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Abstract: Pair matrix equations have numerous applications in control system engineering, such as for stability analysis
of linear control systems and also for reduction of nonlinear control system models. There are some situations in which
the classical pair matrix equations are not well equipped to deal with the uncertainty problem during the process of
stability analysis and reduction in control system engineering. Thus, this study presents a new algorithm for solving fully
fuzzy pair matrix equations where the parameters of the equations are arbitrary triangular fuzzy numbers. The fuzzy
Kronecker product and fuzzy Vec-operator are employed to transform the fully fuzzy pair matrix equations to a fully
fuzzy pair linear system. Then a new associated linear system is developed to convert the fully fuzzy pair linear system
to a crisp linear system. Finally, the solution is obtained by using a pseudoinverse method. Some related theoretical
developments and examples are constructed to illustrate the proposed algorithm. The developed algorithm is also able

to solve the fuzzy pair matrix equation.

Key words: Fully fuzzy pair matrix equation, fully fuzzy linear system, Kronecker product, Vec-operator, associated

linear system

1. Introduction

In real world applications, matrix equations play an essential role in several situations. In the literature, a few
researchers reported that the matrix equation has been used in control system engineering [30], image restoration
[6], model reduction [5], signal processing [28], and stochastic control [31]. In control system engineering, for
example, the matrix equation is used as a technical tool in stability analysis of linear control system and also
in reduction of nonlinear control system models.

Considering that many uncertain situations may occur during system processes, such as conflicting
requirements during the system process, instability of environmental conditions [3], and noise distraction [1], the
classical matrix equation is sometimes not well equipped to deal with those situations. Thus, a fuzzy number
has been embedded to deal with the uncertainty parameters.

To date, considerable work has been conducted on matrix equations, such as the fuzzy matrix equation
(FME), AX,, = B,, [17], and fuzzy Sylvester matrix equation (FSE), AX + XB = C [2, 15, 16, 18, 19, 27].
In these studies, some of the parameters were considered in the form of fuzzy numbers. On the other hand,

there are also a number of studies in which all the parameters of the matrix equations are in the form of fuzzy
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numbers. As examples there are the fully fuzzy matrix equation (FFME) of AX,, = B,, [25], fully fuzzy
continuous-time Sylvester matrix equation of AX + XB = C [23, 29] and AX — XB = C [8, 13], and also the
fully fuzzy discrete-time Sylvester matrix equation of AXB — X = C [9].

Meanwhile, there are some applications where two matrix equations are required to be solved simultane-
ously. In this case, the combination of two matrix equations is called a pair matrix equation (PME). The PME
is also important in various applications, such in control systems. According to [30], the PME is used to make
the computational process less complicated, especially in analyzing the stability of control systems so that the
control system always performs well according to its specifications.

In the classical case of the PME, where the parameters of the PME are in crisp form, many studies have
been conducted, such as [7, 11, 32]. However, far fewer studies have been conducted for solving the PME with a
fuzzy environment, such as [26] and also [10]. In [26], the PME consists of A1 X +XB; = C; and Ay X By = Cs,
where only some of the parameters of the equation are in the form of arbitrary fuzzy numbers. A numerical
iterative method was used to obtain the approximate solutions. In [10], all the parameters of the PME are
in fuzzy form, whereby the fully fuzzy matrix equation (FFME) involved consists of A X + XB, = Cy and
Ay XBy — X = C,. In that study, a direct method was proposed to solve the positive PFFME. Due to the
limitations of these two studies, we aim to provide an algorithm for solving an arbitrary PFFME of
(ks - 0

A X By = Cy,

where A; and B; (i = 1,2) are arbitrary fuzzy matrices with some common sizes, whereas C; (i = 1,2) are

arbitrary common size fuzzy matrices, where the fuzzy matrix X is to be determined.

The main contribution of this study would be the improvement of the associated linear system that
was originally constructed in [22]. Besides that, the fuzzy Kronecker product and fuzzy Vec-operator are also
utilized in this algorithm to convert the PFFME into a simpler form of equations. The development of the
algorithm presented in this study provides the first investigation on how to solve the PEFME in Eq. (1). With
that, the algorithm will contribute to real-world applications, such as the process of analyzing the stability of
linear control systems involved with the uncertainty problem.

The remaining part of the paper proceeds as follows. In Section 2, the fundamental concepts of fuzzy
set theory and Kronecker operation are provided. In Section 3, new definitions, theorems, and corollaries are
defined and then a new algorithm for solving the PFFME is constructed. Next, two numerical examples are
illustrated in Section 5 and the solution of the PFME is shown in Section 6. Finally, the conclusion is drawn in

Section 7.

2. Preliminaries

This section will recall some definitions and theorems that will be used in this study.
Definition 1 [33] A fuzzy number is a function such as u: R — [0,1] satisfying the following properties:
e wu is normal; that is, there exists an xg € R such that u(xz¢) = 1.

o wu is fuzzy convex; that is, u(Az + (1 — A)y) > min{u(z),u(y)} for any z,y € R, A € [0,1].
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e 1 is upper semicontinuous.

o supp u = {z € Rlu(z) > 0} is the support of u, and its closure cl(supp w) is compact.

Definition 2 [33] A fuzzy number M = (m,a,B) is said to be a triangular fuzzy number (TFN) if its

membership function is given by:

1-2=2" m-a<z<m,a>0,
pyp(x) = 1= 52 m<a<m+p,8>0, (2)
0, otherwise.

In this case, m is the mean value of M, whereas a and 3 are right and left spreads, respectively.

Definition 3 [33] A fuzzy number M = (m, a, B) is called an arbitrary fuzzy number where it may be positive,

negative, or near zero, which can be classified as follows:
e M is a positive (negative) fuzzy number iff m —a >0 (8 +m <0).
e M is a zero fuzzy number if (m =0, o, 8=0).

e M is a near zero fuzzy number iff m —a <0< B+ m.

Definition 4 [1/] The arithmetic operations of two positive fuzzy numbers M = (m, o, 8) and N = (n,,0)

are as follows:

o Addition:
M &N = (m,a, )@ (n,7,0) = (m+n,a+7,5+9). (3)
¢ Opposite:
7M: 7(m7a36) = (7m7[3,0t). (4)
e Subtraction:
M &N = (m,a,8) & (n,7,8) = (m—n,a+0,8+7). (5)
e Multiplication:
M® N = (m,a,B)® (n,7,0) = (mn, my + no, mé + nf). (6)

Definition 5 [20] Let M = (m,o,8) and N = (n,7,0) be two arbitrary triangular fuzzy numbers. Then

Kaufmann’s approzimation for multiplication of arbitrary triangular fuzzy numbers is defined as:
Me&N = (f.p.q), (7)
where f=mn, p=f-r, q=5—f,

- v b n - ( (n—v) if m—a>0
r = min((m — a)(n—7), (m — a)( +5)>—{(m_a)(n+5) it m—a<o,

—
+
sy
S—
—
2
N—
=3

m+p <0

s:max((m—é—ﬁ)(n—v),(m+5)(”+5)):{(m+5)(n+5) if m+p3>0.
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Theorem 1 [24] Consider an arbitrary fuzzy number M = (m® a® B%) and positive fuzzy solution X =

(mm) am) /67:) :
e If M is positive, then the following inequalities are satisfied:

0 < (m® —a®)(m" + %) < (m® + 5%)(m* + %) (11)
e If M is negative, then the following inequalities are satisfied:

0 > (mx _ am)(ma _ aa) > (m’I‘ +Bz)(ma _ aa)) (12)

0> (m® —a®)(m®* + %) > (m® + B%)(m* + 8%). (13)
e If M s near zero, then the inequalities in Egs. (11) and (12) are satisfied for all X.

Definition 6 [12] An n x n fully fuzzy linear system (FFLS) is defined as follows:

A91%1 + Qoo + ... + Aondy = by

(14)
Am1T1 + Q2T + oo + ATy = Em»
which can also be written in a matriz form of
an Gz ... a4\ (71 by
az1 G2 ... Q2p T by
= ; (15)
a/ml &mQ oo dmn jn Em
and it is usually denoted in a form of
NIX - B, (16)

where all the entries M, B, and X are arbitrary triangular fuzzy numbers.

Definition 7 [}/ Let (A);; be any real m xn matriz. The pseudoinverse of A is an nxm matriz X satisfying

the following conditions:
e AXA=A,
e XAX =X,
e (AX)T = AX,

. (XA)T = XA.
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Definition 8 [23] Let A = (@ij)mxn and B = (bij)pxq be fuzzy matrices. The fuzzy Kronecker product is

represented as A ®;, B with the operation

anB @B ... @B
L G91B  d99B ... as,B
A®, B =
3 ~ N (17)
Gm1 B @maB ... @mnB

=25 Bl (mp)  (na)-
Definition 9 [23] The Vec-operator of a fuzzy matriz is a linear transformation that converts the fuzzy matriz

of C = (é1,¢2,...,¢pn) into a column vector as

Vee( @)= | . |- (18)

Theorem 2 [23] If A= (@ij)mxm 1S a fuzzy matriz and U= (Qij)pxp 15 a unitary fuzzy matriz defined as

(1,0,0) (0,0,0) (0,070)

_ [(0,0,0) (1,0,0) ... (0.0,0)

U= : : . : ’ (19)
(0,0,0) (0,0,0) ... (1,0,0)

Theorem 3 [25] Let A= (@ij)mxm, B= (Bl-j)nxn, and X = (Zij)mxn . Then:
e Vec|AX] = [U, @i A]lVec(X),
e Vec|XB] =[BT @, Upn]Vece(X),

where Uy, and U, denote the fuzzy unitary matrices with orders m and n, respectively.

Theorem 4 [25] Let A= (@i5)mxm » B= (l;ij)nxn, and X = (Zij)mxn - Then the FFME AX +XB=C can
be transformed as an FFLS:

(U, @x A) + (BT @1, Up)|Vee(X) = Vee(C), (20)
where Uy, and U, denote the fuzzy unitary matrices with orders m and n, respectively.
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3. Theoretical development for solving the PFFME

This section contains definitions, theorems, and a corollary that have been developed for solving the PFFME.

Theorem 5 Let A = (@ij)mxm and B = (Eij)nxn~ Then
A®B=[AeU)(U @ B)]. (21)

Proof According to Definition 8 and also the concept of matrix multiplication,

anB  anB ... amB
Fr &?B &Q.ZB dmgB.
@imB  GmB ... @mmB
On the other hand,
anl  anU ... @mU\ (B 0 0
.. a2U  axU ... apn2U 0 B 0
(AU)(U®B) = :
iinl om0 .. D) \O 0 N
anB @B ... amB
ai2B  axB ... 4B
GimB GamB .. B
Hence, the theorem is proved. O
Theorem 6 Let A = (@ij)pxq s B= (Bij)rxsy and X = (Zij)gxr. Then
Vec|[AXB] = [BT @y, AlVec(X). (22)
Proof Use Theorem 2(1) to write a matrix X as
X =XU.
Then
Vec|[AXB] = Vec|[AXUT B] by Theorem 2(2)
= Vec[(AX)(BTU)T] by matrix transpose
= (BTU ®; U)Vec(AX) by Theorem 3(2)
= (BT @, U)Vec(AX) by Theorem 2(1)
= (BT @, U)[(U ® A)Vec(X)] by Theorem 3(1)
= [(BT @, U)(U @1 A)]Vec(X) by associative matrix
= (BT @ A)Vec(X) by Theorem 5.
Therefore, the theorem is obviously proved. O

1200



DAUD et al./Turk J Math

Corollary 1 L@t Al = (&Uj)pxp; AQ = (d2ij)r><p; Bl = (l;lij)qqu and BQ = (52ij)q><s be pammeters Of the
PFFME. Then a PFFME is equivalent to a pair of fully fuzzy linear systems (PFFLS):

{(quq Rk (Al)pxp) + ((B?)qxrz Rk prp)} Xv= C’”l

v i) LA (23)
((BQ )s><q Sk (AZ)TXp) Xv = CUZ»
where
Cvy = Vec(é’l); Cuvy = Vec(é'g); Xv = Vec(f().
Proof According to Theorem 4,
AX+XB=C
can be converted to be
(U, @1 A) + (BT @1, U,)|[Vee(X) = Vee(O),
similarly to the equation
AXB=¢, (24)
which can be transformed to
(BT @), A)Vee(X) =C (25)
based on Theorem 6. Thus, it is obvious that the PFFME in Eq. (1) can be converted to a PFFLS:
[(Uqu Rk (Al)pxp) + ((B{)qu Q@ UP><P>:| Xv=Cuvy
((Bg)exq Rk (A’Zi2)r><p) XU = dUQ-
O

Theorem 7 Let A1 X + XBy = C; and AsXBy = Cy be a PFEFME, where Ay and By are square matrices

whereas Ay and Bs are rectangle matrices. Then the number of columns of the Kronecker product for these two

equations is always the same.

Proof According to Corollary 1, the Kronecker product of

(A1)pxpXpxq + Xpxa(B1)axq = (C1)pxq (26)
is

[(Taxa 1 Gidpss) + ((BD)aca @ Tpsy) ] (Khpeg = (Crlpa: (27)
Applying Definition 8, the equation will yield a FFLS with the size of the coefficient matrix being ¢p X gp.

On the other hand, the Kronecker product for

(AZ)T'XpoXq(B2)q><s = (02)r><s (28)

((BT)sxa @ (A2)rsp) (K)pxq = (Co)rcs. (29)
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Then, by Definition 8, the coefficient of the FFLS for this equation is a matrix with size of sr x gp.

Thus, this is proof that the PFFME will yield the same number of columns since they have same solution of

X. O

Remark 1 The size of coefficient matriz Kf]qxq Rk (fll)pxp) + ((BlT)qxq Rk prpﬂ in Eq. (27) is always a

square matriz since the fuzzy matrices Ay and By in Eq. (26) are always square matrices.

Theorem 8 The fuzzy matrices A1 and By for the fully fuzzy matriz equation in Eq. (26) must be square
matrices.

Proof Let

(A1) pxpXpxq + Xpxq(B1)gxq = Cpxqs

(AIX)qu + (XBl)qu = Upxqy

be the fully fuzzy matrix equation as shown in Eq. (26), where A; and By are fuzzy coefficients and prq is
the fuzzy solution. If the fuzzy coeflicients Ay and B; are nonsquare with order (fll)qxp and (Bl)qxp, and

the solution is prq, then

(Al)qXpoXq + prq(Bl)qXp

will yield

(AIX)qu + (XBl)po-

However, the addition of (AlX)qu and ()N(Bl)pxp is invalid due to the difference in sizes. Thus, in all cases,

A; and B; must be square matrices. O

Remark 2 The size of coefficient matrix ((B{)qu ®k ([lg)mp) in Eq. (29) will only be a square matriz if

e both matrices Ay and By are square;

e both matrices Ay and By are nonsquare, but the sizes of both matrices are the same.

Definition 10 A pair of fully fuzzy linear systems (PFFLS) as stated in Eq. (23) can also be represented as

follows:

(30)

(F17M17N1) ® (mxaaxaﬁx) = (mCI7aC17601)
(Fp, M2, N2) @ (m®, a®, B%) = (m®2, a2, ).
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Remark 3 Based on Corollary 1, the following terms as in Definition 10 can be given:

(Fy, M1, N1) = [ (O @k (A)pp) + ((BD ) @ Uy |
(F3, Ma, N3) = (B oxq @k (A2)rxp)

(me, 0!, 3%) = Vee(Ch),

(m?,a%, 5) = Vec(Cy),

(m. 0%, 5 = X.

Definition 11 An associated linear system for the PFFLS is defined as

FX =B,
where
F 0 0 me
Fy 0 0 e me2
F— Ml (Fl 7M1)i 7(F1 7M1): ’ X — oF ’ B— azl
M2 (F2 — M2) —(F2 — Mg) BI «?
Ny | —(Fi+Ny)~ | (Fi+N)*T B
Ny | —(Fo+ N3)~ | (Fo+ No)*t Be

Theorem 9 The solution of the PFFLS is equivalent to the solution of the associated linear system.

(32)

Proof In order to show the equivalence of the solution, the PFFLS needs to be converted to the associated

linear system.

Considering that the PFFLS in Definition 10 is an arbitrary PFFLS, the arbitrary fuzzy multiplication arithmetic

formulas as stated in Definition 5 are used in obtaining the solution. Hence,

Fim® = m*
xr C
Fom® = m°2,

Fym® — min((Fy — My)(m®* — o), (Fy — My)(m® 4 %)) = a%
Fom® — min((Fy — Ma)(m® — a®), (Fy — Ma)(m® + %)) = a2,

maz((Fy + N1)(m® + %), (F1 + N1)(m® — a®)) — Fym® =
mazx((Fz + N2)(m® + 8%), (Fy + No)(m* — a*)) — Fym® = 3,

(34)

(35)

where (F; — M;) and (F; + N;) for i = 1,2 would have two cases that both need to be considered. These cases

are as follows:

if Fz - Mi Z 0 then (Fl - Mz>+
if F; —M; <0 then (Fz — ]\41')_7

1203
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if F;+ N; <0 then (F1+N1)_7
fori=1,2.
Fim® — ((Fy = M)t (m® — o) + (Fy — My)~ (m® + %)) = a© (38)
Fom® — ((Fp — M2)"(m® — ) + (Fo — Ma) ™ (m® + 5%)) = a2,
((Fiy 4+ Ny)T(m® 4 %) + (F1 + N1)~(m® — a®)) — Fym® = (39)
((Fy + N2)T(m® + %) + (Fy + N3)~ (m® — a%)) — Fom® = 3°.
Subsequently, Eq. (38) can be simplified as follows:
F1m$ — (F1 — M1)+m"” + (F1 — M1)+Ckw — (F1 — Ml)_mx — (Fl — Ml)_ﬂw =
F‘Q’mer — (FQ — M2)+m’” + (FQ — ]\42)—"_04er — (FQ — ]\42)_7’77,3c — (FQ — MQ)_BQB = ozc2,
Fym® — ((Fy = M1)* + (Fy — My)7)m® + (Fy — My)*a® — (Fy — My) ™% = o (40)
Fgm”” — ((FQ — M2)+ + (FQ — Mg)i)mw + (FQ — M2)+C¥w — (F2 — Mg)iﬁw = 2.
Similarly to Eq. (39),
(F1 + N1)+m“’ + (F1 + N1)+ﬂx + (F1 + Nl)*m”” — (Fl + Nl)i()éz — Fim* = ﬂcl
(F2 + N2)+mw + (F2 + N2)+BI + (FQ + NQ)_mm — (FQ + NQ)_OC$ — Fom® = ¢,
(Fy + N1)™ + (F1 + N1)7)m* + (Fy + N1)T 8% — (Fy + Ny)~a® — Fym® = g (41)
((F2 -+ ]\72)+ + (FQ -+ Ng)*)m“" -+ (FQ -+ N2)+6x — (FQ + Ng)*a‘” — Fom® = 562.
By assuming that ((F; — M;)* + (F; — M;)™) = (F; — M;) for i = 1,2, then Eq. (40) will be as follows:
F1mz — (Fl — Ml)m“" =+ (F1 — M1)+Oéx — (F1 — Ml)iﬂz = Olcl
Fgmw — (F2 — Mg)mw + (FQ — M2)+C¥‘T — (F2 — Mg)iﬁw = CYCz,
which can be reduced to
Fim® — Fym®™ — Mym® + (Fy — My)ta® — (Fy — M)~ 8% = o (42)
Fgmx - Fgmx - ]\42’[’77,3c + (FQ - 1\42)4_043C - (FQ - Mg)_ﬁx = a®.

For Eq. (41), where ((F; + N;)* + (F; + N;)7) = (Fi + N;) for i = 1,2, then

(Fl + ]\]1)7’77,31C + (Fl + N]_)J'_Bx — (F1 —+ Nl)_ax — Flm’” = 501
(Fy + No)m® + (Fa + No)t 3% — (F 4+ No)~a® — Fom® = 3,
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and this can be reduced to

Fym® + Nym?® + (Fy + N)T B — (F1 + N1)~a” — Fim® = % 43)
Fom® + Nom® + (Fo 4+ No)T 8% — (Fy + Na)~a® — Fom® = 3.
Therefore, by taking Eq. (33) and simplifying Eq.s (42) and (43), we obtain
Fim®=m
Fom® =m
Mlmx—i—(Fl ) —(Fl—Ml)_Bm:Oécl,
(44)
M2m1+(F2*M2) (FQ*Mg)iﬂI =
Nym® + (Fy 4+ N1)* 3% — (Fy + N1)~a” = g4,
Ngmw + (FQ + N2)+5w — (FQ + NQ)_OZJC = ﬂc27
which can be written in a matrix form of
FX =B, (45)
where
Fi 0 0 met
Fy 0 0 mE me?
_ | My | (Fi—DM)" | —(Fr - M)~ N |
F = M, (Fngg) —(Fy — My)~ , X = ggv , B= o | (46)
Ny | —(Fi+Ny)~ | (Fi+N)* B
Ny | =(Fo+N2)~ | (Fp+ No)*t B
Thus, the solution of the associated linear system is the same as the solution of the PFFLS. O

4. Solution for arbitrary PFFME
In this section, an algorithm for finding the solution of the PFFME is presented by considering that the param-

eters are arbitrary fuzzy numbers.

Step 1: Transforming the PFFME to PFFLS.

Eq. (1) is transformed accordingly as shown in Corollary 1.

Step 2: Converting the PFFLS to an associated linear system.

The conversion of the associated linear system is based on Theorem 9.

Step 3: Obtaining the final solution.

The final solution X can be obtained by computing the inverse of the coefficient for Eq. (46). In this case,

coefficient I would be a nonsquare matrix, and thus a generalized inverse method, such as the pseudoinverse
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method, should be applied. Thus,
X = FiB,
where FT is a pseudoinverse [4].

5. Numerical examples

Example 1 Consider the PFFME,

Ay X By = Cs,
where
(12,8,5) (7,3,3) (11,8,5)
e ~ 8,3,2 10,8, 2
A={ (956 (557 937 ,BP:G74% &64$0,
(10,1,8) (1278,6) (8,3,6) > »
i (268,212,233) (296, 265, 217)
Cy = [ (248,161,240) (270, 198,228)
(316,218,342) (318,236, 324)
A_(,ﬁ (8,4,3) (923)\ 5 _ ((1.2,2) (10,4,2) (11,3,5)
*T\6.3,2) (7.3,8) (11,3,3))72 (9,21 (7.2,3) (10,2,9))"
Gy — (2732,2045,2442) (2971,2466,2910) (3564,2641,4944)
2= (2836,2271,2914) (2962,2683,3487) (3686,2914,5685)
and
B (miy, afy, B11)  (miq, afy, BTs)
X = | (m§,05,,85) (m3y,0a3,,85,) | >0.
(M3, 051, 831)  (mia, a5y, B35)
Solution:

Step 1: Transform the PFFME into Eq. (30) according to its Kronecker product.

(20,11,7) (7,3,3) (11,8,5) (7,4,7) (0,0,0)
(9.5,6) (16,8,9) (9,3,7) (0,0,0) (7,4,7)
_ | (10,1,8) (12,8,6) (16,6,8) (0,0,0) (0,0,0)
(F1, My, Ni) = (10,8,2) (0,0,0) (0,0,0) (18,12,8) (7,3,3)
(0,0,0) (10,8,2) (0,0,0) (9,5,6) (14,9,10
(0,0,0) (0,0,0) (10,8,2) (10,1,8) (12,8,6)
(268, 212, 233)
(248,161, 240)
o e nes | (316,218, 342)
(0, %) =1 1996, 265, 217)
(270,198, 228)
(318,236, 324)

1206

=
=

=
o

= O
—_

=

—_ ===

—
w



DAUD et al./Turk J Math

and
63,32,39) (56,44,37) (63,32,39) (81,36,36) (72,52,35) (81,36,36)
56,37,30) (49,35,70) (77,43,43) (72,43,26) (63,41,79) (99,49,38)
(Fy. My, Ny) — 90,56,48) (80,72,46) (90,56,48) (63,32,48) (56,44,45) (63,32,48)
2, T2 80,62,36) (70,58,94) (110,74,52) (56,37,38) (49,35,77) (77,43,54)
99,49,78) (88,68,73) (99,49,78) (90,38,111) (80,56,102) (90,38,111)

2732, 2045, 2442
2836, 2271, 2914
(s, 0 ) = 2872, 2466, 2910
3564, 2641, 4944
3686,2914, 5685

NN SN N S NN N SN N N

)
|
2062, 2683, 3487)
)
)

88,57,62) (77,54,123) (121,66,88) (80,46,92) (70,44,143) (110,52,129)

Step 2: Considering all the fuzzy matrices in Step 1, the crisp matrices are obtained as follows:

207117 0 0
9169 0 7 0
101216 0 0 7
100 0 18 7 11
0100 9149
0 0 101012 14

Fy

and from (m,ac, ),

268
248
. | 316
296
270
318

On the other hand,

63 56 63 81 72
56 49 77 72 63
90 80 90 63 56
80 70 110 56 49
99 88 99 90 80
88 77 121 80 70

81
99
63
7
90
110

and
2732
2836
e 2872
2962
3564
3686

Then an associated linear systems, F.X =

1138 4 00 735700
583040 697070
186004 86800 7
Mi=135 001238 "M |2008 35/
080593 0206107
008187 0028 6 9
212 233
161 240
218 342
c1 __ C1 __
oot =toes [0 BT =917
198 228
236 324
32 44 32 36 52 36 39 37 39 36 35 36
37 35 43 43 41 49 30 70 43 26 79 38
_ | 567256324432 |48 46 48 48 45 48
~ 6258 74373543727 |36 94 52 38 77 54
49 68 49 38 56 38 78 73 78 111 102 111
57 54 66 46 44 52 62 123 88 92 143 129
2045 2442
2271 2914
2466 2910
Cco __ C2 __
o 0= ogss |0 BT = | sus7
2641 4944
2914 5685

B, is obtained as follows:

)
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20 7 11 7 0 00O 0 0O 0|0 O O OO O 268
9 16 9 0 7 0|00 0 0O 0|00 0 OO0 O 248
1012 16 0 0 7|0 0 0 0O O[O0 O 0 OO0 O 316
10 0 0 18 7 11/0 0 0 0 0O 0|0 O 0 0 0 O 296
010 0 9 14 9|00 0 00 0|00 0 OO0 O 270
0 0 10 10 12 14|/0 0 0 0 O 0|0 O 0 0 0 O 318
63 56 63 81 72 810 0 0 0 0 0|0 0O O 0 O O 2732
56 49 77 72 63 99/0 0 0 0 O 0|0 O O O O O 2836
90 80 90 63 56 63/0 0O 0 0O O 0|0 O O O O O 2872
80 70 110 56 49 77/0 0 0 0 O 0|0 O O 0O O O m¥, 2962
99 88 99 90 8 90|0 O 0 0 O 0|0 O O 0 O O mi; 3564
88 77 121 80 70 110/0 0 0 0 0O 0|0 O O 0O O O m¥, 3686
11 3 8 4 0 01207 11 7 0 0]0 0 0 00 O mis 212
5 8 3 0 4 0/916 9 07 0[/00 0 00 O mi, 161
1 8 6 0 0 41101216 0 0 7|0 0 0 0 0 O mé, 218
8 0 0 12 3 8100 0 18 7 11/0 0 0 0 0 O afy 265
08 0 5 9 3|010 0 914 9/0 0 0 00 O a%, 198
0 0 8 1 8 7|00 101012 14(0 0 0 0 0 O afy 236
32 44 32 36 52 36(6356 63 8172 8|0 0 0 0 0 O oy | T | 2045
37 35 43 43 41 4915649 77 7263 99|/0 0 0 0 0 O afs 2271
56 72 56 32 44 321(90 80 90 6356 63|/0 0 0O 0 0 O a¥s 2466
62 58 74 37 35 43(80 701105649 77|0 0 0O 0 O O B 2683
49 68 49 38 56 38(9988 99 908 9|0 0 0 0 0 O B3, 2641
57 54 66 46 44 52|88 77 121 80 70 110/0 0 0O 0 0 O B2 2914
7 3 5 7 0 0]00 0O 0O 01207 11 7 0 0 B3, 233
6 9 7 0 7 0|00 0O 0O 0[916 9 0 7 O B, 240
8 6 8 0 0O 7|00 0 0O 01101216 0 0 7 B35 342
2 0 0 8 3 5|00 0 0O 01100 0 18 7 11 217
02 0 6 10 7|00 0 0O O0O[|010 0 914 9 228
0 0 2 8 6 9|00 0 0O0 0|0 0 10 1012 14 324
39 37 39 36 35 36[/0 0 0 0 0 0 |6356 63 81 72 81 2442
30 70 43 26 79 38|0 0 0 O O O |5649 77 7263 99 2914
48 46 48 48 45 480 0 0 O O 0 |90 80 90 63 56 63 2910
36 94 52 38 77 54[0 0 0 O 0 O |80 70 110 56 49 77 3487
78 73 78 111 102 111/0 0 0 0 0O 0 |99 88 99 90 80 90 4944
62 123 88 92 143 129/0 0 0 0 O 0 |88 77 121 80 70 110 5685

Step 3: Therefore, the final solution is obtained as follows by using pseudoinverse method:

3
S
V)
B O 1 N1 Ot

3
(S
@

[

o

8
BENOODO WO FENRF -

1208




DAUD et al./Turk J Math

Hence,
5 (miy, oy, B1) (m?%af%ﬁf?)
X = | (m3;,05,,B5) (m3y,a3,,45,)
(m3y, a1, 851) (M3, ady, B3)
(5,1,1) (6,1,2)
= (7’ 170) ( b 7 )
(7.2,6) (10,3,4)

Example 2 Consider the PFFME,

where

) (0 G 03
747 74,3) oty 286 (-856)

Qx

(122,313,329) (151,379,312)  (59,268,349)
56,264,420)  (49,354,367) (170,293, 389)

5,1,1) (6,1,2) (—9,2,3)  (8,4,3) (7,4,3)
7,1,0) (4,0,1)],B,=| (83,2) (-7,3,8 (6,3,1) |,
9,2,6) (8,2,6)

(11,3,3)  (9,2,3) (-10,2,8)

) 7

1059,1841,2739)  (798,2235,2700) (339, 1818,2303)
1113,1598,2055) (862,1878,2153) (215,1463,1951) |,
1671,3705,6387) (1274,4502,5995) (445,3805,4989)

ae (@
=
.
<

(
(
(
(
(
(
(

and

X — <(m”f1,a”f1,6f1) (mis, aty, B) (me,aﬁ,Bfg)) > 0.
(m3y, 081, 851) (M3, a5y, B35) (M3, ads, B33)

Solution:

Step 1: Transform the PFFME to the form of Eq. (30) according to its Kronecker product.

(=20, 11 7)) (10,8,2)  (9,5,6)  (0,0,0)  (10,1,8)  (0,0,0)
(7, ) (-18,12,8) (0,0,0)  (9,5,6,) (0,0,0) (10,1,8)
B NG — (7,3,3) (0,0,0) (—16,8,9) (10,8,2) (12,8,6) (0,0,0)
(F2, My, N) = (0,0,0) (7,3,3)  (7,4,7) (—14,9,10) (0,0,0) (12,8,6) |~
(11,8,5)  (0,0,0)  (9,3,7)  (0,0,0) (—16,6,8) (10,8,2)
(0,0,0)  (11,8,5)  (0,0,0)  (9,3,7)  (7,4,7) (—14,7,9)

(122,313, 329)
(56, 264, 420)
(151,379, 312)
(49,354, 367) |’
(59, 268, 349)
(170,293, 389)

(m017a017ﬁC1) =

1209
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and

(—45,21,21) (—54,34,24) (40,20,20) (48,23,32) (55,23,29) (66, 26,46)
(—63,14,27) (—36,19,12) (56,26,14) (32,12,18) (77,29,21) (44,12,26)
(—81,84,39) (—72,82,36) (72,37,78) (64,34,76) (99,43,111) (88,40, 108)
(40,24,26)  (48,28,40) (—35,25,41) (—42,38,50) (45,17,27) (54,19,42)
(Fy, Mo, No) = | (56,32,21) (32,16,23) (—49,21,56) (—28,22,33) (63,21,21) (36,8,24) |,
(72,44,93)  (64,40,90) (—63,87,78) (—56,84,70) (81,32,99) (72,30,96)
(35,23,25) (42,27,38) (30,18,12) (36,21,20) (—50,22,42) (—60,36,50)
(49,31,21) (28,16,22) (42,24,7) (24,12,11) (—70,14,58) (—40,20,32)
(63,42,87) (56,38,84) (54,33,51) (48,30,50) (—90,90,76) (—80,88,68)

(1059, 1841, 2739)
(1113, 1598, 2055)
(1671, 3705, 6387)
(798, 2235, 2700)
(862, 1878, 2153)
(1274, 4502, 5995)
(339, 1818, 2303)
(215,1463,1951)
(445, 3805, 4989)

(me, 0, 5%) =

Step 2: The equation is converted to the associated linear system.

—20 10 9 0 10 0 11 85010 726 0 80
7 -18 0 9 0 10 4120501 7806 08
7 0 —16 10 12 0 3 08880 309 260
B=lyo 7 7 140 12|"™™M=03400s8]"M |os71006]|
11 0 9 0 —16 10 8 03068 507 0 82
0 11 0 9 7 -14 0 80347 050779
122 313 329
56 264 420
151 379 312
C1 __ C1 __ Cc1 __
19 [0 = ssa | P = | ser
59 268 349
170 293 389
On the other hand,
—45 —54 40 48 55 66 21 34 20 23 23 26 21 24 20 32 29 46
—63 —36 56 32 77 44 14 19 26 12 29 12 27 12 14 18 21 26
—81 —72 72 64 99 88 84 82 37 34 43 40 39 36 78 76 111 108
40 48 —35 —42 45 54 24 28 25 38 17 19 26 40 41 50 27 42
F,=| 56 32 —49 —28 63 36 | ,My= 3216212221 8 | ,No=|21235633 21 24
72 64 —63 —56 81 T2 44 40 87 84 32 30 9390 78 70 99 96
35 42 30 36 —50 —60 23 27 18 21 22 36 25 38 12 20 42 50
49 28 42 24 —70 —40 31 16 24 12 14 20 2122 7 11 58 32
63 56 54 48 —90 —80 42 38 33 30 90 88 87 84 51 50 76 68
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1059 1841 2739
1113 1598 2055
1671 3705 6387
798 2235 2700
m?=12862 |, a®=|1878|, pB°?=|2153
1274 4502 5995
339 1818 2303
215 1463 1951
445 3805 4989

Thus, based on Eq. (46), we obtain

—-20 10 9 o 10 0|0 0O0O0OO0OO0OfO0 O O O 0 O 122
7 —-18 0 9 0 10(0 0 0O0OO0O0OjO O O 0 0 O 56
7 0 -16 10 12 0 |0 O O O O 0JO O O O O O 151
0 7 7 -14 0 120 0 0O OOO[O0O O O O0 0 O 49
11 0 9 0O -16 10/0 0 0O OOOfO O O O 0 O 59
0o 11 O 9 7 —-14/0 0 0 0 0O OO O O O O O 170

—45 —54 40 48 55 66 |0 0 0 O O OO O O O O O 1059

-63 —36 56 32 77 440 0 0 0O O OO O O O O O 1113

—-81 —-72 72 64 99 88 |0 0 0 O O OO O O O O O 1671
40 48 —35 —42 45 540 0 0 O O OJO O O O O O 798
56 32 —49 -28 63 36 |0 0 O O O OO O O O O O 862
72 64 —-63 =56 8 72 (0 0 0 O O OO O O O O O 1274
35 42 30 36 -50 -60{0 O O O O 0JO O O O O O 339
49 28 42 24 -70 —-40/0 0O O OO OfO O O O o0 O " 215
63 56 54 48 -90 -8(0 0O O O O OO O O O O O mil 445
1 8 5 0 1 0|0 2 40 9 031 0 0 0 0 O mfcl 313
4 12 0 5 0 113 00 450 9/0 30 0 0 0 O m}f 264
3 0 8 8 8 0|4 00 2 4 0[]0 0 24 0 0 O m§2 379
0 3 4 9 0 8§ |0 4300 4]0 0 0 23 0 O m}ﬁ 354
8 0 3 0 6 8|3 06 00 20 0 0 0 22 0 m§3 268
0 8 0 3 4 7103 06 3 0/0 0 0O O 0 21 a}cl 293
21 34 20 23 23 26 (0 020253240/ 0 0 0 0 O O agl 1841
14 19 26 12 29 12 |0 0302048320 0 O 0 O O 3}62 = | 1598
84 82 37 34 43 40|0 0 35305648 0 O 0O O O O 22 3705
24 28 25 38 17 19|16 20 0 0 2835/ 0 O O O O O 331”3 2235
32 16 21 22 21 8 |2416 0 0 4228/ 0 O O O O O 23 1878
44 40 87 84 32 30 (2824 0 0 4942/ 0 O O O O O Blzl 4502
23 2r 18 21 22 36 (12151215 0 0|0 O O O O O 21 1818
31 16 24 12 14 20 (18121812 0 00O O O O O O 12 1463
42 38 33 30 90 8821182118 0 0|0 O O O O O 5%2 3805
7 2 6 0 8 0130 0 00O O]0 12 15 0 18 O 13 329
7 8 0 6 0 8 |0100 0 0 0|14 0 O 15 0 18 23 420
3 0 9 2 6 0|0 0 7 0 O O|10 0O 0 12 18 O 312
0 3 7 10 O 6 |0 OO 4000 10 14 0 0 18 367
5 0 7 0 8 2]/0 0 0O0 8 0|16 0 16 0 0 12 349
0 5 0 7 7 9|0 0000 5|0 16 0 16 14 0 389
21 24 20 32 29 46 (2430 0 0 O OO0 O 60 80 &4 112 2739
27 12 14 18 21 26 (3624 0 0 0 O/ 0O O 70 50 98 70 2055
39 36 78 76 111 1084236 0 0O O O| O O 150 140 210 196 6387
26 40 41 50 27 420 0O O O O O|66 8 6 8 72 96 2700
21 23 5 33 21 24|0 0 0O O O O|77 55 7 5 84 60 2153
93 90 78 70 99 96 |0 O O O O O |165 154 15 14 180 168 5995
25 38 12 20 42 50|0 O O O 8 10/60 8 42 5 0 O 2303
21 22 7 11 58 32|0 0 O 0 12 8|70 50 49 35 0 O 1951
87 8 51 50 76 68 |0 0O O O 14 12150 140 105 98 0 O 4989

Step 3: By pseudoinverse method, the following solution is obtained:

1211



DAUD et al./Turk J Math

7 miy 7
9 msy 9
8 mis, 8
11 M3y 11
10 mis 10
7 M3a 7
2 oty 2
2 a3, 2
3 s 3
X = 3 | or X = oz, = 3
4 ofs 4
2 05 2
2 4 2
1 B3, 1
4 5%, 4
5 50 5
2 Ts 2
3 B33 3

In other words, the solution can be written as

miy, ofy, B1) m12, aty, Bfa)  (mis, afs, 5%3))

(
m3y, a5y, 851)  (m3y, a8y, B3,) (M3, ads, 433)
)

(

( )
_ ((7,2,2) (3A (10,4,2)
- ((9,2, 1) (11,3,5) (7,2,3)) '

6. Solving the PFME using the proposed method

As mentioned earlier, the study in [26] solved the pair of fuzzy matrix equations (PFME). In that study, the
PFME was written as follows:

{mX+X&=él

As X By = Cs,

where the parameters A;, Ao, By, and By are in the form of crisp numbers, whereas C, and C, are the fuzzy

matrices and the solution X is also in fuzzy form. An example is taken from that study and will be solved

using our proposed algorithm.

Example 3 According to the PFME as stated in Eq. (/8), the parameters A;, As, By, and By are as follows:

1212
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4 =2 1
( 32 ) (-2 5 1],
0o -1 2
Gy _ (4126026 — 41r) (—44+ 237,23 —ddr) (~25+22r,22 — 25r)
—50 + 50,50 — 50r) (=34 + 67r, 67 — 34r)  (—19 + 43r, 43
1 2
w9y 3)
-1 3
Gy = —5+8r,8 — 57) (=174 207,20 — 17r)
29+237“ 23 —29r) (—654 867,86 — 65r)

and the exact solution is given by

(—4+7r1—4r)

- (=54 2r,2 —5r)
(—2+ 57,5 — 2r)

o (=3 43,3 — 3r)
T\ (—4+4r4—4r)

(=1+4r,4—r)

Solution:

—19r)

)

First, the PFME is converted to the following PFFME based on the triangular fuzzy numbers (m, a, f8):

(3,0,0) (—1,0,0)\ (X11 X12 X13 X1 X12 X3 -
(( 2,0,0) (5,0,0) ) <X21 Xoo X23> + <X21 Xoo X23) ((O?’O(,)’O())) ((510000
 [(~15,26,41) (—21,23,44)
o ( (0,50, 50) (33, 67 34)
S 5 = (1,0,0) (2,0,0)
(=1,0,0) (0,0,0)\ (X1 X1z Xi3 N _ (3,8,5)
(Cron Goo) G 30 %) U o)) By

( ) 7 ) (_17070) (_270’0) (O’an) (07070) (070’0) (mllvallaﬁll)
(-2,0,0) (9,0,0) (0,0,0) (—2,0,0) (0,0,0) (0,0,0) (m%,,a%,,8%)
( 2 O 0) (07()’0) (87070) (il,O,O) (71’ 70) (07070) ( 127a12761 )
( , ) ( 27070) (_27070) (107070) (07070) (_17070) (m227a227ﬁ2 )
( 0 O) (07070) (170,0) (070a0) (5’070) (_1’070) (ml?ﬂal?ﬂﬁl )
( ) (07070) (07()’0) (LO,O) (_ ) 70) (77 ’0) (m237a23vﬁ23)
(miy, oy, Bi1)

(_1’0’0) (0’0’0) (0’0’0) (0’050) (17070) (07070) ( 21,0(21,52)
(71’050) (37050) (070’0) (0’050) (1307 ) (737070) (m12val27B1 )
(7270a0) (0,0,0) (17030) (0,0,0) (73,0>0) (0,070) (m22’a227ﬂ2 )
(_270a0) (67070) (17070) (_ 7070) (_3»070) (97070) (m1370‘137B1 )
(m3s, o33, B33)

Then we obtain

(4,0,0) (—2,0,0)

OO

0)
,0

1
(2,0,0)

(—15,26,41)
(0,50, 50)
(—21,23, 44)
(33,67,34)
(—3,22,25)
(24,43,19)

)
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7 -1-20 0 0000000000 0O00O0
-29 0 -20 0/0000O00/0O0O0 00O
-20 8 -1-1 0/000000/00O0 00O
0 -2-210 0 -1j000 0 00|00 O 000
-10 1 0 5 —-1{000 000000 00O
0 -10 1 -27|000000000 0O00O0
-10 0 0 1 0/0000O0O0O/0O0O0 0O0O
-13 0 0 1 -3/000000/000 0O00O0
-20 1 0 -30|000000/00O0 0O00O0
-26 1 -3-3 9/]000000/000 0O00O0
0 0 0o 00 0700000012 000
0 0 0 00 0090000200 200
0 0 00O 0O 0|00O80O00|200 110
0 0 0O 0O 0 00001000(022 001
0 0 000 0001050100 001
0 0 0o 00 00001TO0OT7010 020
0 0 0o 00 0000010100 000
0 0 0 0 0 0(030010/100 003
0 0 0o 00O 0001000200 030
0 0000 0061009200 330
0 0 0o 00 0012007000 000
0 0 00O 0 0200200900 000
0 0 000 0200100080 000
0 0 0o 00 0(022010/00101000
0 0 0o 00 0100010010 050
0 0 0o 00 0010200001 107
0 0 0o 00 0100000000 010
0 0 0o 00 0100030300 010
0 0 0o 00 0200300010 000
0 0 0o 00 0300300610 009

Therefore, the final solution is obtained as follows:
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which is

X = ((mflaaflvﬂfl) (mfy, oy, Ba) (mﬁ»agfsaﬁfs)) _ ((37275) (=3,1,4) (0,3,3
(mgl’aglvﬁgl) (m%27a§27ﬂ%2) (m§37a§3,ﬂ§3) (07474) (37572) (3747 1

)
Il iS Ob\/iOuS lhal (he SOlllliOIl Oblained iS alSO Similar tO lhe eXa.Cl SOluliOH Stated ln [26]

Based on Example 3, we find that:

1. Our constructed algorithm is able to solve the PFFME and PFME since the FME is a subset of FFME
and the FLS is also a subset of FFLS [21].

2. The solutions obtained for the example is exactly the same as the actual solutions in [26]; however, the

numerical approach proposed in [26] only obtained the approximation solutions.

3. The computational time for the method in [26] is longer compared to our proposed method because the

method in [26] involved many iterations to converge to the solution.

7. Conclusion

This study proposed a new algorithm for solving the PFFME, where the coefficients and the solution X are in
the form of arbitrary triangular fuzzy numbers. The proposed algorithm utilized the fuzzy Kronecker product
and fuzzy Vec-operator and developed a new associated linear system. The solution is then obtained by using
the pseudoinverse method. Moreover, the constructed algorithm is not only able to solve the PFFME; it can
also solve the PFME. In conclusion, any real application involving the PFFME and PFME can employ the

constructed algorithm in obtaining an exact solution with less computational time.
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