (40, 20, 20) (48, 23, 32) (55, 23, 29) (66, 26, 46)
(−63, 14, 27) (−36, 19, 12) (56, 26, 14) (32, 12, 18) (77, 29, 21) (44, 12, 26)
(−81, 84, 39) (−72, 82, 36) (72, 37, 78) (64, 34, 76) (99, 43, 111) (88, 40, 108)
(40, 24, 26) (48, 28, 40) (−35, 25, 41) (−42, 38, 50) (45, 17, 27) (54, 19, 42)
(56, 32, 21) (32, 16, 23) (−49, 21, 56) (−28, 22, 33) (63, 21, 21) (36, 8, 24)
(72, 44, 93) (64, 40, 90) (−63, 87, 78) (−56, 84, 70) (81, 32, 99) (72, 30, 96)
(35, 23, 25) (42, 27, 38) (30, 18, 12) (36, 21, 20) (−50, 22, 42) (−60, 36, 50)
(49, 31, 21) (28, 16, 22) (42, 24, 7) (24, 12, 11) (−70, 14, 58) (−40, 20, 32)
(63, 42, 87) (56, 38, 84) (54, 33, 51) (48, 30, 50) (−90, 90, 76) (−80, 88, 68)


,

(mc2 , αc2 , βc2) =



(1059, 1841, 2739)
(1113, 1598, 2055)
(1671, 3705, 6387)
(798, 2235, 2700)
(862, 1878, 2153)
(1274, 4502, 5995)
(339, 1818, 2303)
(215, 1463, 1951)
(445, 3805, 4989)


.

Step 2: The equation is converted to the associated linear system.

F1 =


−20 10 9 0 10 0
7 −18 0 9 0 10
7 0 −16 10 12 0
0 7 7 −14 0 12
11 0 9 0 −16 10
0 11 0 9 7 −14

 ,M1 =


11 8 5 0 1 0
4 12 0 5 0 1
3 0 8 8 8 0
0 3 4 9 0 8
8 0 3 0 6 8
0 8 0 3 4 7

 , N1 =


7 2 6 0 8 0
7 8 0 6 0 8
3 0 9 2 6 0
0 3 7 10 0 6
5 0 7 0 8 2
0 5 0 7 7 9

 ,

mc1 =


122
56
151
49
59
170

 , αc1 =


313
264
379
354
268
293

 , βc1 =


329
420
312
367
349
389

 .

On the other hand,

F2 =



−45 −54 40 48 55 66
−63 −36 56 32 77 44
−81 −72 72 64 99 88
40 48 −35 −42 45 54
56 32 −49 −28 63 36
72 64 −63 −56 81 72
35 42 30 36 −50 −60
49 28 42 24 −70 −40
63 56 54 48 −90 −80


,M2 =



21 34 20 23 23 26
14 19 26 12 29 12
84 82 37 34 43 40
24 28 25 38 17 19
32 16 21 22 21 8
44 40 87 84 32 30
23 27 18 21 22 36
31 16 24 12 14 20
42 38 33 30 90 88


, N2 =



21 24 20 32 29 46
27 12 14 18 21 26
39 36 78 76 111 108
26 40 41 50 27 42
21 23 56 33 21 24
93 90 78 70 99 96
25 38 12 20 42 50
21 22 7 11 58 32
87 84 51 50 76 68


,
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mc2 =



1059
1113
1671
798
862
1274
339
215
445


, αc2 =



1841
1598
3705
2235
1878
4502
1818
1463
3805


, βc2 =



2739
2055
6387
2700
2153
5995
2303
1951
4989


.

Thus, based on Eq. (46), we obtain



−20 10 9 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0
7 −18 0 9 0 10 0 0 0 0 0 0 0 0 0 0 0 0
7 0 −16 10 12 0 0 0 0 0 0 0 0 0 0 0 0 0
0 7 7 −14 0 12 0 0 0 0 0 0 0 0 0 0 0 0
11 0 9 0 −16 10 0 0 0 0 0 0 0 0 0 0 0 0
0 11 0 9 7 −14 0 0 0 0 0 0 0 0 0 0 0 0

−45 −54 40 48 55 66 0 0 0 0 0 0 0 0 0 0 0 0
−63 −36 56 32 77 44 0 0 0 0 0 0 0 0 0 0 0 0
−81 −72 72 64 99 88 0 0 0 0 0 0 0 0 0 0 0 0
40 48 −35 −42 45 54 0 0 0 0 0 0 0 0 0 0 0 0
56 32 −49 −28 63 36 0 0 0 0 0 0 0 0 0 0 0 0
72 64 −63 −56 81 72 0 0 0 0 0 0 0 0 0 0 0 0
35 42 30 36 −50 −60 0 0 0 0 0 0 0 0 0 0 0 0
49 28 42 24 −70 −40 0 0 0 0 0 0 0 0 0 0 0 0
63 56 54 48 −90 −80 0 0 0 0 0 0 0 0 0 0 0 0
11 8 5 0 1 0 0 2 4 0 9 0 31 0 0 0 0 0
4 12 0 5 0 1 3 0 0 4 0 9 0 30 0 0 0 0
3 0 8 8 8 0 4 0 0 2 4 0 0 0 24 0 0 0
0 3 4 9 0 8 0 4 3 0 0 4 0 0 0 23 0 0
8 0 3 0 6 8 3 0 6 0 0 2 0 0 0 0 22 0
0 8 0 3 4 7 0 3 0 6 3 0 0 0 0 0 0 21
21 34 20 23 23 26 0 0 20 25 32 40 0 0 0 0 0 0
14 19 26 12 29 12 0 0 30 20 48 32 0 0 0 0 0 0
84 82 37 34 43 40 0 0 35 30 56 48 0 0 0 0 0 0
24 28 25 38 17 19 16 20 0 0 28 35 0 0 0 0 0 0
32 16 21 22 21 8 24 16 0 0 42 28 0 0 0 0 0 0
44 40 87 84 32 30 28 24 0 0 49 42 0 0 0 0 0 0
23 27 18 21 22 36 12 15 12 15 0 0 0 0 0 0 0 0
31 16 24 12 14 20 18 12 18 12 0 0 0 0 0 0 0 0
42 38 33 30 90 88 21 18 21 18 0 0 0 0 0 0 0 0
7 2 6 0 8 0 13 0 0 0 0 0 0 12 15 0 18 0
7 8 0 6 0 8 0 10 0 0 0 0 14 0 0 15 0 18
3 0 9 2 6 0 0 0 7 0 0 0 10 0 0 12 18 0
0 3 7 10 0 6 0 0 0 4 0 0 0 10 14 0 0 18
5 0 7 0 8 2 0 0 0 0 8 0 16 0 16 0 0 12
0 5 0 7 7 9 0 0 0 0 0 5 0 16 0 16 14 0
21 24 20 32 29 46 24 30 0 0 0 0 0 0 60 80 84 112
27 12 14 18 21 26 36 24 0 0 0 0 0 0 70 50 98 70
39 36 78 76 111 108 42 36 0 0 0 0 0 0 150 140 210 196
26 40 41 50 27 42 0 0 0 0 0 0 66 88 6 8 72 96
21 23 56 33 21 24 0 0 0 0 0 0 77 55 7 5 84 60
93 90 78 70 99 96 0 0 0 0 0 0 165 154 15 14 180 168
25 38 12 20 42 50 0 0 0 0 8 10 60 80 42 56 0 0
21 22 7 11 58 32 0 0 0 0 12 8 70 50 49 35 0 0
87 84 51 50 76 68 0 0 0 0 14 12 150 140 105 98 0 0





mx
11

mx
21

mx
12

mx
22

mx
13

mx
23

αx
11

αx
21

αx
12

αx
22

αx
13

αx
23

βx
11

βx
21

βx
12

βx
22

βx
13

βx
23



=



122
56
151
49
59
170
1059
1113
1671
798
862
1274
339
215
445
313
264
379
354
268
293
1841
1598
3705
2235
1878
4502
1818
1463
3805
329
420
312
367
349
389
2739
2055
6387
2700
2153
5995
2303
1951
4989



.

Step 3: By pseudoinverse method, the following solution is obtained:
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X =



7
9
8
11
10
7
2
2
3
3
4
2
2
1
4
5
2
3



or X =




mx

11

mx
21

mx
12

mx
22

mx
13

mx
23


αx
11

αx
21

αx
12

αx
22

αx
13

αx
23


βx
11

βx
21

βx
12

βx
22

βx
13

βx
23





=




7
9
8
11
10
7


2
2
3
3
4
2


2
1
4
5
2
3





.

In other words, the solution can be written as

X̃ =

(
(mx

11, α
x
11, β

x
11) (mx

12, α
x
12, β

x
12) (mx

13, α
x
13, β

x
13)

(mx
21, α

x
21, β

x
21) (mx

22, α
x
22, β

x
22) (mx

23, α
x
23, β

x
23)

)
=

(
(7, 2, 2) (8, 3, 4) (10, 4, 2)
(9, 2, 1) (11, 3, 5) (7, 2, 3)

)
.

6. Solving the PFME using the proposed method

As mentioned earlier, the study in [26] solved the pair of fuzzy matrix equations (PFME). In that study, the
PFME was written as follows:

{
A1X̃ + X̃B1 = C̃1

A2X̃B2 = C̃2,
(48)

where the parameters A1, A2, B1 , and B2 are in the form of crisp numbers, whereas C̃1 and C̃2 are the fuzzy
matrices and the solution X̃ is also in fuzzy form. An example is taken from that study and will be solved
using our proposed algorithm.

Example 3 According to the PFME as stated in Eq. (48), the parameters A1, A2, B1 , and B2 are as follows:
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A1 =

(
3 −1
−2 5

)
, B1 =

 4 −2 −1
−2 5 1
0 −1 2

 ,

C̃1 =

(
(−41 + 26r, 26− 41r) (−44 + 23r, 23− 44r) (−25 + 22r, 22− 25r)
(−50 + 50r, 50− 50r) (−34 + 67r, 67− 34r) (−19 + 43r, 43− 19r)

)
,

A2 =

(
−1 0
−1 3

)
, B2 =

 1 2
0 −1
−1 3

 ,

C̃2 =

(
(−5 + 8r, 8− 5r) (−17 + 20r, 20− 17r)

(−29 + 23r, 23− 29r) (−65 + 86r, 86− 65r)

)
,

and the exact solution is given by

X̃ =

(
(−5 + 2r, 2− 5r) (−4 + r, 1− 4r) (−3 + 3r, 3− 3r)
(−4 + 4r, 4− 4r) (−2 + 5r, 5− 2r) (−1 + 4r, 4− r)

)
.

Solution:
First, the PFME is converted to the following PFFME based on the triangular fuzzy numbers (m,α, β) :

(
(3, 0, 0) (−1, 0, 0)
(−2, 0, 0) (5, 0, 0)

)(
X̃11 X̃12 X̃13

X̃21 X̃22 X̃23

)
+

(
X̃11 X̃12 X̃13

X̃21 X̃22 X̃23

) (4, 0, 0) (−2, 0, 0) (−1, 0, 0)
(−2, 0, 0) (5, 0, 0) (1, 0, 0)
(0, 0, 0) (−1, 0, 0) (2, 0, 0)


=

(
(−15, 26, 41) (−21, 23, 44) (−3, 22, 25)
(0, 50, 50) (33, 67, 34) (24, 43, 19)

)
,

(
(−1, 0, 0) (0, 0, 0)
(−1, 0, 0) (3, 0, 0)

)(
X̃11 X̃12 X̃13

X̃21 X̃22 X̃23

) (1, 0, 0) (2, 0, 0)
(0, 0, 0) (−1, 0, 0)
(−1, 0, 0) (3, 0, 0)

 =

(
(3, 8, 5) (3, 20, 17)

(−6, 23, 29) (21, 86, 65)

)
.

By the Kronecker product, the following equation is obtained:


(7, 0, 0) (−1, 0, 0) (−2, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
(−2, 0, 0) (9, 0, 0) (0, 0, 0) (−2, 0, 0) (0, 0, 0) (0, 0, 0)
(−2, 0, 0) (0, 0, 0) (8, 0, 0) (−1, 0, 0) (−1, 0, 0) (0, 0, 0)
(0, 0, 0) (−2, 0, 0) (−2, 0, 0) (10, 0, 0) (0, 0, 0) (−1, 0, 0)
(−1, 0, 0) (0, 0, 0) (1, 0, 0) (0, 0, 0) (5, 0, 0) (−1, 0, 0)
(0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 0, 0) (−2, 0, 0) (7, 0, 0)




(mx

11, α
x
11, β

x
11)

(mx
21, α

x
21, β

x
21)

(mx
12, α

x
12, β

x
12)

(mx
22, α

x
22, β

x
22)

(mx
13, α

x
13, β

x
13)

(mx
23, α

x
23, β

x
23)

 =


(−15, 26, 41)
(0, 50, 50)

(−21, 23, 44)
(33, 67, 34)
(−3, 22, 25)
(24, 43, 19)

 ,


(−1, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 0, 0) (0, 0, 0)
(−1, 0, 0) (3, 0, 0) (0, 0, 0) (0, 0, 0) (1, 0, 0) (−3, 0, 0)
(−2, 0, 0) (0, 0, 0) (1, 0, 0) (0, 0, 0) (−3, 0, 0) (0, 0, 0)
(−2, 0, 0) (6, 0, 0) (1, 0, 0) (−3, 0, 0) (−3, 0, 0) (9, 0, 0)



(mx

11, α
x
11, β

x
11)

(mx
21, α

x
21, β

x
21)

(mx
12, α

x
12, β

x
12)

(mx
22, α

x
22, β

x
22)

(mx
13, α

x
13, β

x
13)

(mx
23, α

x
23, β

x
23)

 =


(3, 8, 5)

(−6, 23, 29)
(3, 20, 17)
(21, 86, 65)

 .

Then we obtain
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7 −1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 9 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 0 8 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 −2 10 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 1 0 5 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 1 −2 7 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 3 0 0 1 −3 0 0 0 0 0 0 0 0 0 0 0 0
−2 0 1 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 6 1 −3 −3 9 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 7 0 0 0 0 0 0 1 2 0 0 0
0 0 0 0 0 0 0 9 0 0 0 0 2 0 0 2 0 0
0 0 0 0 0 0 0 0 8 0 0 0 2 0 0 1 1 0
0 0 0 0 0 0 0 0 0 10 0 0 0 2 2 0 0 1
0 0 0 0 0 0 0 0 1 0 5 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 7 0 1 0 0 2 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 1 0 1 0 0 0 0 3
0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 3 0
0 0 0 0 0 0 0 6 1 0 0 9 2 0 0 3 3 0
0 0 0 0 0 0 0 1 2 0 0 7 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 2 0 0 9 0 0 0 0 0
0 0 0 0 0 0 2 0 0 1 0 0 0 8 0 0 0 0
0 0 0 0 0 0 0 2 2 0 1 0 0 0 10 10 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 5 0
0 0 0 0 0 0 0 1 0 2 0 0 0 0 1 1 0 7
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 3 0 3 0 0 0 1 0
0 0 0 0 0 0 2 0 0 3 0 0 0 1 0 0 0 0
0 0 0 0 0 0 3 0 0 3 0 0 6 1 0 0 0 9





mx
11

mx
21

mx
12

mx
22

mx
13

mx
23

αx
11

αx
21

αx
12

αx
22

αx
13

αx
23

βx
11

βx
21

βx
12

βx
22

βx
13

βx
23



=



−15
0

−21
33
−3
24
3
−6
3
21
26
50
23
67
22
43
8
23
20
86
41
50
44
34
25
19
5
29
17
65



.

Therefore, the final solution is obtained as follows:

mx
11

mx
21

mx
12

mx
22

mx
13

mx
23

αx
11

αx
21

αx
12

αx
22

αx
13

αx
23

βx
11

βx
21

βx
12

βx
22

βx
13

βx
23



=



−3
0
−3
3
0
3
2
4
1
5
3
4
5
4
4
2
3
1



,
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which is

X̃ =

(
(mx

11, α
x
11, β

x
11) (mx

12, α
x
12, β

x
12) (mx

13, α
x
13, β

x
13)

(mx
21, α

x
21, β

x
21) (mx

22, α
x
22, β

x
22) (mx

23, α
x
23, β

x
23)

)
=

(
(−3, 2, 5) (−3, 1, 4) (0, 3, 3)
(0, 4, 4) (3, 5, 2) (3, 4, 1)

)
.

It is obvious that the solution obtained is also similar to the exact solution stated in [26].

Based on Example 3, we find that:

1. Our constructed algorithm is able to solve the PFFME and PFME since the FME is a subset of FFME
and the FLS is also a subset of FFLS [21].

2. The solutions obtained for the example is exactly the same as the actual solutions in [26]; however, the
numerical approach proposed in [26] only obtained the approximation solutions.

3. The computational time for the method in [26] is longer compared to our proposed method because the
method in [26] involved many iterations to converge to the solution.

7. Conclusion

This study proposed a new algorithm for solving the PFFME, where the coefficients and the solution X̃ are in
the form of arbitrary triangular fuzzy numbers. The proposed algorithm utilized the fuzzy Kronecker product
and fuzzy V ec -operator and developed a new associated linear system. The solution is then obtained by using
the pseudoinverse method. Moreover, the constructed algorithm is not only able to solve the PFFME; it can
also solve the PFME. In conclusion, any real application involving the PFFME and PFME can employ the
constructed algorithm in obtaining an exact solution with less computational time.
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